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Abstract

Idiopathic pulmonary fibrosis (IPF) is an aging-associated
interstitial lung disease resulting from repeated epithelial injury
and inadequate epithelial repair. Alveolar type II cells (AEC2s)
are progenitor cells that maintain epithelial homeostasis and
repair the lung after injury. In the current study, we assessed lipid
metabolism in AEC2s from human lungs of patients with IPF
and healthy donors, as well as AEC2s from bleomycin-injured
young and old mice. Through single-cell RNA sequencing, we
observed that lipid metabolism–related genes were
downregulated in IPF AEC2s and bleomycin-injured mouse
AEC2s. Aging aggravated this decrease and hindered recovery of
lipid metabolism gene expression in AEC2s after bleomycin
injury. Pathway analyses revealed downregulation of genes
related to lipid biosynthesis and fatty acid b-oxidation in AEC2s
from IPF lungs and bleomycin-injured, old mouse lungs

compared with the respective controls. We confirmed decreased
cellular lipid content in AEC2s from IPF lungs and bleomycin-
injured, old mouse lungs using immunofluorescence staining and
flow cytometry. Futhermore, we show that lipid metabolism was
associated with AEC2 progenitor function. Lipid supplementation
and PPARg (peroxisome proliferator activated receptor g) activation
promoted progenitor renewal capacity of both human and mouse
AEC2s in three-dimensional organoid cultures. Lipid
supplementation also increased AEC2 proliferation and expression
of SFTPC in AEC2s. In summary, we identified a lipid metabolism
deficiency in AEC2s from lungs of patients with IPF and
bleomycin-injured old mice. Restoration of lipid metabolism
homeostasis in AEC2s might promote AEC2 progenitor function
and offer new opportunities for therapeutic approaches to IPF.
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Idiopathic pulmonary fibrosis (IPF) is an
aging-related, fatal form of interstitial lung
disease. IPF results from sustained epithelial
injury and inadequate alveolar epithelial
repair that leads to excessive fibroblast
activation and distortion of the normal lung
architecture (1–5). Type 2 alveolar epithelial
cells (AEC2s) function as progenitor cells

that maintain epithelial homeostasis and
repair damaged epithelium after lung injury
(3, 6–9). AEC2 progenitor cell exhaustion
and decreased renewal capacity of AEC2s in
IPF lungs have been recognized as a causal
event for the disease (3, 10).

Aging is a critical risk factor in IPF
(11–13). The incidence, prevalence, and

mortality of IPF increase with age (14, 15).
We know that aging delays lung repair (16).
Although phenotypes of cellular aging in
AEC2s have been well described in IPF
(17–21), the mechanisms of AEC2 aging are
less clear. We recently reported that
synergistic effects of aging and AEC2 injury
promote lung fibrosis (22).
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Lipid metabolism becomes dysfunctional
with aging (23–25). Furthermore,
dysregulated lung lipid metabolism is
involved in multiple pulmonary diseases,
including IPF (5, 26–29). PPARg
(peroxisome proliferator activated receptor
g) plays a role in mediating myofibroblast
differentiation (30). A PPARg ligand
inhibited TGF-b–stimulated differentiation
of human lung fibroblasts to myofibroblasts
(31) and bleomycin-induced lung
inflammation and fibrosis (32). However,
the demonstration of the lipid metabolism
in AEC2 progenitor function is scarce.
AEC2s are the most active lipid metabolic
cells in the lung, with tightly regulated
surfactant biosynthesis and recycling
(26, 33, 34). Altered lipid metabolism and
disrupted surfactant homeostasis have been
reported in lung fibrosis (24, 26, 27, 33,
35, 36). Single-cell RNA sequencing
(scRNA-seq) studies showed downregulation
of multiple lipid metabolic pathways in
whole lung and AEC2s from patients with
IPF (37). Inhibition of the lipid synthesis
enzyme SCD1 (stearoyl-Coenzyme A
desaturase 1) induces endoplasmic
reticulum stress in AEC2s and promotes
fibrotic responses to injury (38). Elovl6
(elongation of long-chain fatty acids family
member 6) was found to be downregulated
after bleomycin lung injury and in IPF lungs
(39). Mice deficient in Elovl6 exhibited a
severe fibroproliferative response and
derangement of fatty acid profiles after
bleomycin injury compared with wild-type
mice (39). Targeted deletion of the lipid
synthesis enzyme Fasn in mouse AEC2s
exacerbated bleomycin-induced lung
fibrosis (40). These studies highlighted the
crucial role of lipid metabolism in lung
fibrosis. Lipid metabolic dysregulation has
been recognized as a new player
contributing to lung fibrosis. Therefore, we
undertook a comprehensive analysis of lipid
metabolism in AEC2s in the context of both
aging and fibrotic lung injury.

