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ABSTRACT

The distribution of the immune system throughout the body
complicates in vitro assessments of coronavirus disease
2019 (COVID-19) immunobiology, often resulting in a lack
of reproducibility when extrapolated to the whole organism.
Consequently, developing animal models is imperative for
a comprehensive understanding of the pathology and
immunology of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection. This review
summarizes current progress related to COVID-19 animal
models, including non-human primates (NHPs), mice, and
hamsters, with a focus on their roles in exploring the
mechanisms of immunopathology, immune protection, and
long-term effects of SARS-CoV-2 infection, as well as their
application in immunoprevention and immunotherapy of
SARS-CoV-2 infection. Differences among these animal
models and their specific applications are also highlighted,
as no single model can fully encapsulate all aspects of
COVID-19. To effectively address the challenges posed by
COVID-19, it is essential to select appropriate animal
models that can accurately replicate both fatal and non-
fatal infections with varying courses and severities.
Optimizing animal model libraries and associated research
tools is key to resolving the global COVID-19 pandemic,
serving as a robust resource for future emerging infectious
diseases.

Keywords: SARS-CoV-2; COVID-19; Animal models;
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the pathogen responsible for coronavirus disease
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2019 (COVID-19), which can manifest as mild to severe
respiratory illness and can cause death in humans (Riggioni
etal., 2020). Since its emergence in late 2019, the highly
transmissible and variable nature of this virus has posed a
significant challenge to the global medical community. As of
February 2024, the pandemic has led to over 774 million
confirmed cases and more than 7 million deaths worldwide
(https://covid19.who.int/). Despite the continuous evolution of
the virus, the current prevalent variants are not associated
with increased disease severity (Statement from the Fifteenth
Meeting of the International Health Regulations (IHR) (2005)
Emergency Committee on the COVID-19 Pandemic).
Consequently, on 4 May 2023, the World Health Organization
(WHO) declared that COVID-19 no longer constituted a “public
health emergency of international concern” (PHEIC).
Nonetheless, considerable research challenges remain,
particularly in our understanding of the role of the host
immune system in disease progression, as well as the
development of broad-spectrum vaccines capable of targeting
rapidly mutating SARS-CoV-2 strains and the implementation
of different immunotherapies. Therefore, animal model
research remains a priority for advancing our knowledge of
COVID-19.

Studying the immunobiology of COVID-19 using only in vitro
tools is difficult due to the complexity of the human immune
system. Animal models offer significant advantages as they
enable the simulation and control of various factors, such as
host characteristics, viral dosage, and antiviral interventions.
These models facilitate procedures such as transgene
expression, cell selection, and tissue sampling, which are
challenging in humans, thereby providing valuable
experimental data. Hence, animal models are essential for the
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advancement of immunological research and immunotherapy
for COVID-19, particularly those involving higher mammals.
During the early stages of the pandemic, various animal
models were established to support vaccine and drug
development, and to investigate SARS-CoV-2 pathogenesis
(Mufioz-Fontela et al., 2020). To date, naturally susceptible
animals such as non-human primates (NHPs), Syrian
hamsters (Mesocricetus auratus), ferrets (Mustela furo), and
mice (Mus musculus) — either sensitized through transgenic
techniques or infected with SARS-CoV-2-adapted strains —
have been widely utilized. Various studies have documented
the creation, pathology, and application of animal models for
COVID-19 (Bi et al., 2021; Chu et al., 2022; Kane et al., 2023;
Mufioz-Fontela et al., 2020; Shou et al., 2021; Zhang et al.,
2023; Zhao etal., 2023), which will not be repeated here.
Other reviews have also summarized the immune responses
to SARS-CoV-2 infection in both patients and animals,
highlighting the unique immune characteristics of diverse
animal models (Chen etal., 2024; Saravanan et al., 2022).
This review focuses on current advancements in our
understanding of the immunological characteristics and
mechanisms of animal models for COVID-19, as well as their
applications in studying immune prevention and treatment
strategies, emphasizing the effective use of each model to
address specific problems (Figure 1).
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ANIMAL MODELS OF COVID-19

In response to the rapid global spread of SARS-CoV-2,
various animal species, including NHPs, mice, ferrets, tree
shrews, and Syrian hamsters, have been established as
models to facilitate COVID-19 research. The suitability of
these animals as models predominantly depends on the
molecular structure of the primary binding receptor (ACE2) for
the virus. Catarrhine primates, including apes and
African/Asian monkeys, have ACE2 amino acid residues
identical to those in human ACE2 (hACE2), while New World
monkeys exhibit over 90% similarity, making both groups
highly susceptible to SARS-CoV-2 (Gao & Zhang, 2020; Karki
etal.,, 2021; Melin etal,, 2020). However, the high costs
associated with using large animal models often limit their
utility in research, prompting a shift towards smaller animals.
Tree shrews, which possess certain primate-like
characteristics, show a divergence of 10 amino acids in their
ACE2 key domain compared to hACE2, resulting in lower
susceptibility to SARS-CoV-2 infection, characterized by mild
viral shedding and lung lesions (Xu et al., 2020a; Zhao et al.,
2020). Furthermore, mice and ferrets have ACE2 sequences
that differ from hACE2 by eight and seven amino acids,
respectively. Although mice are naturally resistant to SARS-
CoV-2, humanized mouse models are widely utilized in
COVID-19 research due to advancements in gene-editing

techniques, including transgenic expression, clustered
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Figure 1 Immunological applications of common COVID-19 animal models

Rhesus macaques, mice transduced with human ACE2 gene, mice infected with adaptive SARS-CoV-2, Syrian hamsters, and ferrets are widely
used to study immune pathogenesis and immune protection mechanisms of COVID-19, and also play important roles in COVID-19 vaccine and

immunotherapeutic drug development. Figure created using BioRender (https://biorender.com/).

748  www.zoores.ac.cn

Protective antibody
Tissue-resident memory T cell
Protective innate immune
response

Maturation of germinal center

Immunotherapy testing

M-

Inflammatory mediator blockade

Immune receptor-ligand
intervention

Regulation of
immunopathological signaling


www.zoores.ac.cn

regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) editing, and
transient overexpression of hACE2 (Sefik et al., 2022; Zhang
etal., 2023; Zhou et al., 2023). Conversely, ferrets exhibit a
natural susceptibility to SARS-CoV-2, manifesting with mild
clinical symptoms and relatively low lung viral titers (Zhao
etal,, 2023). Syrian hamsters, with only two amino acid
differences in ACE2 compared to hACE2, are a preferred
model for in vivo preclinical assessment of SARS-CoV-2
virulence and for testing vaccines, antivirals, and therapeutics
(Handley et al., 2023). Despite these advancements, however,
no single animal model can fully replicate all aspects of
COVID-19, highlighting the need for tailored research
approaches that utilize the unique features of each animal
model (Table 1).

NHPs

Compared to other laboratory animals, NHPs possess
immune and respiratory systems, as well as tissue structures,
that closely resemble those of humans (Estes et al., 2018).
Old World monkeys, such as rhesus macaques (Macaca
mulatta), cynomolgus macaques (Macaca fascicularis),
African green monkeys (Chlorocebus aethiops), and baboons
(Papio hamadryas), and New World monkeys, such as
common marmosets (Callithrix jacchus), are frequently
employed as models for SARS-CoV-2 infection, displaying
mild to moderate respiratory symptoms. In rhesus macaques,
SARS-CoV-2 infection causes acute localized to widespread
pneumonia, but typically without pronounced clinical
respiratory symptoms (Shan etal.,, 2020). Notably, age

significantly impacts the severity of SARS-CoV-2 in rhesus
macaques, with older animals demonstrating more severe
interstitial pneumonia and cytokine storm, despite a delayed
immune response, compared to their younger counterparts
(Song et al., 2020; Yu et al., 2020b). Cynomolgus macaques,
which are smaller and less expensive to maintain, are
predominant in China’s experimental primate population, with
crab-eating monkeys (211 171) far outnumbering rhesus
macaques (28 806). Post-infection, cynomolgus macaques
show symptoms such as abnormal chest radiographs,
elevated body temperature, and weight loss, although their
cytokine response and lung disease are less severe than in
rhesus macaques (Lu et al., 2020). Despite the abundance of
cynomolgus macaques, rhesus macaques are preferred in
COVID-19 research due to their higher suitability. Northern
pig-tailed macaques (Macaca leonina), lacking the retroviral
restriction factor ftripartite motif-containing protein  5a
(TRIM5a), exhibit more severe inflammation and physical
impairment from SARS-CoV-2 than rhesus macaques (Kuang
et al., 2009; Song et al., 2021). However, limited research on
these macaques due to their small number hinders a full
understanding of their potential in studies. Common
marmosets exhibit lower susceptibility to SARS-CoV-2, with
less pronounced and replicable manifestations of COVID-19
(Ireland et al., 2022; Lu et al., 2020). African green monkeys
and baboons, though utilized less frequently, can also serve
as SARS-CoV-2 models. Compared to macaques, baboons
experience prolonged viral RNA shedding and more severe
lung inflammation (Singh etal., 2020), while African green
monkeys display higher SARS-CoV-2 replication and marked

