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Abstract 
Genomic selection (GS) has emerged as an effective technology to accelerate crop hybrid breeding by enabling early selection prior to 
phenotype collection. Genomic best linear unbiased prediction (GBLUP) is a robust method that has been routinely used in GS breeding 
programs. However, GBLUP assumes that markers contribute equally to the total genetic variance, which may not be the case. In this 
study, we developed a novel GS method called GA-GBLUP that leverages the genetic algorithm (GA) to select markers related to the 
target trait. We defined four fitness functions for optimization, including AIC, BIC, R2, and HAT, to improve the predictability and bin 
adjacent markers based on the principle of linkage disequilibrium to reduce model dimension. The results demonstrate that the GA-
GBLUP model, equipped with R2 and HAT fitness function, produces much higher predictability than GBLUP for most traits in rice and 
maize datasets, particularly for traits with low heritability. Moreover, we have developed a user-friendly R package, GAGBLUP, for GS, 
and the package is freely available on CRAN (https://CRAN.R-project.org/package=GAGBLUP). 
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Introduction 
Genomic selection (GS), first proposed by Meuwissen in 2001 
[1], aims to predict genomic estimated breeding value (GEBV) 
utilizing genome-wide markers. GS has revolutionized modern 
animal breeding via shortening generation intervals and increas-
ing genetic gain. GS has become a widely used tool in dairy cattle 
breeding worldwide, doubling the rate of genetic gain for yield 
and yield related traits [2]. Inspired by the huge success in animal 
breeding, GS has been introduced to crop breeding in several areas 
including pure line selection and hybrid prediction [3, 4]. In the 
context of crop hybrid breeding, GS proves to be more efficient as 
hybrid genotypes can be inferred from their parents, eliminating 
the need for new sequencing and significantly lowering the costs. 
For example, in rice, Xu et al. used 278 hybrids derived from 210 
inbred lines as a training sample to predict all 21 945 potential 
crosses and concluded that if the top 100 crosses were selected, 
the yield would be increased by 16% [5]. In maize, Li et al. predicted 
all 6328 potential crosses based on 490 hybrids and found that the 
selection of the top 44 crosses would lead to a 6% growth in grain 
yield (GY) compared to the hybrid breed of Zhengdan 958 [6]. 

Numerous statistical methods have been developed for GS, 
such as genomic best linear unbiased prediction (GBLUP), various 

Bayesian methods, and machine learning methods. Although no 
single method is universally best for all datasets, GBLUP stands 
out for its robustness and computationally efficiency [7, 8], mak-
ing it a routinely used method in GS breeding programs. However, 
GBLUP assumes that all markers follow a common normal distri-
bution with the same genetic variance, which is more applicable 
to polygenic traits with a large number of minor effects rather 
than traits controlled by a few major genes [9, 10]. To improve the 
predictability of GBLUP, several studies have suggested a strategy 
that includes significant markers identified in genome-wide asso-
ciation studies (GWAS) as fixed or random effects in GBLUP [8, 
11, 12]. However, the effectiveness of the joint GS-GWAS analysis 
largely hinges on the genetic architecture of target traits. For 
instance, a simulation study in maize and sorghum demonstrated 
that incorporating the peak markers from GWAS conducted on 
the training population increased the predictability for only 60 
out of 216 simulated traits compared to the BLUP model [12]. 
Therefore, it is natural to develop improved methods within the 
GBLUP framework for traits with diverse genetic architectures. 

Genetic algorithm (GA), first conceptualized by Holland, is 
an optimization algorithm used to search for a parameter set 
that maximizes a target function (referred to as fitness) draw-
ing inspiration from the Darwinian theory of ‘survival of the
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fittest’ [13]. As a population-based metaheuristic algorithm, GA 
utilizes multiple candidate solutions during the search process 
to find an optimal solution [14]. It mimics the slow process of 
evolution for a population of living organisms to adapt to a 
particular environment via changes in the genetic composition 
of the population. The evolutionary process in GA starts with 
an initial population of individuals. The individuals in the pop-
ulation, akin to the chromosomes of biological organisms, are 
encoded by bit strings with binary values. It then goes through 
iterations termed generations, during which individuals undergo 
a series of genetic operations, including selection, crossover, and 
mutation. The selection operator selects individuals based on 
their fitness values to reproduce and generate offspring for the 
next generation. The crossover operator exchanges segments of 
two selected individuals to produce new offspring. The mutation 
operator introduces new random variation into the population, 
promoting genetic diversity and avoiding premature convergence 
on suboptimal solutions. Due to its evolutionary nature, GA has a 
higher probability of finding the global optimum (with the highest 
fitness) compared to many other algorithms that may become 
trapped in local optima. GA proves to be particularly effective 
in scenarios with vast solution spaces, making it well suited for 
identifying the optimal subset of trait-specific markers. Despite 
its potential, GA has not yet been utilized for such a purpose. 

