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Abstract

The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do 

so for years to come. Despite the availability of vaccines, searching for efficient small-molecule 

drugs that are widely available, including in low- and middle-income countries, is an ongoing 

challenge. In this work, we report the results of an open science community effort, the “Billion 

molecules against COVID-19 challenge”, to identify small-molecule inhibitors against SARS-

CoV-2 or relevant human receptors. Participating teams used a wide variety of computational 

methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 

31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently 

ranked to find ‘consensus compounds’. The organizing team coordinated with various contract 

research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds 

for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only 

the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/

binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and 

are presented here. Open science approaches such as the one presented here contribute to the 

knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.
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1 | INTRODUCTION

There is great interest in small molecule therapeutic agents for COVID-19 with high efficacy 

to save human lives. Even more than three years after the outbreak of the pandemic and 

despite the availability of vaccines [1], COVID-19 poses a threat to individuals across 

the world [2]. The initially-developed vaccines and boosters have so far proven protective 
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against COVID-19, but because of multiple factors, such as new variants of the virus [2], 

the disease continues to pose substantial risk to life and health. Recent studies also show 

that reinfections act cumulatively, which is worrisome in the long term [3]. Additionally, 

many people cannot be vaccinated due to their medical status or refuse vaccination, and 

breakthrough infections occur despite vaccination. Therefore, having a small molecule 

therapy as an additional option or alternative is highly demanded [4]. The applicability 

of currently available small molecule treatments, such as nirmaltrelvir [5], baricitinib [6], 

remdesivir [7], and molnupiravir [8] is still restricted. For instance, the application of 

Paxlovid (nirmatrelvir and ritonavir) is limited due to drug-drug interactions [9], drug 

resistance [10–12], and rebound effects [13, 14]. In addition, molnupiravir is a mutagenic 

antiviral, which possibly could increase the emergence of new variants [15, 16]. Ensitrelivir 

has recently been developed as a small molecule antiviral specifically targeting SARS-

CoV-2 [17], and has been shown to decrease viral clearance by 50 h [18]. Overall, improved 

pharmacological approaches are still needed.

The standard drug development process is slow compared to the time scale at which 

the SARS-CoV-2 virus emerged and mutates, and could easily last up to 15 years [19]. 

This period comprises pre-clinical phases in which large numbers of virtual or physically 

available molecules are considered and tested, and then clinical phases in which few 

molecules are validated in human trials. In early phases of the drug discovery process, 

computational methods have been shown to help in screening and navigating through the 

large chemical space [20]. Such methods should also suggest new promising ligands [21–

23]. However, 90% of the molecular candidates turn out to fail later, somewhere between 

phase I trials and regulatory approval [24]. Therefore, using accurate computational methods 

to screen and filter chemical space is key to a successful and fast drug development process. 

With accurate computational methods, the early phases of drug discovery that usually 

require 3–6 years [19], might be reduced to a few weeks, after which pre-clinical studies 

could start [25].

The RNA genome of SARS-CoV-2 encodes 29 structural, non-structural (Nsp) and 

accessory proteins, which are responsible for entry and uncoating, replication, and assembly 

[26]. The large, multidomain transmembrane papain-like protease (Nsp3 or PLpro), the main 

protease (Nsp5, 3CLpro or Mpro), the RNA-dependent RNA Polymerase (RdRP or Nsp12), 

the nucleocapsid (N), the spike protein (S), and the human host transmembrane protease 

(TMPRSS2), are frequently named as potential drug targets [27–34]. Due to the frequent 

mutations in the spike protein S, other proteins are deemed more suitable as drug targets. 

Since the outbreak of the COVID-19 pandemic, there has been a quest for selective, potent, 

and bioavailable inhibitors of the aforementioned proteins [35–37] using a multitude of 

approaches, such as high-throughput screening, virtual screening, and drug repurposing.

In response to the pandemic, scientists and research groups around the world started 

to self-organize and work together (e.g., https://covid19-nmr.de/participants/core-team/; 

https://insidecorona.net/; https://app.jogl.io/; https://foldingathome.org, https://news.cnrs.fr/

articles/covid-19-15-billion-compounds-to-undergo-virtual-screening); MEDIATE [38], 

EXSCALATE [39]). The COVID moonshot project [40–42] for example, yielded new 

potential inhibitors with a collaborative, crowdsourcing Open Science Discovery approach 
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[43], now continued within the Drugs For Neglected Diseases Initiative. Here we present the 

results of an ad hoc crowd-sourced community initiative, the “Billion molecules against 

COVID-19 Challenge”, which was organized as a competition (starting May 2020) to 

identify inhibitors of SARS-CoV-2 proteins. Participating teams screened at least one 

billion molecules each using diverse computational methods. Then, the most promising 

drug compounds were synthesized and evaluated in wet-lab experiments. We present 

the computational approaches taken, biological assays performed, and the overall lessons 

learned from the challenge.

