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Lipids to the Rescue in Pulmonary Fibrosis: Biosynthesis,
Bioenergetics, or Epigenetics?

Lipids are essential to the homeostatic structure and function of
cells, tissues, and organs. These essential roles of lipids include
biosynthesis of biological membranes (permitting organelle
compartmentalization), bioenergetics (as an efficient fuel source), and
as potent signaling intermediates, both intracellular and extracellular;
uniquely, in the lung, lipids are indispensable for surfactant synthesis
by type 2 alveolar epithelial cells (AEC2s). AECs serve as facultative
stem cells of the alveolus, and their dysfunction is now well
recognized as a pivotal event in the pathogenesis of fibrotic lung
diseases.

Over the past decade, although there has been growing
recognition that lipid metabolism plays an important role in the
pathogenesis of lung fibrosis, as reviewed in a recent perspective
published online ahead of print in the Journal (1), there remains
uncertainty regarding the precise molecular mechanisms (Figure 1).
For example, although some studies support augmentation of lipid
biosynthetic pathways as serving protective functions against lung
fibrosis (2–5), others suggest that particular lipids may be harmful (6, 7).
Such differences may be accounted for by differences in the specific
lipid species involved, target cells, compartmentalized actions (at both
organ-specific and subcellular levels), and experimental protocols.

In this issue of the Journal, Liang and colleagues (pp. 242–253)
establish a correlation between lipid metabolism and AEC2
dysfunction in the context of experimental injury to a murine aging
lung and in idiopathic pulmonary fibrosis (IPF) (8). Using flow
cytometry, they isolated AEC2s from both IPF and healthy human
donor lungs and subjected them to single-cell RNA sequencing
analysis to explore genes associated with lipid metabolism. These
studies revealed a downregulation of several genes related to fatty acid
biosynthesis (e.g., CHKA, SCD, FASN, CAT, ACOXL, ELOVL6,
LPCAT1, LPCAT3) in AEC2s of subjects with IPF compared with
healthy human control subjects. Furthermore, genes associated with
fatty acid b-oxidation (e.g., ACAT1, ACSL) were also downregulated
in IPF AEC2 cells. In addition, genes involved in lipid uptake (e.g.,
CD36, SLC27A4, SLC27A5) and lipid storage (e.g., PLIN2, MGLL,
HILPDA) were found to be downregulated in IPF AEC2s compared
with healthy counterparts. Immunofluorescence experiments
validated the findings of the single-cell RNA sequencing study,
collectively indicating decreased lipid concentrations in the AEC2s
of subjects with IPF.

To corroborate their findings in an animal model, the
researchers studied an aging mouse model with bleomycin-induced
lung injury and three-dimensional (3D) organoids using AEC2s and

lung fibroblasts. These in vivo and ex vivomodels consistently
demonstrated a decrease in AEC2 lipid content in aged, injured mice,
as observed in IPF AECs. Interestingly, 3D organoid models of
human andmouse AECs supplemented with a lower concentration
(2%) of exogenous lipids promoted renewal in youngmice but not in
older ones. However, a higher lipid concentration (4%) facilitated
renewal in both young and aged AEC2 organoids. This enhanced
regenerative capacity was evidenced by increased colony size, AEC2
proliferation rate, elevated expression of AEC1marker genes (AGER,
AQP5, T1a), and AEC2-related surfactant proteins in lipid-treated
organoids compared with control animals. Furthermore, the
researchers used a PPARg agonist (rosiglitazone) and antagonist
(GW9662) in the human organoid model to demonstrate that
rosiglitazone augmented colony formation of AEC2s from healthy
lungs, whereas GW9662 decreased it. Notably, treatment with 10 μM
rosiglitazone significantly increased colony formation of AEC2s from
IPF lungs compared with control lungs.

The studies by Liang and colleagues (8) advance the concept that
abnormal lipid metabolism contributes to AEC2 dysfunction, a
hallmark of IPF. An exciting aspect of this work is the demonstration
that regenerative capacity of aged AEC2s in the 3D organoid model
can be rejuvenated with lipid supplementation or with PPARg
agonists. Although subpopulations of fibroblasts are known to
support the AEC2 stem cell niche (9), the role of lipids in their
interactions may be complex. For example, a recent study
showed that exosomes from IPF lungs carry micro-RNAs that
inhibit the de novo fatty acid synthesis pathway in AEC2s (4, 10).
In addition, AEC2-supporting fibroblasts have been known to
transfer lipids to adjacent AEC2s to support surfactant production
(11, 12), and the aging of the mesenchyme itself may contribute to
AEC2 dysfunction (10, 13). Thus, defects in cell autonomous lipid
metabolism or in niche-supporting cells such as fibroblasts and
macrophages (14) may cooperatively account for the AEC2
dysfunction in IPF.

Future investigations must clarify whether (and how) specific
variations in lipid species and their compartmentalized actions alter
AEC2 function. The metabolic flux of lipids controlled by dynamic
changes in lipid biosynthesis, storage, transport, and consumption
(via fatty acid oxidation) in AEC2s and their niche-supporting cells
remains unclear. Although the “rescue” studies with lipid
supplementation promises to open up new therapeutic strategies, it
would be important to decipher if the mechanistic basis for more
robust regenerative responses is due to lipid support of membrane
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biosynthesis (critical for proliferating cells), cellular bioenergetics
(which wanes with aging), or epigenetic programs (regulated by lipid
signaling intermediates). It could not simply be due to more
surfactant synthesis, could it?�
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