Table 1 Common animal models for COVID-19 immunobiology research

Animal Immunopathology Immune response Advantage Disadvantages
NHPs Diffuse alveolar damage Neutralizing antibody response Closer to human immune Lack of severe clinical
Lung consolidation Virus-specific T cell response  response symptoms
Infiltration of inflammatory cells Up-regulation of IL-1, IL-6, IL-  Essential models for preclinical High technical requirements for
Thoracic adhesion 10, and other inflammatory trials biosecurity
Glassy opacity factors High experimental costs
Hepatosplenopathy Transient neutropenia and
Age-related pathological lymphocytopenia
changes
hACE2 Severe interstitial pneumonia  Lymphopenia Excellent simulation of severe  Vastly different ACE2
transgenic mice Infiltration of inflammatory cells Pulmonary immune cell COVID-19 expression pattern from
Thickening of alveolar septum recruitment Dose-dependent respiratory humans

Unique vascular system
damage
factors

Diffuse microglia activation

AdV/AAV- Infiltration of inflammatory cells Virus-specific T cell response
hACE2 mice from perivascular to Up-regulation of TNF-a, IFN-y,
mesenchymal IL-10 and other inflammatory
Diffuse alveolar intraepithelial ~ factors
infection Reduced activation of CD4",
Alveolar edema CD8"*, or NK cells
Increased vascular congestion
and bleeding
Mouse adapted Interstitial pneumonia
SARS-COV-2 Edema chemokine responses

Diffuse alveolar damage
Mild to moderate lung

inflammation
Syrian hamsters Alveolar destruction

Monocyte infiltration
Alveolar collapse

Lung consolidation
Pulmonary hemorrhage

factors

T lymphocytes

factors

Up-regulation of IFN-y, IL-6,
MCP-1 and other inflammatory

Proinflammatory and monocyte Easy to simulate multiple

Up-regulation of IL-6, IL-1q, IL-
1B and other inflammatory

Neutralizing antibody response
Infiltration of macrophages and

Up-regulation of IFN-y, IL-4, IL- symptoms
6 and other inflammatory

Complex and expensive
transgenic operations

Lack of genetic diversity and
disease models

Fast and simple model Interference from anti-Adv/AAV
construction immune response

Diverse genetic backgrounds or Time and tissue limitations of
disease models viral infection

Suitable for large-scale drug

and vaccine research

symptoms and mortality
Central nervous system
infection

Clinical SARS-CoV-2 strains
COVID-19 symptoms cannot be used
Diverse genetic backgrounds or

disease models

Lack of reagents and tools for
immunology research

Lack of genetic diversity and
disease models

Naturally susceptible to SARS-
CoV-2
Similar to human COVID-19

Suitable for large-scale drug
and vaccine research
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respiratory issues, including pronounced inflammation and
clotting disorders (Woolsey etal., 2021). The correlation
between age and COVID-19 severity is consistent across
these NHP species, highlighting their utility in exploring the
effects of aging and metabolic diseases on SARS-CoV-2
infection (Singh etal., 2020; Song etal.,, 2020; Yu etal.,
2020b). Despite requiring biosafety level 3 (BSL-3) facilities
and specialized personnel to handle SARS-CoV-2-infected
NHPs, these models are essential for evaluating COVID-19
treatments and vaccines (Guebre-Xabier etal.,, 2020;
Rabdano et al., 2023; Sui et al., 2021b; Vogel et al., 2021).

Mice

Due to their small size, large populations, and low feeding
costs, mice are extensively used as model organisms for a
variety of human diseases. However, significant structural
differences between hACE2 and mouse ACE2 (mACEZ2)
inhibit the natural replication of SARS-CoV-2 in wild-type mice
(Mahdy etal.,, 2020). Consequently, current strategies for
developing COVID-19-susceptible mouse models involve
either introducing the hACE2 gene or adapting mACE2
through viral passage (Knight et al., 2021). The diverse array
of genetic and immunological tools available for mice allows
for a more effective exploration of COVID-19 pathogenesis,
offering advantages not achievable with other animal models
and contributing to a more profound understanding of this
complex disease.

hACE2 transgenic mice: Animal susceptibility to SARS-CoV-
2 is influenced by the structural characteristics of ACE2, while
COVID-19 severity is closely associated with its expression
(Ni etal.,, 2020). As a result, the transgenic introduction of
hACE2 into mice under the control of efficient promoters has
become a highly effective strategy for constructing COVID-19
models. In 2007, hACE2 transgenic mice were generated to
evaluate SARS-CoV in vivo using cytomegalovirus (CMV)
immediate enhancer/B-actin (CAG) and keratin-18 (K18)
promoters, with the former enabling robust hACE2 expression
across various mouse cell types and the latter restricting high
hACE2 expression to epithelial cells (McCray etal., 2007;
Tseng et al., 2007). The K18-hACE2 mouse model has also
been extensively used in COVID-19 research, replicating
dose-dependent characteristics of SARS-CoV-2 infection,
including loss of olfaction, severe lung pathology, thrombosis,
vasculitis, nerve damage, and mortality, similar to those
observed in human COVID-19 patients (Zheng et al., 2021b).
However, K18-initiated hACE2 is overexpressed in the brain,
exceeding ACE2 expression levels in humans (Chen etal.,
2021b). Consequently, K18-hACE2 transgenic mice exhibit a
disparity in brain infection levels compared to COVID-19
patients (Winkler et al., 2020). To address this issue, hACE2
transgenic mice were developed using the mACE2 promoter
to ensure equivalent hACE2 expression in mACE2* cells
(Yang et al., 2007), resulting in a self-limiting and non-lethal
course of infection, which is invaluable for assessing the
efficacy of antiviral therapeutics and vaccines (Bao etal,
2020). Additionally, CRISPR/Cas9 knock-in technology has
been employed to generate transgenic mouse models
expressing hACE2, which display detectable SARS-CoV-2 in
the lung, trachea, and brain, accompanied by interstitial
pneumonia and elevated cytokine levels (Sun et al., 2020b).
Viral vectors for hACE2 transduction in mice: Employing
adenoviral vectors (AdV) or adeno-associated virus vectors
(AAV) to transiently express hACE2 in mouse lungs is
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considered highly effective for modeling SARS-CoV-2
infection in strains with distinct genetic characteristics or
diseases. Notably, intranasal administration of AdV-encoded
hACE2 in wild-type BALB/c or C57BL/6 mice, with subsequent
SARS-CoV-2 infection at the peak of hACE2 expression at 5
days post-transduction, leads to weight loss, severe lung
lesions, and high viral replication in the lungs (Sun etal.,
2020a). In general, AAVs are preferred over AdVs due to their
lower immunogenicity, prolonged expression of target genes,
and enhanced suitability for in vivo gene delivery. Intranasal
administration of hACE2 encoded by AAV9 and AAV-DJ
results in robust hACE2 gene expression in the lungs of mice,
while AAV6 yields relatively low expression (Gary et al., 2021;
Glazkova et al., 2022; Israelow et al., 2020). Mice humanized
with  AAV-hACE2, specifically the MSTRG6 strain, exhibit
chronic COVID-19 features, including weight loss, persistent
viral RNA presence, fibrotic lung pathology, human-like
macrophage responses, sustained interferon (IFN)-stimulated
gene (ISG) expression, and T cell lymphopenia (Glazkova
etal., 2022; Sefik etal, 2022). These AdV/AAV-hACE2
mouse models provide a readily available and genetically
varied framework for studying SARS-CoV-2 infection, crucial
for rapid preclinical assessments.

Mouse-adapted viruses: For research involving COVID-19
animal models where SARS-CoV-2 mutation is not a factor,
using a mouse-adapted strain of SARS-CoV-2 may be a
preferable option. Dinnon et al. (2020) engineered a mouse-
adapted recombinant SARS-CoV-2 variant by modifying the
Q498Y/P499T amino acid residue in the receptor-binding
domain (RBD) of the spike (S) protein, enabling viral
replication in both the upper and lower respiratory tracts of
wild-type BALB/c mice, although young mice rapidly cleared
the infection within 4 days. Leist et al. (2020) generated the
MA10 variant by passaging mouse-adapted SARS-CoV-2
through mice 10 times, inducing pulmonary disease and
potential acute respiratory distress syndrome (ARDS) in
BALB/c mice, but only mild lung inflammation and weight loss
in C57BL/6 mice. Another variant carrying the N501Y
substitution, generated by serial passage of SARS-CoV-2
through the respiratory tract of elderly BALB/c mice, induces
interstitial pneumonia without visible clinical symptoms or
weight loss (Gu et al., 2020). The SARS2-N501Y MAS30 strain,
produced through successive passages of SARS2-N501Y in
mouse lungs, shares spike protein mutations with the Omicron
variant and can cause fatal disease in young BALB/c mice
(Kibler etal., 2022; Wong et al., 2022). The generation of
highly virulent mouse-adapted SARS-CoV-2 through in vivo
passage alone mirrors unrestricted SARS-CoV-2 transmission
in the population without preventative measures, providing a
vital model for studying viral transmission dynamics.