2 | RESULTS

2.1 | Set up of the community challenge

Our community effort to identify SARS-CoV-2 inhibitors was organized as a challenge, 

where academic and industry researchers worldwide were asked to form teams to virtually 

screen at least a billion small molecules each and then submit 10,000 virtual molecules 

as potential inhibitors for SARS-CoV-2 progression, within the timeframe May-June 2020. 

In response to the announcement to join, 130 teams registered, of which 31 made the 

submission deadline. In addition to compound lists, teams had to deliver a report outlining 

the methods used (see Supporting Information Section 1). Of those, 20 teams were admitted 

after peer-review of their reports by an ad-hoc scientific committee.

Overall, a four-step process was used during the challenge (Figure 1). The aim put forward 

to the teams was to find a<100 nM binder to a SARS-CoV-2 protein or human receptor of 

choice, which should ideally have a 100-fold reduction of live SARS-CoV-2 viral replication 

in whole cell assays. The teams were initially free to identify the most promising protein 

targets. In terms of screening databases, Zinc 15 [44], CAS (anti-virals) [45], and SweetLead 

[46] were suggested by the organizing team but the computational teams were free to choose 

other sources. The following sections will describe the four processes in detail, followed by 

a discussion and conclusions.

2.2 | Virtual screening using computational methods

The computational teams used a variety of machine learning [47], docking [48, 49] and 

hybrid approaches (Figure 2). In the group of machine learning based methods, approaches 

included: reinforcement learning, random forests [50], gradient boosting [51–53], kernel-

based methods – e.g., Vanishing Ranking Kernels [54] – and deep learning methods – 

e.g., self-normalizing-networks [55], LSTMs [56], CNNs [57–61], geometric deep learning, 

and graph neural networks [62–64]. Also stochastic-based methods – e.g., Naive Bayes 

Classifier [65] and Self-Consistent Regression [66] – were used. The docking teams used 

different tools like GLIDE [67–69], AutoDock Vina [70, 71], QVINA2, VirtualFlow [72], 

Fred, Smina, Gold [73], PLANTS [74] and Data Warrior. Some teams considered molecular 

dynamics simulations [75]. Others combined machine learning with conventional docking 

approaches. This was done by a) building a pipeline in which different computational 

methods were stacked on top of each other – e.g., some groups used machine learning 

methods to make a pre-selection of the screened compounds and then used docking 

methods for the most promising compounds – or b) using machine learning models as a 
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scoring function for the docking methods. Also similarity-based methods – e.g., classic 

similarity search [76], feature tree search [77], and the knn-algorithm [78] – and methods 

for dimensionality reduction – e.g., PCA, t-SNE, and GTM [79,80] – were used. Some 

teams added ADMET and PAINS filters to their virtual screening pipeline. On the ligand-

side, multiple different molecular representations were used, e.g., SMILES, substructure-

based descriptors (ECFPs), MACCs keys, continuous and data-driven molecular descriptors 

(CDDD) [81], MNA [82] and QNA [66] descriptors.

In terms of the hit rate, the team that ended up with the most compounds (team jku, see 

below) used descriptor-based deep learning methods with small molecules as inputs, thus 

a ligand-based approach. The self-normalizing network approach renders the models robust 

against domain shifts from training data to testing data. The second-ranked method by team 

kyuken used shallow, ligand-based, and descriptor-based machine learning methods as a 

first step and subsequently used structure-based approaches to refine the search. The hit 

compound of kyuken showed significant viral reduction in cell-based assays (see section 

2.6.5 below). The third-ranked method (team aiwinter) used docking-based methods and 

QSAR models. For details, see Supporting Information Section 1.

2.3 | Molecule selection and consensus ranking

A single list of molecules was made for subsequent synthesis and testing against each of 

the six selected SARS-CoV-2 (or host) protein targets. In total, 639,024 molecules (of which 

423,466 unique ones) were submitted across all targets and teams. Many teams suggested 

identical compounds for the same protein target: 656 for Nsp5, 155 for Nsp3, 57 for 

TMPRSS2 and 54 for Nsp12.