In this study, we adapted the GA to GS and developed a new GS 
method called GA-GBLUP aiming to target traits with a diverse 
range of genetic architectures. We also defined four different 
fitness functions (AIC, BIC, R2, and HAT) and provided flexible 
choices for users to consider in their own GS programs. The 
computational efficiency of GA was further improved by bin-
ning (combining) neighboring markers based on the principle 
of linkage disequilibrium (LD). To demonstrate the effectiveness 
of the proposed method, we applied GA-GBLUP to a hybrid rice 
population and a hybrid maize population. Finally, we developed 
an R package (R/GAGBLUP) to help breeders perform GS using the 
new method. 

Methods 
The hybrid rice population 
The rice population consists of 278 hybrids generated by random 
mating among 210 recombinant inbred lines (RILs). The 210 RILs 
were derived by single-seed descent from a cross between Zhen-
shan 97 and Minghui 63 [15, 16]. We analyzed four traits including 
grain yield per plant (YIELD), number of tillers per plant (TILLER), 
number of grains per panicle (GRAIN), and 1000-grain weight 
(KGW). The traits were measured on the experimental farm of 
Huazhong Agricultural University in 1998 and 1999. The field 
trials were conducted with a randomized complete block design 
with two replicates per year [16]. In each replicate, eight plants 
were sampled from each hybrid, and the average phenotypic 
values were used as the phenotypic values for analysis. The geno-
types of the 210 RILs were represented by 1619 recombinant bins 
inferred from 270 820 high-quality SNPs of the rice genome, and 
the genotypes of the hybrids were deduced from the bin genotypes 
of their parents [17]. For ease of reference, the abbreviations used 
throughout the paper are listed in Table 1. 

The hybrid maize population 
The maize305 dataset, consisting of 305 hybrids, was constructed 
using a sparse partial diallel crossing design involving 149 
parental lines. The phenotypic data of plant height (PH), ear 
height (EH), ear weight (EW), and ear grain weight (EGW) of 

the 305 hybrids were collected from the experimental farms 
in Yangzhou and Tai’an during the maize growing seasons of 
2017 and 2018 [18, 19]. The field trials were conducted with a 
randomized block design with two replicates in each environment. 
For each replicate, each line was planted in a single-row plot with 
13 plants (3.0 m in length and 0.5 m between rows), and five 
uniform plants per plot were selected for phenotyping. The best 
linear unbiased prediction (BLUP) values for each hybrid were 
calculated with R/lme4 and were used as the ‘phenotypes’ for the 
GS study. Each inbred parent was genotyped using a 40 K maize 
liquid array developed by Molbreeding Biotechnology Company 
(Shijiazhuang, Hebei, China). After quality control via removing 
SNPs with a missing rate greater than 10% and markers with 
minor allele frequencies less than 5%, we obtained 41 806 SNPs. 
SNP genotypes of the hybrids were deduced from the genotypes 
of their inbred parents. 

Genotype coding 
Let M = {

Mjk
}

and F = {
Fjk

}
be n×m genotype matrices for the male 

and female parents of the corresponding hybrids, respectively. 
The numerical code for individual j

(
j = 1, 2, ..., n

)
at marker k(

k = 1, 2, ..., m
)

is defined as Mjk = Fjk = 1 for the homozygote of 
the major allele A1, Mjk = Fjk = 0 for the heterozygote A1A2, and  
Mjk = Fjk = −1 for the homozygote of the minor allele A2. The  
genotype of the hybrid is defined as Hjk = 1 

2

(
Mjk + Fjk

)
. Note  that  

the parents are not 100% inbred for all markers. This explains why 
the parent’s genotypes may be coded as 0. The coded genotype of 
a hybrid may take values of −1, −0.5, 0, 0.5, and 1. 

Dimension reduction 
To reduce the dimension of the genotype matrix, we combined 
neighboring SNPs into bins. The term ‘bin’ here refers to a block 
of physically linked SNPs exhibiting high LD [20], as opposed to the 
traditional definition where a bin is a chromosome block without 
recombination in a segregating population. Two steps are needed 
to create bin genotypes for a population with numeric genotypes: 
standardizing the genotype matrix and combining adjacent SNPs 
into bins according to some predetermined criterion. First, let G be 
an n × r standardized genotype matrix, where each column has a 
mean 0 and a standard deviation 1. Let Gpq be the pth marker for 
all n individuals in the qth bin, where p = 1, 2, ..., rq and rq is the 
number of markers within the qth bin. Adjacent markers need to 
be combined to create bins. Let Bq be the average value of all rq 

markers in the qth bin: 