Hamsters

Hamsters, particularly Syrian hamsters (Mesocricetus
auratus), are highly susceptible to SARS-CoV-2 infection,
making them a preferred model for viral study. SARS-CoV-2
effectively replicates in the pulmonary system of Syrian
hamsters, targeting the lower respiratory tract within 12 hours
post-inoculation and causing severe pathological alterations
and olfactory dysfunction similar to symptoms observed in
COVID-19 patients (Clancy etal., 2023; Imai etal., 2020;
Merle-Nguyen et al., 2024). SARS-CoV-2 infection in Syrian
hamsters is characterized by rapid viral clearance by day 7,
resembling infection dynamics in mildly infected humans,
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possibly attributed to varying viral infection titers (Sia et al.,
2020). Few animal models of COVID-19 exhibit clinical
features of ARDS, limiting our understanding of the molecular
mechanisms underlying the host immune response to SARS-
CoV-2 infection. However, SARS-CoV-2-infected Syrian
hamsters display key ARDS characteristics, such as lung
injury, increased permeability, acute inflammation, and
hypoxemia, particularly when inflammatory mediators are up-
regulated and persist after viral clearance (Bednash et al.,,
2022). Thus, Syrian hamster models of SARS-CoV-2 infection
reflect several aspects observed in moderate, self-limiting
cases of COVID-19, including respiratory and vascular
inflammation and age-related patterns (Bednash et al., 2022;
Gruber et al., 2022; Imai et al., 2020). In addition, Roborovski
pygmy hamsters (Phodopus roborovskii) are highly
susceptible to SARS-CoV-2, developing severe acute diffuse
alveolar injury and pulmonary hyaline microthrombi similar to
severe COVID-19 patients (Trimpert etal., 2020). Chinese
hamsters (Cricetulus griseus) can also be infected with SARS-
CoV-2, presenting with clinical symptoms akin to the Syrian
hamster models but with prolonged symptom duration
(Bertzbach et al., 2021). As valuable models for SARS-CoV-2
infection, hamsters, mice, and NHPs have been used in
combination for the development of viral vaccines and drugs
(Baum et al., 2020; Lu et al., 2023; Yu et al., 2023).

Other animal models

Various other rodents have been used in studies of SARS-
CoV-2 infection. Guinea pigs (Cavia porcellus) do not appear
to be susceptible to SARS-CoV-2 infection, as the virus
cannot be detected despite early histological changes in the
lungs by day 3 (Hewitt et al., 2020). In contrast, New Zealand
white rabbits (Oryctolagus cuniculus) are sensitive to SARS-
CoV-2 but remain asymptomatic (Mykytyn etal.,, 2021),
making them unsuitable as a disease model. Interestingly, Yu
et al. (2022a) established a SARS-CoV-2-susceptible hACE2-
transgenic rat (Rattus norvegicus) model but found that wild-
type Sprague-Dawley (SD) rats infected with the prototype
strain of SARS-CoV-2 showed detectable viral loads in the
upper respiratory tract and lung lesions. The increase in
demand for COVID-19 research has expanded the range of
animals used for testing and model development, beyond
conventional primate and rodent models. Studies have
indicated that SARS-CoV-2 exhibits limited replication in dogs,
pigs, chickens, and ducks, but shows efficient replication in
the upper respiratory tract of ferrets and in the respiratory and
digestive systems of cats (Shi et al.,, 2020). The respiratory
tract of ferrets, which is physiologically and anatomically
similar to that of humans, is naturally sensitive to a variety of
human respiratory viruses, including influenza virus, SARS-
CoV, and SARS-CoV-2 (Belser et al., 2011; Kim et al., 2020;
Shi & Hu, 2008). SARS-CoV-2 infection in ferrets results in
fever, mild respiratory symptoms, acute bronchiolitis, and
diffuse interstitial histiocytic pneumonia, but not death (Kim
et al., 2020; Kreft et al., 2022). Minks (Neovison vison), also
belonging to the weasel family, experience severe respiratory
disease and death following SARS-CoV-2 infection,
presenting with pulmonary edema, moderate vasculitis, and
fibrinous interstitial pneumonia (Eckstrand etal., 2021).
Domestic cats (Felis catus) also exhibit high susceptibility to
SARS-CoV-2 infection, although their widespread use is
impeded by the challenges of non-standard animal models
(Shi etal., 2020). Additionally, in-depth study of infection

immunology in these models is hindered by the scarcity of
specialized immunological research tools.

INFECTION IMMUNOLOGY IN ANIMAL MODELS OF
COVID-19

Immune pathogenesis of SARS-CoV-2 infection

The pathophysiology of COVID-19 primarily arises from host
dysregulation in controlling SARS-CoV-2 replication and
modulating the immune response, resulting in delayed viral
clearance, inflammation, and tissue damage that extends
beyond pulmonary involvement to systemic manifestations
(Arish et al., 2023). The host innate immune system detects
RNA viruses, like coronaviruses, through various pattern
recognition receptors (PRRs). Toll-like receptor 3 (TLR3),
TLR7, and TLR8 recognize viral genomic RNA, double-
stranded RNA (dsRNA), and single-stranded RNA (ssRNA).
Cytoplasmic RNA sensors, such as retinoic acid-inducible
gene | (RIG-I) and melanoma differentiation-associated
protein 5 (MDAS5), detect dsRNA intermediates formed during
viral replication. This detection triggers the activation of IFN
regulatory factor 3 (IRF3)/IRF7-dependent type | and Il IFN
transcription, as well as nuclear factor kappa B (NF-kB)-
dependent proinflammatory cytokines and chemokines,
initiating the antiviral process (Merad et al., 2022).

SARS-CoV-2 disrupts the innate immune system by
targeting viral sensors and blocking downstream antiviral
signaling molecules, facilitating successful transmission and
adaptation to human hosts (Kasuga et al., 2021). Patients with
moderate to severe COVID-19 exhibit impaired responses to
both IFN-I and IFN-III, associated with persistent viral load in
the bloodstream, while patients with mild disease show early
induction and higher levels of IFN (Galani et al., 2021; Hadjadj
etal.,, 2020). As the virus evades immune surveillance and
efficiently infects neighboring target cells, leading to acute
lung injury, it continues to activate the innate immune
response via PRRs and damage-associated molecular
patterns (Chu et al., 2020). Uncontrolled immune responses
trigger secondary systemic inflammation and a cytokine storm,
marked by immune cell overactivation, abnormal blood counts,
and elevated levels of circulating cytokines, such as tumor
necrosis factor (TNF)-a, IFN-I and IFN-II, interleukin (IL)-1, IL-
6, IL-12, IFN-y-inducible protein 10 (IP-10), and monocyte
chemoattractant protein 1 (MCP-1), culminating in septic
shock, ARDS, and multiple organ failure (Fajgenbaum & June,
2020; Kasuga et al., 2021).

Initial insights into the pathological mechanisms of COVID-
19 were derived from patient blood samples, biopsies, and
autopsy specimens. With the advancement of animal models
replicating SARS-CoV-2 infection, a more comprehensive
understanding of COVID-19 pathogenesis has been achieved
(Figure 2). An ideal animal model should capture the key
aspects of SARS-CoV-2 pathogenesis and associated
immune responses, allow detailed study of multiple anatomical
sites of viral infection through invasive sampling, and support
experimental approaches to manipulate the immune system.
Currently, NHPs, mice, and golden hamsters are commonly
used as models of SARS-CoV-2 infection due to their
similarity to human patients regarding virus sensitivity,
anatomical sites of viral infection, immune system
components, and clinical symptoms. However, no single
animal model can perfectly replicate all characteristics of
COVID-19. By effectively and thoughtfully utilizing each animal
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Application of animal models of SARS-CoV-2 infection has promoted systematic research on COVID-19 immunopathology. Animal experiments on
vaccines and adjuvants have advanced our understanding of the immunoprotective mechanisms against SARS-CoV-2 infection. Figure created

using BioRender (https://biorender.com/).

model, we can gain a deeper understanding of the
immunopathological mechanism underpinning SARS-CoV-2
infection.

IFN-I response: The role of IFN-I in SARS-CoV-2 infection is
complex and extensively studied. IFN-I is crucial for antiviral
immunity, exerting various antiviral effects and promoting
immune cell recruitment, thereby playing a protective role
against SARS-CoV-2 infection (Zhang etal, 2020a).
However, evidence also links a strong IFN-I response and
increased ISG expression with the development of severe
COVID-19 (Lee & Shin, 2020; Zhu et al., 2020). This abnormal
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IFN-I response in COVID-19 is further supported by animal
models. Notably, C57BL/6J mice infected with the SARS-CoV-
2 MA10 strain do not develop severe disease, while those
lacking IFN-I and IFN-II receptors develop more pronounced
and longer-lasting pulmonary dysfunction after infection,
confirming the protective role of IFN-I signaling (Leist et al.,
2020). Studies have shown that SARS-CoV-2 suppresses
IFN-1 expression, promoting infection in models involving
rhesus macaques and Syrian hamsters (Francis et al., 2021;
Sui etal, 2021a). However, most animal models have
reported an association between IFN-I signal intensity and
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disease severity. For instance, AAV-hACE2-transfected IFN-
a/B receptor (IFNAR)™™ and IRF3/77"~ mice have revealed that
the IFN-I response post-SARS-CoV-2 infection is essential for
the recruitment of proinflammatory monocytes and
macrophages to lung lesions, which induces inflammation
(Israelow et al., 2020). Prolonged IFN signaling in mice with
respiratory tract infection disrupts lung epithelial cell repair,
thereby increasing disease severity and susceptibility to
bacterial infection (Broggi et al., 2020; Major et al., 2020). In
baboons, SARS-CoV-2 infection leads to a higher production
of inflammatory factors, including IFN-a, compared to rhesus
macaques, resulting in more severe lung pathology (Singh
et al., 2020). K18-hACE2 transgenic mice infected with SARS-
CoV-2 exhibit high and persistent IFN-I, IFN-Il, and IFN-III
expression, highlighting the correlation between IFN
expression and COVID-19 severity (Oladunni etal., 2020;
Zheng et al., 2021b).