Interestingly, 7391 compounds were suggested by multiple teams for multiple protein 

targets, but in 3843 cases the teams disagreed on what the target was. Also, several teams 

had the same identical compound on their compound list for the same target, but those 

duplicates were removed.

The screening capacity was estimated to be maximally 2,000 compounds for each of the 

6 protein targets, considering the time and cost to synthesize compounds and perform 

experimental assays. ~40% of this screening capacity was reserved for testing the top-ranked 

molecules from each team, i.e., according to the ranking the team had determined for their 

own lists. The other ~60% of the screening capacity was reserved for testing consensus 
molecules, which are molecules that had been suggested by multiple teams or for which 

very similar molecules had been suggested. Two different approaches were employed 

to determine the set of consensus molecules: a) k-medoids clustering, and b) generative 

topographic mapping [79], see Supporting Information Section 2. The ‘selected molecules 

list’ for each of the 6 protein targets, ended up consisting of 38% top-ranked, 15% from 

k-medoids, and 47% from GTM (see yellow/green/blue cartoon in Figure 1). Overall, six 

sets of compounds for each of the protein targets were obtained amounting to 11,440 unique 

compounds in total.

Schimunek et al. Page 4

Mol Inform. Author manuscript; available in PMC 2024 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 | Chemical synthesis of selected compounds

All compounds were synthesized by WuXi Apptec (China), based on instructions from 

the organizing team. 11,440 compound suggestions across 6 protein targets were provided 

to them. The compounds to be synthesized were selected based on 3 criteria by WuXi 

Apptec using proprietary methods: 1) cADME (computational absorption, distribution, 

metabolism, and excretion) filtering was done to arrive at compounds with molecular weight 

(MW) below 500 g mol−1, CLogP<5, HBA<10, HBD<5, TPSA<140, Rotatable bond<5. In 

addition, possible PAINS (Pan-assay interference compounds) were removed; 2) Chemical 

feasibility: a similarity search versus the WuXi Apptec virtual library was performed to 

assess feasibility (see Supporting Information Section 4.1); 3) reagent availability and cost 

were considered.

After the selection, 1414 compounds were selected, and synthesis was started. The synthesis 

period lasted from November 2020 to February 2021, and 878 compounds were delivered 

as 20 mM DMSO (dimethylsulfoxide) stock solution on well-plates. It was not feasible 

to synthesize all compounds due to delays in the delivery of starting compounds or due 

to practical synthetic issues (e.g., low reactivity, difficulties in purification, etc.). The 

compound purity was determined by LC–MS and has been reported previously [83]. Of all 

878 compounds, 58 (i.e., 6.6%) had a purity below 90%, but were included in experimental 

assays nonetheless. The latter data set also includes information on solubility and compound 

chirality. Duplicate compound well-plates with DMSO stock solutions were shipped to the 

MIT-Broad institute (USA), Crelux GmbH (Germany), Pasteur Institute (France), and the 

Diamond Light Source (UK), for further experiments (see next sections).

Biases in compound selection and synthesis.—Both the methods used to obtain the 

list of selected compounds (from 423,466 unique ones to 12081 selected, see section 2.3) 

and the synthesizability of the compounds (878, see section 2.4) introduced biases. Table 1 

shows that team imolecule, lci, lci, virtualflow, molecule, and cermn had the largest numbers 

of compounds selected for the targets N, Nsp3, Nsp5, Nsp12, S and TMPRSS2, respectively 

(see bold numbers). Figure S5 displays these results by the method of selection, i.e., either 

by GTM, k-medoids, or top-ranked. Some teams had most of their selected compounds 

originate from consensus selection. For example lci, cermn, kyuken, and pharmai had many 

compounds selected by GTM (Figure S5a,b). In contrast, other teams (e.g., covid19ddc and 

sarswars) had most of their selected compounds directly from their top-ranked ones. Overall, 

the selected compound list and the synthesized compound lists are skewed toward the top 

200 positions of each team for each protein target (Figure S6). For jku, a bias was found 

in the number of synthesized compounds (62) versus those selected (259) likely due their 

chemical similarity and the fact that they can be easily synthesized (see ‘benzotriazolyl 

acetamide’ family in the next sections and in discussion section 3 below). Some teams had 

large numbers of molecules selected in the first step but none were finally synthesized. For 

example team belarus had 32 compounds for Nsp5 and 67 for S, but none of them were 

selected by WuXi Apptec since these compounds did not pass their ADME filters and/or 

cost/feasibility analysis. If the filtering would have been known a priori, the teams could 

have likely had more suitable compounds in their submitted lists thus avoiding the fact 

that some teams ended up with zero compounds. We could not discern a clear trend in the 