In the current study, we performed
scRNA-seq of flow cytometry–enriched lung
epithelial cells and systematically investigated
lipid metabolism in AEC2s from IPF and
healthy donor lungs, as well as AEC2s from
young and old mouse lungs under
homeostasis and after experimental fibrotic
lung injury. We identified downregulated
expression of lipid metabolism–related genes
in AEC2s from lungs of patients with IPF
and from bleomycin-injured old mouse
lungs. Aging aggravated this decrease and

hindered recovery of lipid metabolism–related
gene expression after bleomycin treatment.
We confirmed decreased cellular lipid in
AEC2s from bleomycin-injured old
mouse lungs and IPF lungs with
immunofluorescence staining and flow
cytometry. Most importantly, our data
showed that impaired lipid metabolism was
associated with AEC2 progenitor cell
failure. Lipid supplementation and PPARg
activation promoted progenitor renewal
capacity of both human and mouse AEC2s
in three-dimensional (3D) organoid
cultures, whereas inhibition of lipid
metabolism by a PPARg antagonist
suppressed AEC2 renewal.

Methods

See the data supplement for detailed
materials andmethods.

Study Approvals
The use of human tissues for research was
approved by the Institutional Review Board
(IRB) of Cedars-Sinai Medical Center and
was in accordance with the guidelines
outlined by the IRB (IRB number:
Pro00032727). Informed consent was
obtained from each subject. Mouse
experiments were conducted under the
guidance of the Cedars-Sinai Medical Center
Institutional Animal Care and Use
Committee (IACUC008529) in accordance
with institutional and regulatory guidelines.

Mouse Lung Dissociation and
Flow Cytometry
Ten- to 12-week-old young mice and 20-
to 24-month-old mice were used for
experiments. Mouse lung tissue dissociation
and single-cell isolation were described
previously (3, 10). Mouse AEC2s were gated
as EpCAM1CD312CD342CD452CD242

Sca-12 population for flow sorting. Detailed
methods can be found in the data supplement.

Human Lung Dissociation and
Flow Cytometry
Human lung dissociation and single-cell
isolation were performed as described
previously (3, 41). Human AEC2s were gated
as EpCAM1HTII-2801CD312CD452 cells
in flow cytometry analysis and AEC2 sorting.
Staining of PLIN2 (perilipin 2) and lipids in
gated AEC2s were analyzed with FlowJo
software. Detailed methods can be found in
the data supplement.

Immunofluorescence of Human and
Mouse Lung Sections
Cryosections and immunostaining followed
standard protocols. Human lung sections
were stained with mouse anti–HTII-280 IgM
monoclonal antibody, andmouse lung
sections were stained with rabbit anti-
proSPC (catalog no. AB3786, Sigma-Aldrich)
for AEC2s followed by secondary antibody.
Lipid droplets were stained with LipidSpot
(Biotium catalog no. 70069).

scRNA-Seq Data Analysis
The datasets of scRNA-seq of mouse and
human epithelial cells are deposited under
GSE157995 and GSE157996, respectively,
from our laboratory (22, 41). Data analysis
was performed as previously described
(10, 22, 41, 42). Other datasets were
additionally used: GSE122960 (37),
GSE132771 (43), GSE132915 (19),
GSE135893 (44), and GSE128033 (45).