Bq = 
1 
rq 

rq∑
p=1 

Gpq (1) 

The actual variance of bin q is defined as 

var
(
Bq

) = 
1 
r2 
q 

⎡ 

⎣rq + 2 
rq−1∑
p=1 

rq∑
l=p+1 

dpl 

⎤ 

⎦ (2) 

where dpl is the LD parameter (correlation coefficient) between 
markers p and l within the qth bin. We can see that var

(
Bq

)
varies 

between 1/rq and 1. Therefore, the number of SNPs in bin q (rq) is  
determined by

[
var

(
Bq

)
> v

] ∧ [
var

(
Bq+1

)
< v

]
(3) 

where v is a hyperparameter of the binning algorithm ranging 
from 0 to 1. We can adjust v to control the number of bins, the
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Table 1. List of abbreviations 

Classification Abbreviation Definition Units 

Traits YIELD Grain yield per plant g 
TILLER Number of tillers per plant – 
GRAIN Number of grains per panicle – 
KGW 1000-grain weight g 
PH Plant height cm 
EH Ear height cm 
EW Ear weight g 
EGW Ear grain weight g 
GY Grain yield t/ha 
GDMC Grain dry matter content % 

Methods GS Genomic selection – 
BLUP Best linear unbiased prediction – 
GBLUP Genomic best linear unbiased prediction – 
GA Genetic algorithm – 
GEBV Genomic estimated breeding value – 
GWAS Genome-wide association studies – 
LASSO Least absolute shrinkage and selection operator – 
LD Linkage disequilibrium – 
PCA Principal component analysis – 
PC Principal component – 
PCA95 Principal components explaining 95% of the total variance of genotypic data – 
REML Restricted maximum likelihood – 
CV Cross-validation – 
LOOCV Leave-one-out cross-validation – 

smaller the value of v, the fewer the number of bins. We also 
used principal component analysis (PCA) to reduce the genotype 
dimension. The PCA was performed using the R/prcomp function 
to extract the top principal components (PCs) with a cumulative 
explanatory variance of 95%. This PCA procedure is referred to as 
PCA95 hereafter. 

The GA-GBLUP method 
Let y be an n × 1 vector for the phenotypic values of a target trait. 
The GA-GBLUP model is formulated as 

y = Xβ + 
m∑

k=1 

δkZkγk + ε (4) 

where X is an n × q design matrix for the fixed effects, β is a 
q × 1 vector of the fixed effects, δk is an indicator variable for 
marker k, with  δk = 1 indicating the inclusion of marker k in the 
model, while δk = 0 indicates the exclusion of marker k from the 
model. Vector δ = [δ1 δ2 ... δm] is considered the parameter 
vector (bit strings) with a binary value at each locus. For example, 
if δ = [1 1 0 1 0 0] is a candidate solution, markers 1, 
2, and 4 are included in the model while markers 3, 5, and 6 are 
excluded. Zk is an n × 1 vector for the genotype indicator variable 
of all n individuals for marker k, γ = {γk} is a vector of random 
effects for all markers with an assumed N

(
0, σ 2 

γ /m
)

distribution 
and ε is a vector of residual errors with N

(
0, Iσ 2

)
distribution. 

The expectation of y is E(y) = Xβ and the variance-covariance 
matrix is var(y) = V = Aσ 2 

γ + Iσ 2, where  A is an n × n kinship 
matrix derived from selected makers. The parameters

{
β, σ 2 

γ , σ 2
}

can be estimated using the restricted maximum likelihood (REML) 
method described in detail in our previous study [5]. If the number 
of markers is large, it is nearly impossible to evaluate all possible 
compositions of δ. However, GA allows the population of δ to 
evolve so that the optimal set of δ that maximizes the fitness of 

the model can be slowly approached. The specific implementation 
process is described as follows: 

1. Initialization 

We first initialize N = 100 times for vector δ, denoted by δ(i) for 
the ith replication for i = 1, 2, ..., N, where  N is the population size. 
The initial value of δ(i) is assigned values sampled from a Bernoulli 
distribution with probability π = 0.01 for each locus. 

2. Selection 

After initialization, we select individuals with the highest fitness 
value according to a predetermined fitness function. The fitness 
function is the core of GA, which determines whether an individ-
ual is selected to breed or not [21]. Four different fitness functions 
are proposed, and they are described as follows: 

(1) Akaike information criterion (AIC). AIC is a standard mea-
surement of the model optimality [22]. It is based on the concept 
of entropy and balances the model simplicity and goodness of fit. 
The AIC is defined as 

AIC = 2k − 2 ln(L) (5) 

where k is the number of parameters being estimated, L is the 
likelihood function of the model evaluated at the maximum 
likelihood estimates of the parameters. The smaller the AIC, the 
better the model. 