Schimunek et al. Page 5

Mol Inform. Author manuscript; available in PMC 2024 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



origin of selection of the compounds (i.e., GTM, k-medoids, or top-ranked) versus what was 

synthesized by WuXi Apptec in the end (Figure S7), but the percentage of GTM compounds 

did increase ~10% in favor of top-ranked compounds (Figure S8). We do not deem this 

significant, that is, the selection method did not influence which compounds were eliminated 

by the WuXi Apptec filtering.

2.5 | Comparison of computational methods

Hit rate.—With the four-stage procedure described above (see Section 2.1), 27 compounds 

were found to have detectable biological activity (see Figure 2, Figure 3, 4, Table 2, 

and details in Table 3) across all SARS-CoV-2 protein targets. The experimental testing 

is described in the following paragraphs. Due to the multiple team submissions and the 

compound selection procedure some teams submitted compounds which were tested on 

a target which is different to the suggested one. We tackle this issue by providing a) an 

analysis for which these compounds are excluded (Table 1 and Table 2) and b) an analysis 

for which these compounds are included (Supporting Information Section 3). For a) 14 hits 

had been suggested by the team jku and bind to Nsp5 (see Table 2). This amounts to a 

hit rate of 20.9% [95% confidence interval: 11.9–32.6%] (14 actives of 67 tested) of the 

best team, which is followed by the teams kyuken with a hit rate of 7.1% [2.0–17.3%] (4 

actives out of 56 tested) and aiwinter with a hit rate of 5.0% [0.1–24.9%] (1 active out of 20 

tested). Note that three different types of assays, a) in vitro (cell-free or live cell) activity, b) 

biophysical binding and c) x-ray crystallography, have been used to experimentally test the 

compounds (see Section 2.6).

Novelty of hits.—To evaluate the novelty of the found hits, the hit compounds are 

compared to prior-art molecules, which are molecules either used in filtering operations 

such as similarity searches or used as an active training instance for Machine Learning 

methods by any of the teams. The activity cut-offs for the metrics pKi, pKd, pIC50 and 

pChEMBL were set to 6.3. Scatterplots in t-SNE coordinates (Figure 2a and Figure S9a,b) 

show the relative location of the hit compounds in comparison to the prior-art compounds. 

Notably, compared to Nsp12 and S, Nsp3 and Nsp5 contain many prior-art molecules, due to 

the availability of SARS-CoV data that was assumed by the teams to be similar (in terms of 

binding sites) as compared to SARS-CoV-2. The hits identified by jku (14 compounds) and 

aiwinter (1 compound) build a cluster and overlap in the Nsp5 scatterplot. Looking in more 

detail we find many benzotriazolyl acetamide derivatives in the prior art data in this cluster 

(Figure S10). The benzotriazole family had been considered indeed for SARS-CoV in 2008 

by Verschueren [84], with published protein databank structures. For secondary clusters of 

hits (e.g., cermn & virtualflow; lower left quadrant of Nsp5 scatter plot in Figure S10), we 

could not identify similar functional groups or motifs in the proximal prior art compounds. 

The S hits (kyuken and deeplab) and Nsp12 hit compound (imolecule) do not reside in the 

neighborhood of prior art compounds which is why they can be considered as highly novel 

(Figure S10). For targets other than Nsp5, too few hits were found to draw statistically 

relevant conclusions on cluster size or novelty.
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2.6 | Experimental testing of candidates

The synthesized (878) compounds were tested for their inhibitory activity or binding activity 

to SARS-CoV-2 targets using various assays and X-Ray crystallography. Protease cleavage 

assays (Nsp5, TMPRSS2, Nsp3) have been performed by the MIT-Broad Foundry to 

determine activity. Microscale thermophoresis (MST) assays for RdRp (Nsp12 domain), N, 

and S proteins have been done by Nanotemper GmbH. Details on the assays can be found in 

Supporting Information Section 4. In this section, we detail salient experimental issues that 

were encountered in the assay development, as many (especially the binding assays using 

MST) were not yet available or described in the literature. Initially, compound sets were 

only tested versus their virtually predicted protein target, but having an available chemical 

library, some assays were performed for all compounds (irrespective of the predicted target).