3D Matrigel Cultures of Human and
Mouse AEC2s
Flow-sorted human or mouse AEC2s
(33 103) were cultured in a
Matrigel/medium (1:1) mixture in the
presence of lung fibroblast MLg2908 cells
(23 105, catalog CCL-206, ATCC) as we
described previously (3, 6, 46). The cells were
cultured with 2% or 4% (vol/vol) chemically
defined lipid mixture 1 (catalog no. L0288)
andmedium control or cultured with 10μM
rosiglitazone (RGZ) and 10μMGW9662.
The same volume of DMSOwas used as
control for RGZ and GW9662 treatment.

Statistics
The statistical difference between groups in
the bioinformatics analysis was calculated
using theWilcoxon signed-rank test. For the
scRNA-seq data, the lowest P values
calculated in Seurat were P, 2.23 10216.
For cell treatment data, the statistical
difference between groups was calculated
using Prism (version 9.5.0, GraphPad). Data
are expressed as the mean6 SEM.
Differences in measured variables between
experimental and control groups were
assessed by using unpaired two-sided
Student’s t tests. One-way ANOVA followed
by Bonferroni’s multiple comparison test was
used for multiple comparisons. Results were
considered statistically significant at
P, 0.05.
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Figure 1. Dysregulated lipid metabolism of idiopathic pulmonary fibrosis (IPF) alveolar type II cells (AEC2s). (A) Activation scores of fatty acid
biosynthesis (FAB), phosphatidylcholine biosynthesis (PCB), b-oxidation (BO), and surfactant homeostasis (SH) of AEC2s from healthy and IPF
lungs (red, healthy; blue, IPF) analyzed from dataset GSE157996. (B and C) Violin plots of expression of lipid metabolism–related genes (B) and

ORIGINAL RESEARCH

244 American Journal of Respiratory Cell and Molecular Biology Volume 71 Number 2 | August 2024



Results

Downregulated Lipid Metabolism
Gene Expression in IPF AEC2s
To gain insights into lipid metabolism in
AEC2s from IPF lungs, we analyzed lipid
metabolism–related gene expression in
AEC2s in our scRNA-seq dataset
(GSE157996) of freshly isolated flow
cytometry–enriched epithelial cells
(Lin2EPCAM1 cells) from six healthy donor
and six IPF lungs (10, 41). IPF AEC2s
showed dysregulated lipid biosynthesis and
metabolism, as evidenced by lower activation
scores of fatty acid biosynthesis,
phosphatidylcholine biosynthesis, and
surfactant homeostasis (Figure 1A). Multiple
lipid biosynthesis and metabolism related
genes, including CHKA, SCD, FASN, CAT,
ACOXL, ELOVL6, LPCAT1, and LPCAT3,
were downregulated in IPF AEC2s compared
with healthy AEC2s (Figure 1B). At the same
time, the expression of genes for fatty acid
b-oxidation enzymes, includingACAT1 and
multipleACSL genes, was all downregulated
in IPF AEC2s (Figure 1C). There were fewer
CPT1B- and CPT1C-expressing cells in IPF
AEC2s compared with healthy AEC2s (see
Figure E1A in the data supplement). IPF
AEC2s showed a lower fatty acid b-oxidation
score relative to healthy AEC2s (Figure 1A).
The expression levels of the genes for lipid
droplet, including PLIN2 (also known as
adipose differentiation-related protein, ADRP)
(Figure 1C),MGLL, andHILPDA (Figure
E1B), were lower in IPF AEC2s. The
expression of lipid uptake–related genes,
including CD36, SLC27A4, and SLC27A5,
were also significantly decreased in IPF AEC2s
compared with healthy AEC2s (Figure 1C).

To confirm that our scRNA-seq
dataset aligned with the scRNA-seq datasets
generated by other studies, we analyzed
publicly available scRNA-seq datasets
GSE122960 (37), GSE132771 (43),
GSE132915 (19), GSE135893 (44), and
GSE128033 (45). We found that the same
group of lipid metabolism–related genes
downregulated in IPF AEC2s in our dataset
were also downregulated in IPF AEC2s
compared with those of healthy AEC2s in all
of the datasets analyzed. Here, we listed the

expression of FASN and PLIN2 as examples
that are significantly downregulated in IPF
AEC2s compared with those in healthy
AEC2s (Figure 1D).