(2) Bayesian information criterion (BIC). BIC takes into account 
the sample size in calculating the information criterion [23]. The 
BIC is defined as 

BIC = k ln(n) − 2 ln(L) (6) 

where k is the number of parameters being estimated, n is the 
sample size and L is the likelihood function of the model. The 
smaller the BIC, the better the model. AIC and BIC are the same



4 | Xu et al.

when ln(n) = 2, which is equivalent to n = exp(2) = 7.389. Since 
the sample size of any data analysis is expected to be greater than 
8, the BIC has a greater penalty than the AIC. 

(3) The R-squared (R2). The R2 represents the goodness of fit of 
a model, which is defined as 

R2 = 1 − SSE/SST (7) 

where SST is the total sum of squares of the phenotypic values, 
and SSE is the residual sum of squares. 

(4) The HAT fitness function (HAT). Following the HAT method 
described by Xu [24], we defined the hat matrix as 

H = HF + HR (
I − HF) (8) 

where 

HF = X
(
XT V−1 X

)−1 
XT V−1 (9) 

and 

HR = σ̂ 2 
γ A

(
Aσ̂ 2 

γ + Iσ̂ 2)−1 
(10) 

Let the fitted phenotypic value be 

ŷ = Xβ̂ + σ̂ 2 
γ A

(
Aσ̂ 2 

γ + Iσ̂ 2)−1
(
y − Xβ̂

)
= Hy (11) 

The predicted residual error sum of squares of the mixed model 
is defined as 

PRESS = 
n∑

j=1

(
yj − ŷj

)2 
/
(
1 − hjj

)2 (12) 

where hjj is the jth diagonal element of matrix H. The HAT value 
is defined as 

HAT = 1 − PRESS/SST (13) 

where 

SST = 
n∑

j=1

(
yj − y

)2 (14) 

is the total sum of squares. Once the fitness values of the 100 
candidates are obtained for the desired fitness function, the top 
5% candidates are selected for subsequent biological-inspired 
operations. 

3. Mutation 

Given a mutation rate μ = 0.1 per locus, we allow each locus of 
the selected top 5% chromosomes to mutate, i.e. 1 → 0 or 0 → 
1. For example, in Fig. 1(B), the ninth locus mutates from 1 to 0, 
indicating that the ninth locus is excluded from the model. 

4. Random mating 

We randomly select a pair of individuals to mate. Each mating 
pair generates two progenies, such a random mating process con-
tinues until N = 100 progenies are generated. In this case, N/2 = 50 
random mating pairs need to be created. For example, the first 
random mating pair may happen between the ith and the jth 
selected parents (Fig. 1C). 

5. Crossover 

Once the mating pairs are selected, crossover occurs between the 
mated chromosomes. Different forms of crossover, such as single-
point and uniform crossovers are used to generate new offspring 
from parent solutions. In GA-GBLUP, the single point crossover is 

chosen due to its simplicity and efficiency in maintaining benefi-
cial combinations of loci [25]. In this process, a random crossover 
point is selected based on a Bernoulli distribution. Segments 
beyond this point swap with each other, leading to changes in 
their offspring [14]. For example, if a crossover happens between 
the 5th and 6th locus, segments of the ith (in red) and the jth (in 
blue) parents exchange, resulting in the formation of two children 
(Fig. 1D). 

Finally, two progenies are generated for each mating pair until 
a total of N progenies are produced. The fitness of each progeny 
is then evaluated, and the top 5% progenies are selected again to 
generate individuals of the next generation. This iterative process 
continues until there is no obvious improvement in the fitness 
function for 2000 consecutive generations. Once the δ vector with 
the highest fitness value is obtained by GA, trait-specific mark-
ers can be selected to construct a trait-specific kinship matrix 
(Fig. 1A). We have released an R package GAGBLUP specifically 
for GA-GBLUP, and this package is available at https://CRAN.R-
project.org/package=GAGBLUP. 

Predictability drawn from cross-validation 
We adopted the 10-fold cross-validation (CV) scheme to eval-
uate the performance of GBLUP and GA-GBLUP. Each dataset 
was partitioned into 10 equal-sized parts with 9 parts used for 
training and the remaining part for testing. The testing sample 
does not contribute to parameter estimation. The predictability 
is defined as the squared Pearson correlation coefficient between 
the predicted and the observed values of the target trait. Since 
GA yields different marker subset selections in each iteration, 
we repeated the 10-fold CV process 10 times and calculated the 
average predictability for comparison. 