2.6.1 | Protease cleavage assays—Protease cleavage tests were done for the 

compound sets of Nsp5, Nsp3, and TMPRSS2. In the assay, a peptide FRET (Förster 

resonance energy transfer) substrate is cleaved by the protease, which results in an increase 

of fluorescence intensity. The increase in fluorescence intensity over time is proportional 

to the rate constant of the protease, and by adding compounds at different concentrations, 

inhibitors can be identified. As positive controls, GC376 (IC50=9.4 ± 2.5 nM) and GRL0617 

(IC50=2.8 ± 0.4 μM) were used for Nsp5 and Nsp3, respectively [85, 86] (see Supporting 

Information Section 4). A first brute-force screening at 100 μM showed a single compound 

for each of the three proteases (see red bars in Figure 4a–c). Those compounds were 

selected for dose-response curves, where their concentration was changed to calculate 

IC50 values (see Supporting Information Section 4). Nsp5-1 produced an atypical dose-

response, where activity was first enhanced by ~50% and then dropped to<50% at 100 μM 

concentration (Figure 4d), which hampered the calculation of the IC50. Nsp3-1 showed a 

classical inhibition with IC50=24.7 ± 3.7 μM (Figure 4f). In addition, from cell-based Nsp5 

assays (see section 2.6.2 below), 5 additional compounds were identified that did not make 

the<50% inhibition threshold, but were measured in dose-response using the same cleavage 

assay (Figure 4e). These measurements identified the IC50 of Nsp5-2 ~288 μM, whereas 

the remaining compounds Nsp5-3 to Nsp5-6 had much higher IC50’s that could not be 

determined.

2.6.2 | Nsp5 protease cleavage assays in cells—The Pasteur Institute in Paris had 

previously set up a cell-based Nsp5 protease assay [87], in which cleavage of a reporter 

Rev-Nluc protein by Nsp5 decreases the luminescence signal. In the presence of an inhibitor, 

the luminescence signal is restored (see Supporting Information Section 4.3).

Here we show the data in terms of %restored activity, where no inhibition is 0% and full 

inhibition is 100%. GC376 was used as a control inhibitor and yielded an IC50=4.2 ± 1.0 

μM. Out of all 878 compounds screened, 6 compounds had activity in the high micromolar 

range, while Nsp5-3 was the best inhibitor, albeit a weak one with IC50=37 ± 6 μM (see 

Figure 5). Interestingly, the same compound had given negligible activity in the (cell free) 

Nsp5 cleavage assays (see Figure 4e, purple line).
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2.6.3 | Binding assays to N, RdRp (Nsp12 domain), S—Microscale 

thermophoresis emerged as a high-throughput label-free method to evaluate binding 

constants and is extensively used in the pharmaceutical industry and in CROs [88, 89]. 

Therefore, this method was used for the three protein targets without protease activity, i.e., 

S, RdRp (Nsp12 domain), and N. Various constructs of whole-length or subdomains of the 

targets are available from commercial sources. In this section, we will describe the assay 

development, the choice of positive controls (that are absolutely needed for MST), and 

binding outcomes.

For S, it was decided to use the stabilized trimer (R683 A, R685 A, K986P, V987P), 

since participating teams had also modeled trimer-specific or cryptic binding sites, other 

than the (classical) RBD domain. As a positive control, the natural choice was the Ace2 

(human receptor) protein. Surprisingly, recombinantly expressed Ace2 did not show binding 

to S (stabilized trimer), we suspect due to improper folding of the construct. Fortunately, 

His-tagged Ace2 did provide good binding curves with a KD of 4.25 ± 1.52 nM (over 

6 runs performed during the 3 days of assay measurements, see Supporting Information 

Section 4.2.3). This is stronger binding than previous measurements performed by Surface 

Plasmon Resonance [90] that showed 94.6 ± 6.5 nM for (monomeric) SARS-CoV-2-S1, 

but can be explained by multivalency of the trimer as shown by Kruse et al. [91]. All 152 

compounds were first analyzed using 8-point dilution series between 50 nM and 100 μM 

concentrations, revealing 7 compounds to be potential binders. The latter 7 were measured 

in triplicate 12-point dilutions from 0.2 nM to 200 μM, and 3 compounds were identified as 

high micromolar binders: S-1, S-2 and S-3 (see Figure 6 and Table 3 above).