Inflammatory response: Activation of inflammasomes by
SARS-CoV-2 infection initiates an inflammatory cascade,
which can, in severe cases, lead to a lethal cytokine storm and
systemic organ failure (Mehta etal., 2020). Animal models
have been instrumental in elucidating the inflammation caused
by SARS-CoV-2 infection and its role in disease pathogenesis.
NHPs infected with SARS-CoV-2 exhibit typical clinical
symptoms, such as fever, cough, dyspnea, and interstitial
pneumonia. However, severe lung injury and diffuse alveolitis
are primarily observed in rhesus macaques and African green
monkeys (Azkur et al., 2020; Yuan et al., 2021). This severe
condition is marked by thickening of the alveolar wall and
infiltration of numerous monocytes and lymphocytes, as well
as a small number of eosinophils (Shan et al., 2020). Beyond
the respiratory tract, NHP models also show pathological
changes in the heart, liver, kidneys, spleen, lymph nodes, and
brain, although direct evidence of SARS-CoV-2 infection in
these tissues is still lacking (Lu et al., 2020; Philippens et al.,
2022). Research involving K18-hACE2 transgenic mice has
shown that lung function impairment is associated with the
infiltration of monocytes, neutrophils, and activated T cells,
leading to a heightened innate immune response (Winkler
et al.,, 2020). Similarly, Syrian hamsters infected with SARS-
CoV-2 exhibit symptoms such as interstitial pneumonia,
inflammatory cell infiltration, alveolar septum thickening, and
vascular system injury, as well as a pulmonary immune
response driven by macrophages (Bednash etal., 2022;
Mulka et al., 2022). These findings suggest that inflammatory
injury induced by SARS-CoV-2 is more critical than the
multiorgan damage resulting from direct viral infection.

The cytokine storm associated with COVID-19 is a key
pathogenic factor and potential therapeutic target in COVID-19
patients (Zanza et al., 2022). Clinical studies have highlighted
the significant role of cytokines such as IL-6, IL-1, IL-17, and
TNF-a in lung injury (Montazersaheb et al., 2022). In cases of
severe COVID-19, SARS-CoV-2 induces a chronic immune
response mediated by transforming growth factor- (TGF-B),
which promotes fibrosis (Ferreira-Gomes et al., 2021). SARS-
CoV-2-infected NHPs also show elevated expression of
inflammatory cytokines, including IL-10, IL-1A, IL-8, IL-15,
MCP-1, IFN-B, and IP-10, but unlike in severe COVID-19
patients, IL-6 is not highly expressed (Lu et al., 2020; Song
et al., 2020), underscoring its critical role in cytokine storms.
Transcriptomic analysis of lung tissue from SARS-CoV-2-
infected mice with severe disease has shown that antiviral
responses in younger mice are dominated by IFN and IL-6

pathway activation, while fatal outcomes in older animals are
associated with TNF and TGF-B signaling, highlighting the
significant impact of age on cytokine response in COVID-19
(Bader et al., 2023). In the Syrian hamster model of SARS-
CoV-2 infection, various cytokines, such as IFN-a, IL-6, IL-1p,
and TNF, are associated with severe lung disease, consistent
with clinical observations (Fomin et al., 2023; Francis et al.,
2021).

Immune cell activation: Clinical studies have demonstrated
that cytokine storms in COVID-19 are driven by the robust
activation of monocytes and macrophages, leading to the
development of SARS-CoV-2-related complications, including
ARDS, disseminated intravascular coagulation syndrome
(DICS), edema, and pneumonia (Kosyreva et al., 2021; Liao
etal, 2020). Similarly, SARS-CoV-2-infected K18-hACE2
transgenic mice exhibit pronounced recruitment of pulmonary
immune cells, including dendritic cells (DCs), innate myeloid
cells (IMMs), and CD4* and CD8" T lymphocytes (Zheng
etal.,, 2021b). In rhesus macaques, SARS-CoV-2 infection
induces rapid recruitment of macrophage subsets, particularly
CD163* mannose receptor C-type 1 (MRC1)- and triggering
receptor expressed on myeloid cells 2 (TREM2)*, which are
primary sources of inflammatory cytokines (Upadhyay et al.,
2023). In ferrets, SARS-CoV-2 infection also results in notable
alterations in the composition of macrophage subsets in
bronchoalveolar lavage fluid (BALF), with monocyte-derived
M1 and M2 macrophages playing pivotal roles in both early
viral clearance and late-phase excessive inflammation (Lee
etal., 2021). Furthermore, in Syrian hamsters, SARS-CoV-2
infection induces rapid and extensive infiltration of monocyte-
derived macrophages (MDM) in the lungs, contributing to
tissue remodeling and fibrosis via the up-regulation of
prothrombotic factors, tissue repair, and alveolar cell
proliferation (Bagato etal., 2024). Neutrophils, the most
abundant white blood cells, are the first to infiltrate infected
lungs following viral infection. Chemokine (C-X-C motif) ligand
5 (CXCL5) plays an important role in the process of neutrophil
recruitment, with its knockout in SARS-CoV-2-infected mice
found to significantly reduce pulmonary inflammation (Liang
et al., 2020).

Hospitalized COVID-19 patients, especially those with
severe disease, frequently exhibit a notable decrease in blood
lymphocyte counts (Liu etal., 2020a; Sekine et al., 2020).
Autopsies have revealed T cell infiltration and migration in
inflamed tissues, suggesting that the decrease in blood
lymphocytes may be due to their relocation to infection sites
(Adamo et al., 2021; Jafarzadeh et al., 2020). However, the
percentage of CD8 T cells in the BALF is lower in severe
patients compared to those with moderate disease, possibly
due to apoptotic signals (André et al., 2022; Liao et al., 2020).
Despite variations in T cell numbers, their activation in SARS-
CoV-2 infection-induced pulmonary inflammation s
significantly  increased. This  heightened  activation,
characterized by overactivation, depletion, or apoptosis
sensitivity, is identified through various cell surface markers,
including CD38, human leukocyte antigen-DR isotype (HLA-
DR), programmed cell death 1 (PD-1), T cell immunoreceptor
with Ig and ITIM domains (TIGIT), T cell immunoglobulin and
mucin domain-containing protein 3 (Tim-3), and natural killer
(NK) cell receptor A (NKG2A). These activated T cells are
closely linked to the development of severe COVID-19 (Du
etal, 2021; Georg etal.,, 2022; Zheng etal., 2020), as
supported by various animal models. For example, Zheng
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et al. (2021a) observed a significant increase in T cell CXCR3
and CD38 expression in the lung tissues of elderly macaques
infected with SARS-CoV-2, indicative of both activation and
inflammation and potentially valuable for predicting severe
COVID-19. Similarly, SARS-CoV-2-infected rhesus macaques
exhibit a marked increase in T cell activation markers in their
lung tissues and cerebrospinal fluid (Verma et al., 2021), while
SARS-CoV-2-infected mice show a significant up-regulation in
CD44*CD3*CD8'T cell activation in their lungs, accompanied
by alveolar macrophage loss (Winkler et al., 2020). In K18-
hACE2 mice, T cell activation is correlated with diffuse
microglial activation and plays a critical role in SARS-CoV-2
brain infection (Seehusen et al., 2022). Wu et al. (2021) found
that the SARS-CoV-2 membrane (M) protein activates STAT1
phosphorylation and T-bet transcription via TREM-2,
contributing to T cell activation. Experiments using CD4-
specific  conditional TREM-2 knockout mice have
demonstrated that TREM-2 enhances the TH1 response and
aggravates lung injury.