Results 
Performance of the binning method 
To demonstrate the suitability of the binning method for 
dimensional reduction, we compared the predictability of bin 
genotypes with the PCs using the GBLUP method based on the 
maize305 dataset and a publicly available maize550 dataset [26]. 
The maize550 dataset consists of 550 maize hybrids derived from 
50 Dent and 41 Flint maize inbred lines. All inbred lines are 
available in the genomic data, which includes 37 392 high-quality 
SNP markers. GY and grain dry matter content (GDMC) of the 550 
hybrids were measured across four to ten mega-environments in 
Germany from 1999 to 2014, with genotypes inferred from their 
parents’ genotypes. 

For the maize305 and maize550 datasets, a total of 1885 and 
1525 bins were generated from the genotype data using the bin-
ning algorithm, with the parameter v set to 0.15 and 0.1, respec-
tively. Subsequently, 88 PCs and 61 PCs explaining 95% of the total 
variance of genotypic data (PCA95) were retained, respectively. A 
10-fold CV was repeated 50 times to evaluate the predictability 
of the two dimensionality reduction strategies. For the maize305 
dataset, the bin genotypes exhibited significantly higher pre-
dictability than the PCA95 genotypes for EW, EGW, and PH, while 
EH showed comparable performance. Additionally, bin genotyping 
was equally effective as the conventional method that used all 
markers for traits EW and EGW (Fig. 2A). In the case of the maize 
550 dataset, bin genotypes outperformed PCA95 for all traits, even 
surpassing the method using all genome-wide markers for trait 
GDMC (Fig. 2B). Notably, not only does bin genotyping improve 
predictability but also maintains the positional information of 
the original SNP markers. This ability of bin genotyping allows 
us to identify key causal loci underlying target traits, a feature
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Figure 1. Illustration of the workflow of GA-GBLUP. (A) Flowchart of GA-GBLUP. First, all original markers are input into the algorithm and then a randomly 
selected subset are used to initiate the algorithm. Next, a kinship matrix is built upon selected markers and fitness values are calculated. Genetic 
operations are then performed to optimize the solution and recalculate fitness values. This iterative process continues until convergence is achieved. 
Finally, the selected markers are used for the final prediction. (B) Mutation operation, where the ninth locus mutates from 1 to 0. (C) Random mating 
operation, where two chromosomes are randomly mated. (D) Crossover operation, a random crossover happens between two mated chromosomes and 
two progeny chromosomes are created. 

not achievable through PCA. Overall, the results highlight that the 
binning method is a powerful dimensional reduction strategy. To 
alleviate the computational burden, bin genotypes were adopted 
in subsequent studies. 

Predictability of GA–GBLUP 
We evaluated four GA fitness functions, including AIC, BIC, R2, and  
HAT, and compared the predictabilities of GA-GBLUP and GBLUP 
using the rice278 and maize305 datasets. In the rice278 dataset, 
the highest predictability was achieved for KGW (0.6899) across 
all methods, followed by GRAIN (0.3569), TILLER (0.2310), with the 
lowest predictability for YIELD (0.1456). Among the four fitness 
functions, HAT consistently outperformed the other fitness func-
tions, with GA-GBLUP using HAT achieving the highest average 
predictability (0.3748) across traits, while GA-GBLUP with BIC 
had the lowest predictability (0.3428) (Fig. 3A). Overall, HAT was 
superior over AIC, BIC, and R2 by 7.35, 9.34, and 5.54%, respectively. 
The improvement in predictability of GA-GBLUP with the HAT 
fitness function varied by traits, showing improvements of 26.45% 
for YIELD, 10.04% for TILLER, 0.60% for GRAIN, and 1.25% for KGW 
compared to GBLUP. 

In the maize305 dataset, PH had the highest predictability 
(0.4489) across all methods, followed by EH (0.3522), EW (0.2626), 
and EGW (0.1466). Among the four fitness functions, R2 and HAT 
performed better than AIC and BIC for all four traits when com-
bined with GA-GBLUP, with the average predictability of 0.2894, 
0.2857, 0.3225, and 0.3152 for AIC, BIC, R2, and HAT, respectively. 
For EW and EGW, GA-GBLUP with the R2 and HAT fitness functions 
demonstrated superior performance over GBLUP (Fig. 3B). GA-
GBLUP with the R2 fitness function outperformed GBLUP by 19.84, 
16.72, 2.84, and 1.08% for EW, EGW, PH, and EH, respectively. Sim-
ilarly, the use of the HAT fitness function in GA-GBLUP resulted 
in 13.8, 17.67, and 1.27% improvements in predictability for EW, 
EGW, and PH, respectively. 