For RdRp, we were unable to obtain the stable trimeric complex of Nsp7/8/12 (see 

Supporting Information Section 4.2.1), and therefore we used only the Nsp12 subdomain. 

As a first control, we tried Remdesivir metabolite GS-443902, but could not detect 

binding. This is because the latter compound inserts itself into the RNA chain during 

polymerization, and therefore inhibits RdRp function, but it does not bind efficiently to 

Nsp12. Instead, Suramin was used as a control with a determined KD=827 ± 306 nM 

(over 4 triplicate measurements). Dilution (8-point) series from 0.5 nM to 250 μM were 

performed on 147 predicted compounds, and after pre-selection of 8 compounds and further 

triplicate 12-point experiments, 2 high-micromolar binders were identified: Nsp12-1 and 

Nsp12-2 (see Table 3 below). Three additional compounds led to Nsp12 aggregation, so no 

KD could be determined (Nc1nnnn1-c1cccc(c1)C(=O)NCc1cc(F)ccc1Oc1ccc(F)c-c(Cl)c1, 

Cc1ccc(NC(=O)c2ccc(nc2O)C2CC2)c(O)c1, and FC(F)(F)c1ccc2nnc(CNC(=O)c3ccc4 

C(=O)N5CCC-CCC5=Nc4c3)n2c1).

For N, we used full-length nucleocapsid (see Supporting Information Section 4.2.2), and 

used nanobodies developed to bind to the N- and C-terminal domains. A total of 119 

compounds were analyzed in 8-point and 12-point dilution assays between 45 nM and 100 

μM. However, it was found that N would show a drop in normalized fluorescence intensity 

Fnorm upon the addition of 1–5% of DMSO (dimethylsulfoxide, see also Figure S12), likely 

due to slow polymerization and sedimentation of N over time. This made it impossible to 

determine KD values, and the assay development had to be abandoned.
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2.6.4 | X-ray structures—In collaboration with the Diamond light source (DLS), 

crystallization and X-ray diffraction experiments were carried out on Nsp5 and Nsp3 

compounds. For Nsp5, 148 compounds were soaked at 2 mM and measured by 

synchrotron X-ray diffraction, which identified 14 potential hits all from the benzotriazolyl 

acetamide family: Nsp5-1 and Nsp5-7 to Nsp5-19. Comparison to the DLS database 

(accessible via https://fragalysis.diamond.ac.uk/viewer/react/preview/target/Mpro, use tag 

‘JEDI - Benzotriazole’) showed that several other benzotriazoles had previously been 

identified for Nsp5. Some representative structures are shown in Figure 7 below. For Nsp3 

we found two compounds that could be resolved (also shown in Figure 7).

2.6.5 | Viral reduction assays—For a selection of compounds we performed whole-

cell live-virus reduction assays using either Vero-TMPRSS2 or HeLa-ACE2 cells (see 

Supporting Information Section 4.3.3). In Figure 8 below, the dose-response curves of % 

infection and cell viability are shown. Remdesivir was used as a positive control with 

an IC50=347 nM (95% confidence interval CI is 161–533 nM), which is in agreement 

with previous reports [92]. Most of the compounds show no significant reduction of 

viral replication in this assay. Nsp5-3 gave significant viral reduction with IC50=9.41 μM 

(95% confidence interval is 5.32–19.27), but had cytotoxicity CC50=19.16 μM (95% CI is 

7.191–70.01), and we cannot exclude that the latter is responsible for the viral replication 

reduction.

We have summarized the experimental findings of the previous sections in Table 3 (above). 

We found 6 compounds that had a quantifiable binding interaction S(3), Nsp3(1), Nsp12(2), 

of which only the compound for Nsp3-1 showed in vitro (cell-free) protease cleavage 

activity. The latter compound shows structural similarity to previously found SARS PLpro 

inhibitors derived from GRL-0617 [95, 96]. In live cell Nsp5 assays, 6 compounds showed 

weak inhibition, with the best one Nsp5-3 with IC50=37 ± 6 μM. The same compound 

also showed viral reduction in whole-cell live-virus reduction assays, with an IC50=9.41 μM 

(95% CI is 5.32–19.27), but we cannot exclude that inhibition is a side-effect of cytotoxicity. 

Further studies will be needed to chemically improve Nsp5-3 to increase anti-viral activity.