Immune protection against SARS-CoV-2

Following the SARS-CoV-2 outbreak, the development of
vaccines and drugs necessitated relevant animal studies to
evaluate their safety and efficacy in vivo. Various NHP
models, particularly rhesus macaques, have been employed
to test the efficiency of different SARS-CoV-2 vaccines
developed using different technologies, including inactivation
(A'La etal., 2023; Chen et al., 2021a), spike protein or RBD
subunit expression (Guebre-Xabier etal., 2020; Prenafeta
etal., 2023), DNA (Yu et al., 2020a), mRNA (Oh et al., 2023;
Vogel et al., 2021), and attenuated viral vectors (Feng et al.,
2020; Jacob-Dolan et al., 2021). Mouse and hamster models
have primarily been applied for testing new vaccines and
adjuvants and studying immunoprotective mechanisms, such
as immune-stimulating adjuvant chimeric vaccines (Ashhurst
et al., 2022), multivalent vaccines (Afkhami et al., 2022), lipid
nanoparticle vaccines (Elia et al., 2021), adenovirus vaccines
(Port etal.,, 2023), DC vaccines (Tada etal., 2023), novel
adjuvants (Machado et al., 2023; Vijayanand et al., 2023), and
cross-protection mechanisms (Liu et al., 2023a). The effects of
different vaccine delivery modes on immune efficacy have
also been verified using animal models. In addition to
traditional intramuscular injection, oral (Beddingfield etal.,
2021; Langel etal.,, 2022; Yu etal., 2022b) and intranasal
vaccines (Langel et al., 2022; Sui et al., 2021b; Tokunoh et al.,
2023) have also been shown to provide protection. These
animal models have significantly enhanced our understanding
of the immunoprotective mechanisms against SARS-CoV-2
(Figure 2).

Protective adaptive immune response: Animal models have
been instrumental in elucidating the importance of adaptive
immune protection in SARS-CoV-2 infection. Speranza et al.
(2022) discovered that older rhesus macaques exhibit a
sustained inflammatory innate response to SARS-CoV-2
infection, while younger animals initiate an earlier local
effector T-cell response, leading to more rapid recovery of
immune homeostasis. A key immunological feature of SARS-
CoV-2-infected NHPs and hamsters is their ability to develop
protective immunity, which not only protects against
secondary infection but may also cross-react with other
coronaviruses (Chandrashekar etal., 2020; Horiuchi et al.,
2021; Jacob-Dolan etal., 2021). McMahan etal. (2021)
demonstrated that the transfer of purified 1gG from
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convalescent rhesus macaques protects recipient macaques
from SARS-CoV-2, highlighting that CD8" T cell responses
can confer protection even with low or weak antibody levels.
The CD4" T cell response in rhesus macaques is strongly
correlated with the efficacy of SARS-CoV-2 spike protein
mRNA vaccines and neutralizing antibody levels (Corbett
etal.,, 2021). In mice, the IFN-I pathway-mediated virus-
specific T cell immune response is critical for protecting
against severe SARS-CoV-2 infection (Zhuang et al., 2021).
CD8* T cells are essential for early control and elimination of
SARS-CoV-2, while CD4" T cells play a crucial role in eliciting
antibody responses (Israelow et al., 2021), underscoring the
importance of adaptive immunity in mitigating disease
progression and preventing secondary infections. Despite the
significant role of T cells in recovery from acute SARS-CoV-2
infection in rhesus macaques, their depletion does not result in
severe disease, suggesting that T cells alone do not fully
account for the innate resistance of rhesus macaques to
severe COVID-19 (Hasenkrug et al., 2021).

The respiratory mucosal surface is a crucial site for
interactions between SARS-CoV-2 and the immune system,
where mucosal antibodies and tissue-resident memory T
(TRM) and B cells provide early antiviral immune responses
(Lee & Oh, 2022; Zheng & Wakim, 2022). However,
challenges in sampling from human mucosal sites, especially
the lower respiratory tract, have hindered studies on local
immunity to SARS-CoV-2. Animal model vaccination
experiments have offered vital insights into mucosal immune
memory following SARS-CoV-2 infection. Tang et al. (2022)
demonstrated that mice immunized with a combination of
systemic mMRNA vaccine and mucosal AdV-S protein vaccine
exhibit a strong neutralizing antibody response, providing
better respiratory mucosal protection than the systemic mMRNA
vaccine alone. Intratracheal inoculation of rhesus macaques
with a bivalent SARS-CoV-2 vaccine based on Ad26
significantly induces humoral and cellular immunity in mucosa,
with almost complete protection against SARS-CoV-2 BQ.1.1
challenge (McMahan etal., 2024). Furthermore, intranasal
delivery of the ChAdOx1 vaccine induces potent respiratory
RBD-specific IgA antibody titers, antibody-dependent
neutrophil and monocyte phagocytosis, complement
activation, NK cell activation, and reduced viral shedding
following SARS-CoV-2 infection (Oh et al., 2021). Intranasal
immunization with trivalent COVID-19 AdV vaccine elicits a
robust multifunctional respiratory tract mucosal TRM response
in K18-hACE2 mice, enhancing mucosal protection and
conferring complete protection against SARS-CoV-2 infection-
induced disease or mortality (Afkhami et al., 2022). Research
on SARS-CoV-2-infected K18-hACE2 mice has also shown
that respiratory memory T cells, both CD4* and CD8*, induced
by a subunit-based adjuvant system, can protect against
SARS-CoV-2 infection, even in the absence of virus-
neutralizing antibodies (Van Doremalen et al., 2021).
Protective innate immune response: The efficacy of
COVID-19 vaccines may be reduced in certain populations,
such as the elderly, highlighting the need for more
personalized vaccination regimens. Targeted activation of
innate immune signals has gained attention as a strategy to
elicit strong immune responses in vaccine development.
Studies have shown that mRNA vaccines can enhance the
innate immune response in obese mice with impaired adaptive
immunity by enhancing IFN-I signaling and providing
protection against SARS-CoV-2 infection (Chen et al., 2023).
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In rhesus macaques, mMRNA-based vaccines can effectively
stimulate all immune system components and improve the
connection between innate and adaptive immunity after a
second dose via key mediators, such as TNFa, IFNy, IL-21,
and chemokine (C-C motif) ligand 3 (CCL3) (Schramm et al.,
2023). Marx etal. (2022) found that therapeutic RNA
oligonucleotides, acting as RIG-I agonists, can trigger a robust
NK cell response in K18-hACE2 mice, providing transient yet
potent antiviral protection against SARS-CoV-2 infection.
TLR2, an important innate immune receptor on respiratory
epithelial and lung immune cells, is crucial for effective
defense against infection (Beckett etal.,, 2012). The TLR2
ligand Pam 2 Cys, when used as a mucosal adjuvant in
COVID-19 vaccines, enhances the recruitment of antigen-
presenting cells (APCs), including DCs, alveolar
macrophages, and monocytes, to the respiratory mucosa,
leading to robust activation of the IL-17*CD4" T cell response
and significantly boosting the protective efficacy of COVID-19
vaccines in murine models (Ashhurst etal.,, 2022).
Lymphoblastoid cells play a crucial role in shaping the
microenvironment of lymph nodes and the structure and
function of the germinal center (GC). Age-related decline in
GC response impedes the establishment of durable humoral
immunity post-vaccination (Masters et al., 2018). Denton et al.
(2022) discovered that TLR4 agonists can promote the
maturation and expansion of follicular DCs (FDCs) and the
activation and proliferation of stromal cells, thus enhancing
GC immune response initiation and COVID-19 vaccine
efficacy in aged mice. Additionally, the RBD dimer fusion
protein carrying IFN exhibits potential as a candidate for
COVID-19 vaccination by targeting DCs in lymph nodes and
stimulating T follicular helper (Tfh) cell differentiation and GC
formation, providing complete protection against high-dose
SARS-CoV-2 challenge in rhesus macaques (Sun etal.,
2021).

Protective immune response against novel SARS-CoV-2
variants: In late 2020, after nearly a year of transmission in
humans, SARS-CoV-2 underwent significant adaptive
changes. These highly mutated variants, referred to as
“variants of concern” (VOC), exhibit higher transmission rates
than earlier strains. To date, the WHO has identified five
SARS-CoV-2 variants as VOCs, including Alpha, Beta,
Gamma, Delta, and Omicron, all of which exhibit significant
changes in transmissibility or immune escape, warranting
close surveillance (Carabelli et al., 2023). As of 9 February
2024, the primary circulating variants of interest include
XBB.1.5, XBB.1.16, EG.5, BA.2.86, and JN.1
(https://lwww.who.int/activities/tracking-SARS-CoV-2-variants).
These variants have numerous nonsynonymous mutations in
the spike protein and unique phenotypic characteristics,
leading to changes in transmissibility and antigenicity, which
facilitate evasion of host immune responses. This evolution
may reduce the effectiveness of current SARS-CoV-2
vaccines (Kim etal., 2022). Therefore, it is crucial to use
appropriate animal models to further study the etiology,
transmission, and pathogenesis of the virus and to evaluate
the efficacy of vaccines against the latest SARS-CoV-2
variants.

Compared to the Delta variant, the Omicron BA.1 and BA.2
variants have been shown to exhibit weakened lower
respiratory tract replication and lower pathogenicity in a variety
of animal models, including rodents and NHPs (Boon et al.,
2022; Halfmann etal., 2022; Van Doremalen et al., 2022).