Marker selection 
To further investigate the superior performance of the fitness 
functions HAT and R2, we examined the number of selected mark-
ers by GA-GBLUP equipped with different fitness functions in both 

the rice and maize datasets. The R2 fitness function consistently 
selected the highest number of markers, followed by the HAT 
fitness function, with AIC and BIC selecting the lowest number 
of markers (Fig. 4). In the rice278 dataset, on the average, the 
percentages of markers selected by AIC, BIC, R2, and HAT fitness 
functions across the four traits were 9.47, 8.99, 34.35, and 29.12%, 
respectively (Fig. 4A). In the maize dataset, the corresponding 
percentages were 12.75% for AIC, 12.28% for BIC, 34.55% for R2, 
and 29.82% for HAT (Fig. 4B). 

Finally, we built the kinship matrices using the selected 
markers and using all markers to estimate the total variances 
explained by the markers with the REML method. This process 
was repeated 10 times, with markers selected by GA-GBLUP per 
run. In the rice278 dataset, KGW had the highest total variance 
explained by the markers (93.54%) across all methods, while 
YIELD displayed the lowest total variance explained by the 
markers (66.59%), which was consistent with their predictability 
(Fig. 5A). For the four traits, the markers selected by GA-GBLUP 
with R2 and HAT explained 89.79 and 89.16% of the total variance, 
respectively, surpassing AIC (74.70%) and BIC (74.71%). The total 
variance explained by the markers selected with GA-GBLUP 
using R2 and HAT was considerably higher than that using all 
markers (73.27%). In the maize305 dataset, PH demonstrated the 
highest total variance explained by the markers (93.38%) across 
all methods. The markers selected by GA-GBLUP with AIC, BIC, 
R2, and HAT explained 87.27, 87.43, 94.06, and 90.58% of the total 
variance, respectively (Fig. 5B). The variance explained using the 
kinship matrix built with all markers (86.52%) was much lower 
than that using markers selected by R2 and HAT. 

Discussion 
GS has revolutionized hybrid breeding in crops [27–29]. It is well 
known that accurate prediction is a prerequisite for GS. In this 
study, we proposed a novel GS method called GA-GBLUP that 
incorporates the GA. We observed that when R2 and HAT fitness 
functions are used, GA-GBLUP outperforms traditional GBLUP 
with an increase of predictability up to 26.45%. This amount of 
improvement is particularly noteworthy for GY, a trait known for
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Figure 2. Trait predictability of GBLUP using different dimensional reduction methods on two datasets: maize305 (A) and maize550 (B). The traits include 
EGW (ear grain weight), EW (ear weight), EH (ear height), PH (plant height), GY (GY), and GDMC (grain dry matter content). The markers are categorized 
as ALL (all original markers), PCA95 (the top PCs with cumulative explanatory variance of 95%), and Bin (the bin genotype). 

its low heritability. According to the breeder’s equation [ 3], the 
annual genetic gain is determined by the product of the selection 
intensity, the genetic variance, and the selection accuracy divided 
by generation interval. The predictability observed in our study 
indicates a substantial boost in genetic gain compared with the 
traditional GS methods. 

Among various GS models, GBLUP has been widely applied to 
animal and plant breeding due to its strong robustness and high 
computational efficiency [30]. Previous studies have emphasized 
the significant role of genetic architecture in determining the 
accuracy of GS [10, 31]. However, GBLUP is often built with the 
same kinship matrix to predict GEBVs for all traits, regardless of 
the genetic architectures of the traits. The one-kinship-matrix-
fits-all-traits strategy may not fully capture the contributions of 
trait-specific major-effect markers in GBLUP, potentially leading 
to lower prediction accuracies [32]. To overcome this problem, 
researchers have proposed the Blup|GA (Blup-given genetic archi-
tecture) approach [33], using publicly available GWAS results to 
build trait-specific kinship matrices. The results indicate that 
Blup|GA outperformed GBLUP and BayesB for nine out of eleven 
traits in a rice diversity dataset. However, the use of inaccurate or 
inappropriate priors for building the trait-specific kinship matrix 
may lead to a reduced predictability. Spindel et al. [34] proposed a  
GS + de novo GWAS strategy to enhance the predictability, which 
is effective for certain traits but highly dependent of the identifi-
cation of highly significant SNPs through the de novo GWAS. It is 
increasingly evident that solely incorporating GWAS signals in GS 
cannot guarantee improvement in predictability [35]. 