Pathway analysis showed
downregulation of lipid biosynthesis
pathways including PPAR signaling,
PPARa/RXRa activation, fatty acid
b-oxidation I and fatty acid activation,
cholesterol biosynthesis pathways, and
superpathway of cholesterol biosynthesis in
IPF AEC2s, whereas triacylglycerol
biosynthesis was upregulated in IPF AEC2s
(Figure 1E). We further verified that the
cholesterol biosynthesis genes including
SQLE,DHCH7, FDFT1, andDHCR24were
downregulated in IPF AEC2s, whereas some
triacylglycerol biosynthesis-related genes,
includingMGAT2,MGAT5, TMX1, and
TMEM68, were with higher expression levels
in IPF AEC2s relative to healthy AEC2s
(Figures E1C and E1D). These data suggest
dysregulated lipid metabolism in IPF AEC2s.

Decreased Cellular Lipid Levels in
AEC2s from IPF Lungs
Next, we performed immunofluorescence
costaining of lipid droplets and the human
AEC2marker HTII-280 with lung sections
from IPF explants and healthy donors. We
showed that in healthy lungs, the majority of
HTII-2801AEC2s contain high levels of
lipid, whereas the lipid levels in AEC2s of IPF
lung sections were much lower (Figure 2A).
Some bright lipid staining appeared in IPF
lung sections, but they were not colocalized
with the AEC2marker HTII-280 (Figure
2A), suggesting it might be in other cell
types.

To further confirm the decreased lipid
levels in IPF AEC2s, we performed flow
cytometry analysis of AEC2s from patients
with IPF and healthy donor lungs stained
with AEC2markers and for lipid droplets or
an antibody against PLIN2. IPF AEC2s
showed a reduced percentage of lipid-high
cells (Figures 2B and 2C) and reduced PLIN2
expression (Figures 2D and 2E) compared
with healthy AEC2s. Human AEC2s were
gated as EPCAM1HTII2801CD312CD452,
as described in our previous studies (3, 10)
and as shown in Figure E2A.We also

showed decreased lipid staining of
SP-C1CD312CD452 cells from IPF lungs
relative to the cells from healthy lungs
(Figures E2B and E2C).

Lipid Replenishment Promoted
Human AEC2 Renewal
We next investigated if the lipid metabolic
dysregulation could contribute to the
impaired renewal capacities of IPF AEC2s.
As proof-of-principle, we applied exogenous
lipid treatments to 3D organoid cultures of
AEC2s from both healthy and IPF lungs.
Interestingly, 2% lipid treatment promoted
renewal capacity of AEC2s from both healthy
and IPF lungs (Figures 3A and 3B).
However, the effect of lipid treatment on
promoting AEC2 renewal was less significant
with IPF AEC2s than with healthy AEC2s
(Figures 3A and 3B). Lipid at 4%
concentration showed a better effect on
promoting colony-forming efficiency (CFE)
of IPF AEC2s than with 2% lipid (Figure 3C).
Lipid treatment increased 5-ethynyl-29-
deoxyuridine (EdU) incorporation in both
healthy and IPF AEC2s derived from 3D
cultured organoids, and the effect was less
significant with IPF AEC2s (Figures 3D and
3E). The flow cytometry gating strategy for
EdU-labeled cells is shown in Figure E3.
AEC2s with lipid treatment also showed
increased expression of SFTPC (Figure 3F)
and type I alveolar epithelial cell marker
genes, including PDPN, AGER, andAQP5,
by quantitative PCR (Figure 3G). These data
suggest lipid supplementation increased
AEC2 renewal. To further demonstrate the
role of lipid metabolism in regulating AEC2
progenitor function, we applied the PPARg
agonist RGZ and the PPARg antagonist
GW9662 to the 3D organoid cultures of
healthy AEC2s. Our results showed that
RGZ increased and GW9662 decreased
colony formation of AEC2s from healthy
lungs (Figure 3H). Importantly, RGZ treatment
was able to increase colony formation of
AEC2s from IPF lungs (Figure 3I).