Halfmann et al. (2023) reported that the Omicron subvariant
XBB.1.5 exhibited greater airborne transmissibility than its
predecessor BA.2 and partial immune escape from previous
infection with BA.1 in Syrian hamsters. Tamura et al. (2024)
found that nonsense mutations in ORF8 of XBB.1.5 impaired
MHC suppression and were associated with reduced virulence
in Syrian hamsters infected with this subvariant. XBB.1.16, an
independent variant from XBB.1.5, has two amino acid
substitutions in its spike protein compared to XBB.1.5: E180V
in the N-terminal domain and T478R in the receptor-binding
domain (Yamasoba etal., 2023). Pseudovirus experiments
have shown that XBB.1.16 has similar infectivity to XBB.1.5
and similar sensitivity to XBB.1 in convalescent serum as
XBB.1 and XBB.1.5 (Tamura etal.,, 2023). Meehan etal.
(2023) developed a digital pathology algorithm to
quantitatively assess respiratory lesions caused by SARS-
CoV-2, confirming that Omicron subvariants BA.2.75 and
EG.5.1 have regained some virulence, although not to the
levels previously observed in Omicron. Similar to XBB.1.5,
EG.5.1 is more transmissible among hamsters, but exhibits
significantly enhanced immune evasion characteristics, and
shows no significant differences in replication ability or
pathogenicity compared to BA.2 (Uraki et al., 2023). Herder
et al. (2023) evaluated the virulence of BA.2.86 and BA.2.75,
among the most virulent Omicron subvariants, and found that
BA.2.86 exhibited an attenuated phenotype in hamsters,
suggesting no greater risk to public health than its parental
Omicron subvariants. JN.1, derived from BA.2.86, harbors a
key mutation (S:L455S) in the spike protein, which enhances
its immune evasion ability and resistance to monovalent
XBB.1.5 vaccine serum (Altamimi et al., 2024). However, the
lack of animal models associated with JN.1 has hindered
pathology and vaccine development.

Several animal-based vaccine studies have been conducted
against novel SARS-CoV-2 variants. An Omicron (BA.1)-
specific mMRNA vaccine has shown effective protection in
hamsters against BA.1 at 253 days after immunization, and
moderate neutralizing activity against Omicron subvariants in
rhesus macaques at 9 months after immunization (Wu et al,,
2023b). Immunization of mice and rhesus macaques with the
XBB.1.5-based monovalent recombinant spike protein COVID-
19 vaccine induces neutralizing antibodies against the
XBB.1.5, XBB.1.16, XBB.2.3, EG.5.1, and XBB.1.16.6
subvariants and elicits a CD4* Th1 cell response specific to
the XBB subvariant (Patel et al., 2023). The Omicron XBB.1.5
RBD dimer-based vaccine completely protects mice from
Omicron XBB.1.16 and significantly reduces respiratory viral
infection in Syrian hamsters, demonstrating excellent
protective efficacy against SARS-CoV-2 and its variants (Wu
et al., 2023a). Wang et al. (2024) identified a highly conserved
neutralizing epitope targeted by the broad-spectrum
neutralizing antibody BA7535, which was highly neutralizing
not only to previous variants (e.g. Alpha, Beta, Gamma, Delta
and Omicron BA.1-BA.5) but also to recently emerging
Omicron subvariants BF.7, CH.1.1, XBB.1, XBB.1.5,
XBB.1.9.1, and EG.5. BA7535 effectively protects female mice
from Omicron BA.5 and XBB.1 variants. The novel ChAd-
SARS-CoV-2 vaccine, consisting of a bivalent Ad36 vector
vaccine encoding SARS-CoV-2 WA1 and BA.5 spike proteins,
induces persistent antibody and T cell responses against
XBB.1.16 infection in rhesus macaques immunized by
intranasal spray or inhalation aerosol (Gagne et al., 2023).
The new generation of RBD nano-antibodies neutralizes
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Alpha, Delta and Omicron BA.2.75, BA.1, BA.2, BA.4/5 and
XBB.1 variants, significantly reducing viral load, weight loss,
and pathogenicity in infected hamsters (Aksu et al., 2024).

IMMUNOLOGICAL INSIGHTS OF POST-COVID-9
SYMPTOMS (LONG COVID-19) FROM ANIMAL MODELS

Development of long COVID-19

Although most individuals fully recover from SARS-CoV-2
infection within days or weeks, some experience persistent or
new symptoms months or even years later, a condition known
as long COVID-19 (Schmidt, 2021). This complex multisystem
disorder is characterized by over 200 identified symptoms,
including fatigue, dyspnea, arthralgia, myalgia, cardiac
arrhythmias, and cognitive impairments, affecting up to 75% of
those who have recovered from COVID-19 (Jansen etal.,
2022). Huang et al. (2022) found that patients infected with the
original strain of SARS-CoV-2 continued to experience long-
term symptoms more than 2 years after hospital discharge,
although most symptoms had improved. Significant risk
factors for long COVID-19 include female sex, obesity, and
severe COVID-19 disease; however, even outpatients with
mild symptoms may experience prolonged COVID-19
manifestations (Frontera etal., 2022; Subramanian et al.,
2022). The original SARS-CoV-2 strain is associated with a
higher incidence of long COVID-19 compared to the Alpha or
Delta variants (Fernandez-de-las-Pefias etal.,, 2022). In
contrast, the Omicron variant is associated with a lower risk of
long-term pneumonia compared to the Delta variant (Antonelli
etal.,, 2022; Wise, 2022). Older adults infected with SARS-
CoV-2 are more likely to suffer from long COVID-19,
presenting with fatigue, difficulty breathing, coughing, and joint
pain, as well as abnormalities in chest imaging and lung
function tests. The situation is more complex for children and
adolescents (Daitch et al., 2022), with immunocompromised
children showing a higher prevalence of gastrointestinal
symptoms  associated with long COVID-19, while
immunocompetent children report increased levels of fatigue
(Roessler et al., 2022).

The mechanisms behind long COVID-19 and reasons for
differences in symptoms across viruses and populations are
unclear. Key hypotheses include changes in the immune
system, persistence of residual viral components driving
chronic inflammation, endothelial dysfunction or activation,
changes in the microbiome, mitochondrial dysfunction,
abnormal metabolites, reactivation of pre-existing chronic viral
infections, microbiota dysbiosis, and unrepaired tissue
damage (Davis etal., 2023; Liu etal., 2023b; Santopaolo
et al., 2023). From an immunological perspective, uncontrolled
immune dysregulation following SARS-CoV-2 clearance is an
important contributor to the development of long COVID-19.
In-depth immunophenotyping analysis has revealed significant
gene expression interference in innate immune cells (such as
NK cells, low-density neutrophils, and CXCR3" monocytes)
and adaptive immune cells (such as T helper (Th) cells, Tfh
cells, and regulatory T cells) in long-term COVID-19 patients
(Ryan et al., 2022). Klein et al. (2023) demonstrated that long
COVID-19 patients exhibit an excessive humoral response to
SARS-CoV-2 and higher levels of antibody response to non-
SARS-CoV-2 viral pathogens, especially Epstein-Barr virus.
Single-cell omics and serologic studies have also revealed
systemic inflammation and immune dysregulation in patients
with long COVID-19, characterized by an increased frequency
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of inflammatory CD4" T cells and an exhausted phenotype of
virus-specific CD8* T cells, indicating disharmony between
humoral and cell-mediated responses (Yin etal., 2024).
Despite these findings, clinical challenges remain in identifying
potential therapeutic targets for COVID-19, necessitating
urgent in vivo intervention studies using animal models.

Animal models of long COVID-19

Animal models for long COVID-19 are still in the early stages.
Paidas et al. (2022) inoculated mice with mouse hepatitis virus
1 (MHV-1), a member of the same B-coronavirus family as
SARS-CoV-2, for 12 months to simulate long COVID-19,
finding severe pathological changes and inflammation in their
brain, lungs, and heart. Although not a direct SARS-CoV-2
infection model, these results imply that coronaviruses can
have long-term effects, even after viral clearance. Sefik et al.
(2022) examined innate and adaptive immune responses to
SARS-CoV-2 infection in an AAV-hACE2 mouse model over
28 days, revealing characteristics of chronic COVID-19, such
as progressive weight loss, persistent viral RNA presence,
lung pathology accompanied by fibrosis, inflammatory
macrophage response, sustained expression of ISGs, and
depletion of T lymphocytes. Mice infected with SARS-CoV-2
for up to 120 days exhibit persistent inflammation and fibrosis,
important features of chronic COVID-19 lung injury, as well as
an increase in interstitial macrophages (Dinnon et al., 2022).
The neurological symptoms associated with SARS-CoV-2
infection may potentially arise from cytokine storm,
neuroimmune stimulation, and systemic infection, rather than
direct viral mechanisms of injury (Efstathiou etal., 2022).
Evidence suggests that SARS-CoV-2 infection-induced
CCL11 evokes a selective microglial response in white matter,
leading to dysfunction and structural dysregulation of multiple
neuronal lineages in the central nervous system, contributing
to cognitive impairment during the acute phase following
COVID-19 (Li etal., 2022). In Syrian hamsters, 31 days of
SARS-CoV-2 infection results in permanent lung and kidney
damage, along with unique effects on the olfactory bulb and
olfactory epithelium, including myeloid and T cell activation,
proinflammatory cytokine production, and IFN responses,
leading to neurobehavioral disorders such as anosmia and
depression (Frere etal., 2022). Due to the lack of animal
models of long COVID-19 and the high cost of BSL-3
laboratories, it is difficult to summarize the immunological
mechanisms underlying COVID-19 development in a small
number of cases, hindering the advancement of appropriate
treatments. Solving this issue requires the development of
pseudovirus and transgenic mouse models suitable for
establishing animal models for long COVID-19.