An alternative approach for identifying trait-specific predictors 
involves feature selection. Feature selection aims to identify a 
subset of variables that are mostly related to a target trait, reduce 
the computational burden and prevent from overfitting [36, 37]. 
Bayesian methods and the least absolute shrinkage and selection 
operator (LASSO) [38] are commonly used for selective shrinkage 
in GS models. These models assume that only a small portion 
of markers are associated with the target trait. While BayesB 
may outperform GBLUP in simulated data [1, 39], this is rarely 
supported in real data analysis [10]. Such a discrepancy may be 
attributed to the significant impact of priors on parameter estima-
tion for the Bayesian methods [40]. The actual genetic architecture 
of a trait is often unknown and may differ significantly from the 
prior assumption. The LASSO method achieves parameter spar-
sity by applying the L1 penalty in regularizing the model. Similar 
to the priors in the Bayesian methods, however, determining the 
hyperparameter lambda in the LASSO method can be challenging. 
An oversized lambda shrinks more coefficients to zero, potentially 
excluding important markers that are predictive of the target 
trait, and thus lowers the predictability. Conversely, an under-
sized lambda provides insufficient regularization and captures 
noise and irrelevant markers in the training data, resulting in 
overfitting. 

Ever since GA was proposed by Holland in 1975, it has been suc-
cessfully applied to many areas including operation management, 
multimedia, wireless networking, and precision agriculture. In the 
field of bioinformatics, the GA method has been applied to nucleic 
acid and protein-based sequence analysis, as well as protein
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Figure 3. Trait predictability of GA-GBLUP with four different fitness functions on two datasets: rice278 (A) and maize305 (B). The traits include YIELD 
(grain yield per plant), TILLER (number of tillers per plant), GRAIN (number of grains per panicle), KGW (1000 grain weight), EGW (ear grain weight), EW 
(ear weight), EH (ear height), and PH (plant height). The fitness functions include AIC, BIC, R2, and HAT. The gray dashed line represents the predictability 
of GBLUP. 

Figure 4. Number of markers selected by GA-GBLUP with four different fitness functions on two datasets: rice278 (A) and maize305 (B). The traits 
analyzed include YIELD (grain yield per plant), TILLER (number of tillers per plant), GRAIN (number of grains per panicle), KGW (1000 grain weight), 
EGW (ear grain weight), EW (ear weight), EH (ear height), and PH (plant height). The fitness functions include AIC, BIC, R2, and  HAT.  
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Figure 5. Total variances explained by markers selected with GA-GBLUP under four fitness functions on two datasets: rice278 (A) and maize305 (B). The 
fitness functions are AIC, BIC, R2, and HAT. The scenario labeled ALL represents the total variance explained by all markers. 

structural prediction [ 41]. However, GA has not yet been explored 
for GS. Here, for the first time, we used the GA to construct trait-
specific kinship matrices to improve the predictability of GBLUP. 
The advantages of GA-GBLUP include the following: (a) the GA, 
as a population-based metaheuristic optimization algorithm, can 
exploit multiple candidate solutions to achieve global or near-
global solutions for complex problems. Given the vast solution 
space in selecting trait-specific predictors (if there are m markers 
in total, there will be 2m possible solutions), traditional feature 
selection methods may be trapped in local optima. (b) GA-
GBLUP effectively addresses the issue of overfitting commonly 
encountered in prediction models. Before implementing GA-
GBLUP, the original high-dimensional genotype matrix is grouped 
into bins to reduce complexity. Moreover, GA-GBLUP utilizes a 
kinship matrix generated from trait-specific markers to capture 
genetic similarity between individuals, rather than directly fitting 
the markers. Integrating these approaches makes GA-GBLUP less 
susceptible to overfitting. The superior performance of GA-GBLUP, 
as demonstrated in 10-fold CV, provides compelling evidence of 
its efficacy. (c) GBLUP assumes that predictors are independent 
and identically distributed (i.i.d.), thus ignoring gene interaction 
effects that contribute to the quantitative variation of complex 
traits in plants and animals [42, 43]. GA-GBLUP enables predictors 
to combine in various ways to determine optimal combinations, 
potentially considering gene interactions. In addition to GS, GWAS 
can also be performed using GA-GBLUP to identify bins associated 
with the target trait. 

Among the four fitness functions investigated in our study, the 
HAT and R2 fitness functions exhibit overall superior performance 
over AIC and BIC. This difference may be attributed to the differ-
ent emphases of the fitness functions. The number of selected 
markers and the total variances explained by these markers 
across different fitness functions may provide some insights. In 