Bleomycin Injury Downregulated Lipid
Metabolism Genes in Mouse AEC2s
Next, we investigated lipid metabolism in
AEC2s in the bleomycin lung injury mouse

Figure 1. (Continued ). fatty acid b-oxidation, lipid droplet, and lipid uptake–related genes (C) in healthy and IPF AEC2s (red, healthy; blue,
IPF). (D) Violin plots of expression of FASN and PLIN2 (perilipin 2) with published single-cell RNA sequencing (scRNA-seq) datasets. (E) IPA
pathway analysis of human AEC2s from IPF versus healthy lungs analyzed with dataset GSE157996. PPARg=peroxisome proliferator activated
receptor g. IPA= ingenuity pathway analysis.
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Figure 2. Decreased cellular lipid in AEC2s from lungs of patients with IPF. (A) Representative images of immunofluorescence costaining of
HTII-280 and lipid, DAPI for nuclear staining, of lung sections from lung explants of patients with IPF and healthy donors (healthy, n=3; IPF,
n=5). Arrows indicate AEC2s. Scale bars, 50mm. (B–E) Flow cytometry analysis of AEC2s isolated from healthy and IPF lungs. Lipid staining
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model. We analyzed lipid metabolism gene
expression in AEC2s with our mouse
epithelial scRNA-seq dataset, which
contains flow-sorted epithelial cells
(EpCAM1CD312CD342CD452) from
uninjured andmultiple time points of
bleomycin-injured mice from dataset
GSE157995 (10, 22, 41). Because Day 4
after bleomycin injury is a time point
with maximumAEC2 injury (3, 22), we
first analyzed the expression of lipid
metabolism–related genes at Day 4 after
bleomycin treatment and compared with
their baseline expression in AEC2s from
uninjured (Day 0) mice. Focusing on
lipid metabolism, we found multiple
lipid metabolism–related genes were
downregulated in AEC2s from Day 4
bleomycin-injured mouse lungs
(Figures 4A–4C). The downregulated genes
include genes related to lipid biosynthesis
andmetabolism:Apoe,Apoec1, Fapb5,
Soat1, Scd1, Scd2, Cat, Fasn,Acly, and
Elovl1 (Figure 4A); genes related to
phosphatidylcholine biosynthesis and
transport: Chka, Lpcat1, andAbca3 (Figure
4B); and genes encoding enzymes related to
fatty acid b-oxidation: Acsl4, Acsl5, and
Echs1 (Figure 4C).

Aging Aggravated Decreases and
Hindered Recovery of Lipid
Metabolism–Related Gene Expression
in AEC2s after Bleomycin Injury
To gain insight into how aging affects lipid
metabolic changes in AEC2s after lung
injury, we performed pathway analyses with
gene expression in AEC2s from bleomycin-
injured young and old mouse lungs
harvested at Day 4 after bleomycin treatment
from dataset GSE157995 (10, 22, 41). We
observed that multiple lipid biosynthesis
pathways, including the superpathway of
cholesterol biosynthesis, oleate biosynthesis
II, fatty acid b-oxidation I, LXR/RXR
activation, andmultiple cholesterol
biosynthesis pathways, were all
downregulated in AEC2s from old mice
relative to AEC2s from youngmice (Figure
5A). These data suggest that aging had an
important impact on lipid metabolism of
AEC2s after lung injury. We compared the
expression levels of lipid metabolism–related

Figure 2. (Continued ). (B) and the percentage of lipid1 cells in gated HTII-2801 AEC2s (C; n=3–4; *P,0.05 by unpaired Student’s t test).
PLIN2 (perilipin 2) staining (D) and the percentage of PLIN21 cells in gated HTII-2801AEC2s (E; n=3–5; **P,0.01 by unpaired Student’s
t test).