APPLICATION OF ANIMAL MODELS
IMMUNOTHERAPY

Following the COVID-19 outbreak, various new and
repurposed compounds exhibiting in vitro anti-coronavirus
activity have rapidly advanced towards clinical application.
Prior to the development of an effective SARS-CoV-2 vaccine,
the US Food and Drug Administration (FDA) granted
emergency use authorization (EUA) for a nucleoside analog
and three monoclonal antibodies (MAbs) (Tao etal., 2021).
Despite widespread vaccination, developing drug therapy for
SARS-CoV-2 remains crucial, particularly for
immunocompromised individuals and those who may not
respond to the rapidly mutating virus (Boby etal., 2023).

IN COVID-19
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Current COVID-19 antiviral drugs are primarily divided into the
following categories: @ Polymerase inhibitors, which act on
RNA-dependent RNA polymerase (RdRps), mainly nucleoside
analogs, including remdesivir, molnupiravir, and nelfinavir, and
have been validated in rhesus monkeys (Johnson et al., 2023;
Tao et al., 2021; Williamson et al., 2020) and Syrian hamsters
(Abdelnabi et al., 2021); @ Protease inhibitors, which act on
3C-like proteinase protein (3CLpro), mainly nirmatrelvir, PF-
07321332, S-217622, ensitrelvir, and have been validated in
rhesus monkeys (Rosenke etal., 2023), Syrian hamsters
(Sasaki et al., 2023; Tao et al., 2021), and mice (Jeong et al.,
2022; Tao etal, 2021); @@ Entry inhibitors, including
antibodies, fusion inhibitors, soluble recombinant hACE2,
which have achieved good results in SARS-CoV-2 infected
rhesus monkeys (Streblow et al., 2023), mice (Morgan et al.,
2022; Tao et al., 2021), Syrian hamsters (Linsky et al., 2020;
Uraki etal., 2022), and ferrets (De Vries etal., 2021). The
rapid development of COVID-19 immunotherapy research,
relying on in vivo testing, can be attributed to the
establishment of diverse animal models for SARS-CoV-2
infection, leading to numerous potential therapeutic drugs and
protocols. These findings will serve as a valuable resource for
addressing future infections, even if COVID-19 ceases to be a
major public health threat. This discussion will not delve into
the efficacy and mechanisms of these antivirals but will
instead focus on trial outcomes of immunomodulatory drugs in
COVID-19 animal models (Figure 3).

Targeting immune receptors

Since the early stages of the global pandemic, research has
focused on targeting immune receptors for COVID-19. Early
studies revealed that severe COVID-19 patients often show
reduced T-cell counts, linked to poor clinical outcomes and
indicating potential T-cell exhaustion (Liu et al., 2020b; Zheng
et al.,, 2020). Lymphopenia in severe COVID-19 is linked to
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Figure 3 COVID-19 immunotherapy based on animal models

the overexpression of immune checkpoint receptors PD-1,
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), TIGIT,
and Tim-3 (Jin et al., 2023; Yin et al., 2024). With numerous
inhibitory receptor antagonists already in clinical trials and
available for use, their rapid implementation in COVID-19 trials
is likely, minimizing the necessity for preclinical animal testing
(Loretelli et al., 2021; Tan & Li, 2022). Given our advancing
comprehension of the interactions between SARS-CoV-2 and
immune receptors, the validation of novel immune receptor-
targeted drugs will largely depend on animal models to
confirm their efficacy.

SARS-CoV-2 enters host cells and is recognized by TLRs,
NOD-like receptors (NLRs), and NLR protein 3 (NLRP3),
initiating IFN-I production and innate immune reactions.
Targeting these immune receptors therapeutically may help
ameliorate infection-induced inflammation. TLRs, crucial for
recognizing SARS-CoV-2 and initiating innate immunity, are
expressed in various cell types, including immune cells,
fibroblasts, epithelial cells, and ACE2-expressing type Il lung
cells (Jiang et al., 2022; Qi et al., 2020). TLRs, including those
in human (TLR1-TLR10) and mouse cells (TLR1-TLR9 and
TLR11-TLR13), are broadly categorized into cell surface
TLRs, including TLR1, TLR2, TLR4-6, and TLR10, and
intracellular somatic membrane TLRs, including TLR3 and
TLR7-9 (O'Neill etal., 2013). Upon activation, TLRs recruit
specific bridging molecules like myeloid differentiation primary
response protein 88 (MyD88) and Toll/IL-1 receptor (TIR)
domain-containing linker-induced interferon B (TRIF), which
trigger the IRF and NF-kB signaling pathways to initiate IFN-I
and inflammatory cytokine production (Jiang etal., 2022).
TLR-mediated immune dysregulation plays a critical role in
hyperinflammation and cytokine storm observed in COVID-19,
making it a potential target for intervention (Liu et al., 2022).
Zheng etal. (2021c) demonstrated that the SARS-CoV-2 E
protein induces TLR2-related inflammatory responses in mice,

Immunotherapy for
COVID-19 patients

Validation of immune interventions targeting immune receptors, inflammatory mediators, and immunopathological signals in SARS-CoV-2-infected

animal models is crucial for the development of COVID-19 immunotherapy. Figure created using BioRender (https://biorender.com/).
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while inhibition of TLR2 with oxPAPC significantly attenuates
the release of proinflammatory cytokines and chemokines.
Fontes-Dantas etal. (2023) reported that intracerebral
administration of the spike protein in mice induces
neuroinflammation and synaptic loss through TLR4-mediated
microglial activation, with early intervention with TLR4
inhibitors shown to prevent late neuronal damage in mice,
identifying TLR4 as a potential target for long-term cognitive
dysfunction induced by COVID-19. The role of TLRs in
COVID-19 is complex, extending beyond immunopathology.
Pre-COVID-19 studies indicated that MyD88- and TRIF-
deficient mice infected with SARS-CoV experience higher
mortality rates, weight loss, and viral loads, suggesting that
MyD88 and TRIF are essential for preventing fatal SARS-CoV
infection (Sheahan etal., 2008; Totura etal, 2015).
Furthermore, combining a TLR9 agonist with mRNA enhances
both T cell and neutralizing antibody responses against RBD
in mice, compared to mMRNA alone (Haabeth etal., 2021).
Treating K18-hACE2 transgenic mice with a lethal SARS-CoV-
2 dose and the synthetic agonist Poly(I:C) for TLR3/MDA5
temporarily boosts the innate immune response in the lungs,
subsequently reducing viral load and cytokine storm levels,
and significantly improving survival (Tamir et al., 2022).

Inflammatory processes at the cellular level are typically
mediated by inflammasomes, particularly ~ NLRP3
inflammasomes, which are highly responsive to RNA viruses.
NLRP3 inflammasomes are composed of the NLRP3 receptor,
apoptosis-associated speck-like protein containing a C-
terminal caspase recruitment domain (ASC), and caspase-1.
Upon assembly, caspase-1 is activated by autoproteolytic
cleavage, facilitating the maturation of proinflammatory
cytokines such as IL-1pB, IL-18, IL-6, TNF-a, and gasdermin-D
(GSDMD), which all contribute to the development of COVID-
19-induced cytokine storm (Broz & Dixit, 2016; Dutta et al.,
2022). Increasing evidence suggests that hyperactivation of
NLRP3 inflammasomes plays a role in the pathogenesis of
SARS-CoV-2-induced multiorgan failure (Ratajczak & Kucia,
2020). Studies have indicated that Nirp3™~ mice, which lack
NLRP3 inflammasomes, exhibit reduced severity of SARS-
CoV-2-induced lung pathology compared to wild-type C57BL/6
mice, while specific inhibition of MCC950 reduces excessive
lung inflammation in SARS-CoV-2-infected hACE2 transgenic
mice, confirming NLRP3 as a potential immunotherapeutic
target for COVID-19 (Zeng et al., 2022). Albornoz et al. (2023)
discovered that SARS-CoV-2 infection activates NLRP3
inflammasomes in microglia through the NF-kB and ACE2
signaling pathways, leading to neurodegeneration in hACE2
transgenic mice, with these effects significantly mitigated and
survival rates improved with oral administration of an NLRP3
inhibitor. These findings suggest that targeting NLRP3 may be
beneficial in alleviating neurocognitive disorders associated
with long-term SARS-CoV-2 infection.