comparison to GA-GBLUP with the R2 and the HAT fitness func-
tions, GA-GBLUP with the AIC and BIC fitness functions selects 
far fewer markers. Meanwhile, the markers selected by GA-GBLUP 
with the R2 and HAT fitness functions explain a higher total 
variance than those selected by GA-GBLUP with the AIC and BIC 
fitness functions. AIC and BIC seek a balance between model 
complexity and smoothness by including a penalty term on the 
number of model parameters [22, 23]. However, the penalty term 
in the AIC and BIC fitness functions may be too severe for GA-
GBLUP. Consequently, GA-GBLUP with the AIC and BIC fitness 
functions tend to be underfitting and the increase in fitness is at 
the cost of predictability. The HAT fitness function used is a fast 
algorithm of leave-one-out cross-validation (LOOCV), which helps 
avoid overfitting by utilizing nearly the entire dataset for training 
in each iteration, thereby ensuring that the model is robust and 
generalizes well across all available data. K-fold CV can also be 
utilized as the fitness function within the GA-GBLUP framework, 
but the computational time in each iteration would increase 
about k times compared to that of the HAT fitness function. 
For further improvement of GA-GBLUP, a fitness function with 
an optimal penalty for marker selection is recommended. Such 
a fitness function may enable GA-GBLUP to perform both GS 
and GWAS. 

The rapid development of sequencing technologies has 
facilitated the cost-effective acquisition of large volume biological 
sequence data, leading to a significant increase in the number of 
predictors in GS. The surge in predictors poses computational 
and data analysis challenges due to high dimensionality, referred 
to as the curse of dimensionality [37]. In such scenarios, GA-
GBLUP will slow down significantly due to the exponential 
growth in the search space and the increased computational 
complexity for evaluating and optimizing potential solutions. 
For instance, when evaluating the predictability of a single



GA-GAPLUP | 9

trait using 10-fold CV in the maize305 dataset, GA-GBLUP with 
bin genotypes had an average runtime of 205.3 min, whereas 
GA-GBLUP with original genotypes took about 4067.46 min. 
This highlights the necessity of implementing an efficient 
dimensionality reduction method to reduce predictors for GA-
GBLUP. PCA is a classical linear dimensionality reduction method 
widely used in machine learning and data analysis. Nevertheless, 
PCA may overlook the nonlinear relationships among samples, 
which can be crucial. Autoencoders are unsupervised deep 
learning frameworks designed to extract effective nonlinear 
latent features from unlabeled samples. When effectively trained, 
latent features obtained via autoencoders work much better than 
those extracted via PCA [44]. Nonetheless, training autoencoders 
is time-consuming and requires significant computational 
resources, posing a challenge for practical application. For 
genome research, interpretability is desirable. However, similar to 
the PCs extracted by PCA, interpreting the latent features learned 
by autoencoders can be challenging. The bin genotypes obtained 
through the binning method demonstrates superior predictability 
compared to PCA. Furthermore, the binning method can preserve 
the positional information of the original markers in the bin 
genotypes and maintain interpretability, making it an effective 
tool for dimensionality reduction. 

Compared to other GS methods, GA-GBLUP is slow due to 
numerous generations required for GA to converge towards the 
optimal solution. The sluggishness of GA is the nature of the 
method; it is purposely designed to be slow to mimic evolu-
tion so that the optimal fitness can be reached globally. Despite 
the longer processing time of GA-GBLUP, it remains an effective 
method due to its ability to significantly enhance prediction accu-
racy. Just as the no-free-lunch theorem states [45], there is no one-
size-fits-all solution, and no single algorithm consistently out-
performs others, including GA-GBLUP. GA-GBLUP is demonstrated 
to be effective in predicting traits with low heritability, such as 
YIELD in the rice dataset, where GA-GBLUP achieved up to 26.45% 
improvement in predictability. However, when it comes to traits 
with relatively high heritability, such as KGW in the rice dataset, 
only a modest 1.25% improvement in predictability is observed 
when GA-GBLUP is combined with the HAT fitness function. 
When combined with the R2 fitness function, the predictability 
of GA-GBLUP even drops below that of GBLUP. In general, GA-
GBLUP can significantly improve the predictability of traits with 
low heritability, such as GY, while for traits with relatively high 
heritability, GBLUP remains the preferred choice. 

The newly proposed GA-GBLUP has significantly improved the 
model predictability. Real data analysis has demonstrated the 
superiority of GA-GBLUP equipped with the R2 and HAT fitness 
functions compared to the traditional GBLUP method. We rec-
ommend GA-GBLUP for traits with low heritability via the new 
R package GAGBLUP on CRAN for convenient implementation in 
GS breeding programs. Finally, binning high dimensional geno-
type data is effective for dimensionality reduction and holds 
promise for broader applications in interpretable machine learn-
ing based GS. 

Key Points 
• We develop a novel GS method named GA-GBLUP, which 

incorporates the genetic algorithm into the GS method 
to improve the prediction accuracy. 

• GA-GBLUP equipped with the R2 and HAT fitness func-
tions demonstrates clear advantages over GBLUP in 
genomic hybrid breeding, particularly for traits with low 
heritability. 

• The binning method is a superior dimensionality reduc-
tion technique in terms of both predictability and inter-
pretability. 
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