A B C

D E F

G

H I

Figure 3. Lipid promoted human AEC2 renewal. (A and B) CFE of flow-sorted AEC2s
(EpCAM1HTII-2801CD312CD452) from healthy (A) (n=6; ***P,0.001) and IPF lungs (B)
(n=3–4; **P, 0.01) in the absence or presence of 2% exogenous lipid. (C) CFE fold increase
of 2% and 4% lipid treatment versus medium of IPF AEC2s (n=3–4; **P,0.01). (D and E)
Percentage of 5-ethynyl-2’-deoxyuridine (EdU)1 AEC2s in in total AEC2s derived from three-
dimensional (3D) cultured organoids of healthy (D; n=3; *P,0.05) and IPF (E; n=3; P=0.08;
NS=not significant) AEC2s with and without 2% lipid. (F and G) Gene expression of SFTPC
(F), PDPN, AGER, and AQP5 (G) in healthy AEC2s from 3D cultured organoids with and without
2% lipid and assessed with RT-PCR (n=4–5; **P, 0.01). (H) CFE of healthy AEC2s treated with
rosiglitazone (RGZ) and GW9662 (n=4; ****P,0.0001 by one-way ANOVA). (I) CFE of IPF
AEC2s treated with RGZ (n=5; ****P, 0.0001). P values were calculated by b unpaired
Student’s t test (A–G and I) and by one-way ANOVA (H). CFE=colony-forming efficiency.

ORIGINAL RESEARCH

Liang, Huang, Liu, et al.: Lipid Deficiency in Alveolar Progenitor Cells in IPF 247



genes in AEC2s between young and old mice
at baseline (Day 0) and following a time
course after bleomycin injury and found that
the genes related to lipid metabolism were
highly expressed in AEC2s fromDay 0 intact
lungs, and their expression was sharply
decreased at Day 4 after bleomycin injury in
AEC2s from both young and old mice
(Figure 5B). AEC2s from Day 4 bleomycin-
injured old mice suffered a more severe
loss of expression of most of the genes
(Figure 5B). Interestingly, at Day 14 after
injury, the expression of lipid biosynthesis–
andmetabolism-related genes was largely
restored in AEC2s from youngmice.
However, the expression of lipid
metabolism–related genes continued
decreasing in AEC2s from old mouse lungs
compared with their baseline levels at Day 0.
At Day 28 after bleomycin injury, the
expression of these genes was not completely
restored in AEC2s from old mice as what we
observed in AEC2s from young mice (Figure
5B). Gene expression of phosphatidylcholine

conversion enzymes Chka and Lpcat1
showed the same pattern. Their expression
was significantly reduced in AEC2s from
old mouse lungs at Day 14 and Day 28
after injury relative to that of AEC2 from
young mice killed at the same time points
(Figure 5C).

Decrease of Cellular Lipid in AEC2s
from Bleomycin-injured Old Mice
To visualize the translational effects of
downregulation of lipid metabolism in
AEC2s from bleomycin-injured old mice, we
performed immunofluorescence studies for
cellular lipid in AEC2s. We challenged 10-
week-old mice and 20-month-old mice with
2.5U/kg bleomycin, harvested the lungs at
Day 14 after bleomycin treatment, and
performed immunofluorescence costaining
of pro-SPC and lipid with the lung sections.
We showed decreased lipid levels in AEC2s
from bleomycin-injured old mouse lungs
(Figures 6A and E4). The fluorescence
intensities of lipid staining in AEC2s in old

mouse lungs were much lower than those
of AEC2s in young mouse lung sections
(Figure 6B).

Lipid Replenishment Promoted Mouse
AEC2 Renewal in 3D
Organoid Cultures
We have reported that AEC2s from the lungs
of old mice showed decreased renewal
capacity compared with AEC2s from young
mice (10). We reasoned that lipid deficiency
might contribute to the decreased progenitor
function of old AEC2s. To test this
hypothesis, we applied exogenous lipid
treatment to 3D organoid cultures of AEC2s
isolated from both young and old mice. The
lower concentration (2%) of exogenous lipid
treatment was able to promote renewal of
AEC2s from young mice (Figure 7A) but
had no effect on AEC2s from old mice
(Figure 7B). A higher concentration (4%) of
lipid increased CFE of both young and old
mouse AEC2s (Figure 7C). Lipid treatment
increased the colony size (Figure 7D) and