Targeting inflammatory mediators

In the context of acute lung injury in COVID-19, macrophage
activation syndrome and ARDS arise from the release of
proinflammatory cytokines, such as IL-1, IL-6, IL-18, and TNF-
a. Consequently, targeting these cytokines presents
significant therapeutic potential for reducing cytokine storm in
COVID-19 patients (McGonagle et al., 2020). Rubsamen et al.
(2020) noted that early administration of a-IL-6 mAbs in mice
infected with Ebola more effectively combated cytokine
release syndrome (CRS) than IL-6 receptor blockade alone,
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offering insights for potential SARS-CoV-2 treatments.
Subsequently, Xu et al. (2020b) found that the recombinant
human IL-6 mAb tocilizumab binds specifically to soluble and
membrane-bound IL-6 receptors (slL-6R and mIL-6R),
inhibiting IL-6-mediated signal transduction and improving
clinical outcomes in severe and critically ill COVID-19 patients.
IL-18 is also implicated in SARS-CoV-2-induced inflammatory
lung injury. Notably, IL-18 is associated with the excessive
recruitment, infiltration, and activation of neutrophils observed
in the lung tissue of COVID-19 patients, as well as
progression of cardiovascular dysfunction (Liang et al., 2023).
In hACE2 transgenic mice, exposure to the spike protein
increases NF-kB activity and NLRP3-inflammasome-
dependent IL-18 levels in heart and lung tissues, with
subsequent improvement in cardiac function and reduced NF-
kB activity following inhibition of IL-18 (Liang et al., 2023). In
K18-hACE2 mice, SARS-CoV-2 infection activates the NLRP3
pyroptosis signaling pathway in the lungs, resulting in IL-13
release, pulmonary vascular injury, and associated protein-
rich pulmonary edema, while the selective IL-1 receptor
antagonist anastrozole blocks IL-1 receptor signaling and
prevents VE-cadherin down-regulation and excessive
pulmonary vascular permeability, significantly improving
survival (Xiong et al., 2021). Clinical findings indicate that the
bispecific IL-1p/IL-18 MAb MAS825 effectively inhibits
biomarkers of clinical and inflammatory pathways associated
with COVID-19 and promotes the rapid clearance of SARS-
CoV-2 (Hakim etal.,, 2023). Dysregulation of TNF-a, an
important proinflammatory cytokine in the innate immune
response, can induce CRS (Ragab et al., 2020). Karki et al.
(2021) demonstrated that inhibition of TNF-a and IFN-y can
effectively mitigate sepsis, hemophagocytic
lymphohistiocytosis (HLH), and cytokine shock in K18-ACE-2
transgenic mice following SARS-CoV-2 infection. Several anti-
TNF therapeutics, including Humira (adalimumab), Remicade
(infliximab), Simponi (golimumab), Cimzia (certolizumab
pegol), and Entyvio (vedolizumab), are currently undergoing
clinical trials for COVID-19, with most studies confirming
favorable impact on reducing or ameliorating disease
progression (Hakim et al., 2023).

Targeting immunopathological signaling pathways

The Janus kinase (JAK)-signal transducer and activator of
transcription (STAT) pathway is pivotal in the regulation of
inflammatory factors and formation of cytokine storms in
COVID-19. Consequently, several JAK/STAT signaling
inhibitors, including baricitinib, ruxolitinib, and tofacitinib, have
been investigated as potential treatments for COVID-19 (Hall
et al., 2023; Rein et al., 2022). Despite this, clinical trials have
indicated that JAK/STAT signaling inhibitors are less effective
than expected in alleviating disease severity in severe COVID-
19 cases. Baricitinib effectively inhibits JAK1/2 kinase by
competitively  blocking adenosine triphosphate (ATP),
essential for JAK1/2 activation by inflammatory cytokines such
as IL-6, and disrupts various proinflammatory signaling
pathways, including IL-6, IL-18, IL-12, granulocyte-
macrophage colony-stimulating factor (GM-CSF), and IL-2
(Ravid etal., 2022; Zhang etal, 2020b). Additionally,
baricitinib effectively attenuates pulmonary inflammation in
SARS-CoV-2-infected rhesus macaques by suppressing
cytokines and chemokines, which, in turn, reduce neutrophil
recruitment and pulmonary macrophage inflammation.
However, its effect on viral replication and the IFN-I response
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is minimal, resulting in incomplete resolution of
immunopathology (Hoang et al., 2021).

Bruton’s tyrosine kinase (BTK) is essential for B cell
development in the bone marrow and plays a key role in the
proliferation and survival of leukemia B cells (Hendriks et al.,
2014). Elevated BTK activation levels in blood monocytes
from severe COVID-19 patients are associated with systemic
inflammation (Roschewski etal., 2020). lbrutinib, a BTK
inhibitor, is widely used in the treatment of indolent B cell
malignancies and chronic graft-versus-host disease (cGVHD)
and shows potential in eliminating inflammatory cytokines in
the lungs, minimizing lung injury, and lowering mortality risk in
a lethal influenza mouse model (Florence etal.,, 2018).
Ibrutinib effectively inhibits poly I:C and lipopolysaccharide
(LPS)-induced activation of BTK, fms-like tyrosine kinase 3
(FLT3), and epidermal growth factor receptor (EGFR)-related
pathways, significantly reducing acute lung injury in mice (Rao
et al.,, 2022). These findings suggest that BTK inhibitors may
serve as potential therapeutic agents for regulating SARS-
CoV-2-induced acute lung injury. BTK inhibitors, including
acalabrutinib, ibrutinib, and zanubrutinib, have been utilized in
COVID-19 clinical trials, showing protection against lung injury
and reduced inflammatory activity (Kifle, 2021; Treon et al.,
2020).

Excessive up-regulation of p38 activity may drive the
intense inflammatory response observed in COVID-19
infection through two potential mechanisms: first, the loss of
ACE2 after viral entry may hinder the conversion of
angiotensin Il to angiotensin 1-7, thereby releasing the
inhibition of p38 activity; second, SARS-CoV-2 may exploit
p38 activity to facilitate its replication (Grimes & Grimes, 2020;
Higgins etal., 2023). Therefore, p38 inhibition may be a
promising therapeutic strategy for alleviating COVID-19.
Jimenez-Guardefio et al. (2014) found that during SARS-CoV
infection, syntenin binds to the E protein, leading to syntenin
redistribution from the nucleus to the cytoplasm, activating the
p38 mitogen-activated protein kinase (MAPK) pathway and
promoting excessive inflammatory cytokine expression.
Furthermore, the application of p38 MAPK inhibitors
significantly improves survival in SARS-CoV-2-infected mice
by reducing IL-1a and IL-6 levels in the BALF, decreasing
neutrophil infiltration, and alleviating interstitial edema (Gu
etal., 2021). Selective p38 signaling inhibitors, such as PH-
797804 and VX-702, markedly reduce the expression of
proinflammatory cytokines IL6, CXCL8, CXCL10, and TNF-a
during SARS-CoV-2 infection, while concurrently reducing
viral replication and modulating the IFN-mediated antiviral
response (Faist et al., 2023).

The NF-kB pathway plays a central role as an immune
regulator in COVID-19, contributing to excessive inflammation
and cytokine storms. Inhibiting the NF-kB pathway can
suppress the release of various proinflammatory cytokines,
chemokines, and adhesion molecules, making it an important
potential therapeutic target for COVID-19 (Jiang et al., 2022).
During the early phase of infection, the SARS-CoV-2
nucleocapsid protein, present in body fluids, activates NF-kB
p65 phosphorylation, promotes M1 macrophage polarization
and proinflammatory cytokine expression, and induces acute
lung injury. The NF-kB inhibitor pyrrolidine dithiocarbamate
alleviates the effects of the N protein on acute lung injury in
mouse models (Xia etal., 2021). Auranofin, another NF-kB
inhibitor, also exerts inhibitory effects on SARS-CoV-2
replication and inflammatory cytokine expression, including IL-

6, TNF-a, and IL-1B, in vitro (Cirri et al., 2021; Rothan et al.,
2020). Oral administration of auranofin significantly attenuates
lung tissue damage, cell infiltration, inflammatory response,
and IL-6 production in Syrian hamsters infected with SARS-
CoV-2 (Biji et al., 2021). Neufeldt et al. (2022) reported that in
human epithelial cells, SARS-CoV-2 triggers an inflammatory
immune response via cyclic GMP-AMP synthase (cGAS)-
stimulator of IFN genes (STING)-mediated NF-kB activation,
which can be attenuated by various STING-targeting drugs,
suggesting that cGAS-STING may be a potential target for
COVID-19 therapy. However, STING-deficient K18-hACE2
mice do not exhibit altered disease progression after SARS-
CoV-2 infection, suggesting that STING deficiency does not
impact viral replication or IFN and inflammatory cytokine
production (Marino etal., 2023). In contrast, the small-
molecule STING agonist diABZI limits SARS-CoV-2 replication
in mice and effectively inhibits SARS-CoV-2 infection in
multiple viral strains (Li etal., 2021). These findings
emphasize the need to verify the effects of immunomodulatory
drugs via in vitro and in vivo experiments and conduct
comprehensive validations in animal models before advancing
with COVID-19 treatment strategies.

CONCLUSIONS

The COVID-19 pandemic continues to pose unprecedented
challenges to global health, particularly in terms of prevention
and treatment efforts. While activation of the immune system
is critical for defending against invading pathogens, it also
plays a key role in COVID-19 pathogenesis. Understanding
the interactions between SARS-CoV-2 infection and the host
immune system is essential for developing effective
prevention and treatment strategies. Animal models have
been instrumental in studying COVID-19, uncovering the
pathological and immunological mechanisms of SARS-CoV-2
infection and accelerating vaccine and drug development.
Future research in COVID-19 immunobiology should focus on
optimizing the existing animal model library, incorporating
specialized animal strains to better represent diverse human
populations, and developing relevant tools and methods to
address the challenges posed by the high variability and
continuous evolution of novel SARS-CoV-2 variants.
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