3 | DISCUSSION

The COVID-19 pandemic has given an unprecedented push to scientists in academia and 

industry to try their hand at drug discovery. We have seen this during our “Billion molecules 

against COVID-19 challenge”, where even private individuals initially participated (but 

did not pass our internal peer-review at the report submission stage). Some novice teams 

were allowed to continue and submitted their compound lists, but not taking into account 

synthetic feasibility or ADME caused them to not have physical compounds made. We 

realized during the challenge that mistakes can easily be made when starting from 

questionable quality 3D protein structures from the Protein Databank (PDB). Fortunately, 

we had help from Insidecorona.net to point the teams to the best quality PDB entries 

for the protein targets the teams were working on. Since the challenge was organized as 

a winner-takes-all competition, the initial communication and sharing of results among 

teams was limited. The organizing team (coordinated by the last author) arranged 

the synthesis of compounds and all experimental studies. In hindsight, it would have 
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been better to have a fully open communication with the teams immediately after the 

compound list submissions (July 2020). This would have further strengthened collaboration 

between protein crystallographers, computational scientists, and experimentalists. Overall, 

the challenge enhanced bridging of research fields, and accelerated communication (versus 

communication via peer-reviewed publications more traditionally).

In addition, the teams were free to choose the protein target they deemed most promising, 

and 6 final targets were selected by the organizing team. The experimental studies needed 

to validate each compound therefore took considerable effort, funding, and time (~2 years). 

An iterative approach on fewer targets would have likely been better and faster. With the 

experimental protocols in place, subsequent rounds of predicted compounds could likely be 

screened in<3 months, and could have served as input for additional computational rounds. 

Screening a library of off-the-shelf compounds, or even-better, known drugs [97] would also 

have accelerated things (on-demand synthesis is not as fast and costs significantly more; new 

molecules will require going through all clinical phases).

The computational teams chose approaches from a vast variety of different methods (see 

Figure 2) and therefore considered diverse orthogonal approaches. However, from today’s 

perspective few- (and zero-) shot methods, developed more recently, would have been an 

intuitive fit [98–105].

An important aspect of this challenge was its emphasis on the exploration of billions of 

candidate compounds for activity against the target proteins. This deviates from a more 

common strategy of focusing on either known drugs (e.g. DrugBank [106], DrugCentral 

[107]) or bio-like molecules (e.g. ChEMBL [108], SWEETLEAD [46], GEOM [109]) in 

that it explores a massive space of synthesizable molecules that may bear little recognized 

similarity to known bioactive compounds. While known drugs carry the benefit of faster 

path to clinical distribution, and bio-like molecules are generally perceived as being 

more likely to successfully translate to clinical relevance, there is reason to expect that 

exploration of a much larger set of candidates may yield drugs that are unlike others 

identified previously. For example, Lyu et al. [110] observe that billion-scale libraries 

are dramatically diminished for bio-like molecules relative to more focused libraries, yet 

still contain many experimentally-confirmed actives, as well as thousands of high-ranking 

molecules in docking assays. This observation justifies continued emphasis on development 

of methods for computationally screening billion-scale libraries. We also note that de novo 

generation of candidate molecules may offer a viable path to discovery.

Whereas consensus scoring has long been established in docking methods [111], extending 

it to other computational methods had not previously been considered until the current 

work. The discovered compounds have weak micromolar affinities, thus requiring further 

hit-to-lead development. Overall, the most potent compound Nsp5-3 found has an IC50=9.41 

μM (95% CI is 5.32–19.27) in live cell assays, but with significant cytotoxicity that would 

need to be further addressed. The most prominent family was the benzotriazolyl acetamide 

family (Figure 3, Nsp5 dashed box), which has been found in other studies [112, 113] likely 

because several teams used ML methods starting from similar training sets, combined with 

the fact that benzotriazoles in general can easily be synthesized using ‘click chemistry’ 
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[114], which is high-yielding and fast, and thus preferred by the CRO that performed the 

chemical synthesis. In addition, the CRO performed a proprietary synthetic feasibility and 

ADME screening that introduced a bias in the number of compounds that were eventually 

synthesized for each individual team.

In addition to the evaluation in this paper, some teams independently validated their 

predictions (see Supporting Information Section 3). Pharm.ai compared their top 100 

predictions for Nsp5 against public data published after the competition deadline and 

obtained a hit rate of 17% on a highly diverse set of scaffolds. An interaction-based 

drug discovery screen explains known SARS-CoV-2 inhibitors and predicts new compound 

scaffolds [115]. The sarstrooper team experimentally tested top-ranked compounds they had 

submitted and found 7 compounds with IC50<10 μM (Mukherjee et al., in preparation).