Figure 4. Downregulated lipid metabolism gene expression in bleomycin-injured mouse AEC2s. (A–C) Violin plots of gene expression in AEC2s
from uninjured (D0) and Day 4 (D4) bleomycin-injured mice from dataset GSE157995. (A) Lipid biosynthesis– and metabolism-related genes. (B)
Genes related to phosphatidylcholine biosynthesis and transport. (C) Genes encoding enzymes related to fatty acid b-oxidation.
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proliferation of AEC2s from old mice, as
shown by increased EdU incorporation
(Figure 7E), in 3D organoid cultures. Next,
we isolated single cells from both young and
old mice and cultured the cells in control
medium or medium containing 4% lipid for
48hours before flow cytometry analysis.
Lipid treatment increased surfactant protein
C expression of gated AEC2s compared with

that of AEC2s cultured in control medium
(Figure 7F). Lipid treatment increased
expression of type I alveolar epithelial cell
marker genes, includingAger (Figure 7G)
andAqp5 (Figure 7H), in 3D cultured mouse
AEC2s. Immunofluorescence staining
showed lipid treatment increased T1a
expression in 3D cultured mouse AEC2
organoids (Figure 7I). These data indicated

that lipid sufficiency is crucial for surfactant
homeostasis and progenitor function of
AEC2s.

Discussion

Lipid metabolism has been suggested to
play a role in aging (23–25) and in multiple

A

B

C

Figure 5. Aging aggravated decreases and hindered recovery of lipid metabolism gene expression in AEC2s after bleomycin injury. (A) IPA
pathway analysis of mouse AEC2s from Day 4 bleomycin-injured lungs, old versus young from dataset GSE157995. (B) Violin plots of
expression of fatty acid biosynthesis– and metabolism-related genes in AEC2s grouped by age and days after injury (red, young; blue, old).
(C) Violin plots of expression of phosphatidylcholine biosynthesis–related genes of AEC2s grouped by age and days after injury (red, young;
blue, old). IPA= ingenuity pathway analysis.
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aging-associated lung diseases, including IPF
(5, 26–28). AEC2 dysfunction has been
recognized as a causal event for IPF (3, 10),
and the maintenance of AEC2 functions
relies on lipid metabolism homeostasis for
surfactant biosynthesis and recycling. In this
study, we assessed lipid metabolism changes
in AEC2s with aging and lung fibrosis. We
observed significant downregulation of lipid
metabolism–related gene expression in IPF
AEC2s compared with AEC2s from healthy

donor lungs by scRNA-seq data analysis. We
further confirmed lipid deficiency in IPF
AEC2s using immunofluorescence histology
and flow cytometry studies. With the lung
fibrosis mouse model, we found that
bleomycin injury decreased lipid metabolism
gene expression in AEC2s, and this effect was
aggravated with aging. Aging also hindered
the recovery of lipid metabolism gene
expression after bleomycin injury. Most
importantly, we demonstrated that lipid

deficiency impairs AEC2 progenitor renewal.
Lipid supplementation and PPARg
activation promoted AEC2 colony formation
in 3D organoid cultures.