Overall, we are convinced that an open communication (Open access/Open data/Open 

source [37]) is of the greatest importance, as previously advocated [40–42, 116]. For 

example, leads from the COVID Moonshot have recently been advanced by others to find a 

broad-spectrum nM inhibitor for SARS-CoV-2 [113]. The latter study [113], and the recent 

success story of Ensitrelvir (Xocava) from ultra-large computational approaches demonstrate 

the soundness of the approach [17]. To further accelerate the response to future pandemics, 

large and chemical diverse government-managed compound libraries should be readily 

available (such as the “Chimiothèque Nationale” [117] containing 80000 compounds and 

15000 natural extracts), EU-OPENSCREEN’s unique compound collections containing over 

96000 compounds [118], NCATS library containing over 10000 compounds including about 

3000 drugs [119], to provide the first experimental activity/structural data, immediately and 

publicly shared, needed for computational researchers as a starting point.

4 | CONCLUSIONS

Using a crowd-sourced approach, we performed the hit-finding stage of (anti-viral) 

drug discovery using a wide range of computational approaches that were bundled 

using a consensus approach. Many participating teams chose docking- or machine 

learning-based computational methods, for which little data was available at the start 

of the project (May 2020). The communication between different fields, e.g. protein 

crystallization, computational methods, and wet-lab experiments, was suboptimal and should 

be improved by direct communication and collaboration (vs. ‘communication via the 

scientific literature’). This would ensure that critical know-how that is easily overlooked 

(or not explicitly written down) in papers is efficiently transferred. Overall, the pandemic has 

accelerated the breaking down of silos [120] between research fields, but more is needed to 

act quicker to respond to future pandemics [121].
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FIGURE 1. 
Overview of the main stages of the Billion Molecules Against COVID-19 Challenge.
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FIGURE 2. 
a) Scatterplots in t-SNE coordinates which show the Nsp5 experimental hits (colored dots) 

and the submitted compounds by the teams (black dots for single team in each panel, gray 

dots for all submitted compounds by all teams). For t-SNE plots for each individual team see 

Figure S9a,b and Supporting Information Section 3. b) Overview of computational methods 

used by the different teams. Numbers correspond to participating teams (see Table 1).
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FIGURE 3. 
Chemical structures of 27 hit compounds that bind to one of the protein targets or have 

biological activity. Molecules are grouped with respect to the experimental protein target 

they were found to have activity, which is not always the one that was initially predicted 

by the teams. The benzotriazolyl acetamide family (14 compounds) of Nsp5 is shown in the 

dashed box.
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FIGURE 4. 
Overview of protease cleavage assays. a–c) relative activity over triplicate experiments at a 

fixed compound concentration of 100 μM for Nsp5, Nsp3 and TMPRSS2, respectively. Red 

bars show compounds that reduce cleavage (relative) activity by more than 50%. Asterisks 

show highly fluorescent compounds that could not be analyzed. Not all compound labels are 

listed for clarity. d–f) dose-response curves at different compound concentrations. Solid lines 

in panel e–f show fits, panel d to guide the eye.
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FIGURE 5. 
Dose-response curves of compounds in cell-based Nsp5 protease assay. IC50 values are also 

in Table 3 below. Solid line: curve fit result. Dashed lines: 95% confidence interval. Data are 

expressed as the mean ± standard deviation of 3 independent experiments each performed 

in triplicate. Green triangles show positive controls for inhibitor GC376 (see Supporting 

Information section 4.3.2). Cytotoxicity was detected above 20 μM, so higher concentrations 

were excluded.
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FIGURE 6. 
Binding curves of S compounds using Microscale thermophoresis performed in triplicate. 

Error bars show standard deviations. The gray region shows the KD for positive control 

Ace2. See Supporting Information Section 4.2 for details on assay conditions.
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FIGURE 7. 
Crystal structures with examples of the Nsp5 benzotriazolyl acetamide family and Nsp3 

(macrodomain) binders. The compounds are shown with purple sticks and balls and the 

PanDDA event map is shown as an orange mesh. PDB files can be downloaded from https://

github.com/hermanslab/COVID-19.
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FIGURE 8. 
Viral reduction assays of compounds found by the teams compared to Remdesivir as the 

control. Error bars show standard deviations over triplicate measurements. An IC50 value 

could only be determined for Nsp5–3.
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