Previous studies have suggested that
lipid metabolism plays important roles in
lung development and lung fibrosis. Mice
with Elovl1 deficiency died shortly after birth
because of epidermal barrier defects (47).
Mice with Apoe deletion showed impaired
alveologenesis, low lung function, and
shorter lifespan compared with wild-type
mice (48). Elovl6 was found downregulated
after bleomycin lung injury and in IPF lungs,
andmice with Elovl6 deficiency exhibited a
severe fibroproliferative response to
bleomycin injury compared with wild-type
mice (39). Inhibition of lipid biosynthesis by
targeted deletion of Fasn (fatty acid synthase)
in AEC2s and inhibitor of the lipid synthesis
enzyme SCD1 resulted in AEC2
mitochondrial dysfunction, epithelial cell
endoplasmic reticulum stress, and worsened
lung fibrosis after injury (38, 40). Enhancing
lipid synthesis by overexpressing Fasn in
mice or administration of an LXR agonist
in vivo attenuated lung fibrosis in mouse
lung fibrosis models (38, 40, 49). These
studies demonstrated the importance of lipid
metabolism in maintaining AEC2 function
and limiting lung fibrosis. However, most of
these studies focused on individual lipid
metabolism enzymes and did not provide
a complete picture of lipid metabolism
dysregulation in lung injury and fibrosis.
In this study, we comprehensively analyzed
lipid metabolism of AEC2s in IPF and in a
time course of the bleomycin injury mouse
model. We demonstrated that multiple lipid
metabolism genes and pathways were
downregulated after bleomycin-induced
lung injury and in IPF. Furthermore, we
analyzed and compared lipid metabolism
in AEC2s from young and old mice and
demonstrated that aging aggravated the
downregulation of lipid metabolism gene
expression and enhanced intracellular lipid
deficiency in AEC2s after bleomycin injury.
To the best of our knowledge, this is the first
study that comprehensively investigates
the effect of aging on lipid metabolism
dysregulation specifically in AEC2s with
lung fibrosis.

Lipid metabolism is complicated, as
different lipid species may have different
roles in both physiological conditions and in
diseases, whereas different cell types may also
react differently to lipids in vivo. The
detrimental effects of lipid metabolism in

A

B

Figure 6. Decreased cellular lipid in AEC2s from old and bleomycin-injured mouse lungs. (A)
Representative images of immunofluorescence costaining of proSP-C and lipid, DAPI for
nuclear staining, with lung sections from Day 14 bleomycin-treated young and old mice. Arrows
indicate representative AEC2s. Scale bars: A, (left panels) 100mm; (right panels) 20mm. (B) Lipid
staining intensity was quantified as ratio of red (lipid) intensity over blue (DAPI) intensity of each
cell measured (n=young 100, old 64; *P,0.05 by unpaired Student’s t test).
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lung injury and fibrosis have also been
reported. Accumulation of oxidized
phospholipids within alveolar macrophages
after bleomycin injury contributes to
fibrogenesis (50). A high-fat diet increased
bleomycin-induced lung fibrosis in mice by
modulating endoplasmic reticulum stress

(51). The plasma levels of lysophosphatidic
acid species were found to be positively
associated with IPF disease progress (52).
Lipid metabolismmight have diverse
biological functions in lung fibrosis under
different circumstances with different lipid
species, lipid metabolites, or in different cell

types (53). To make matters even more
complicated, lipid metabolism is also
associated with glucose metabolism and
mitochondrial function. Therefore, further
studies are needed to define the optimal
balance of lipid profiles with different cell
types in maintaining healthy lung function

A B C

D E F

G H I

Figure 7. Lipid supplementation promoted renewal capacity of mouse AEC2s. (A and B) CFE of AEC2s from young (A; n=6; **P, 0.01) and
old mice (B; n=3) with and without 2% lipid treatment. M=medium control. (C–E) 3D organoid cultures of AEC2s from 20-month-old tamoxifen-
treated SFTPC-CreER1 Rosa-Tomatofl/fl mice with and without 4% lipid treatment. CFE (C; n=3; ****P,0.0001); Sizes of colonies (D; n=20–23;
****P,0.0001), and the percentage of EdU1 AEC2s in gated total Tomato1 AEC2s derived from 3D cultured organoids by flow cytometry
(E; n=3; *P,0.05). (F) Freshly isolated lung single cells from 24-month-old mice were cultured with and without lipid supplementation for
48 hours. The percentage of SPChi cells in total gated AEC2s was determined by flow cytometry (n=3; *P, 0.05). (G and H) Expression levels
of Ager and Aqp5 in young mouse AEC2s after 3D culture with and without 2% lipid were assessed with RT-PCR (n=3; **P,0.01 and
*P, 0.05). P values were calculated by unpaired two-tailed Student’s t test. (I) Representative images of 3D organoids derived from young
mouse AEC2s and stained with SFTPC and T1a antibodies (n=6). Scale bars, 200mm.
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and the potential to limit fibrosis initiation
and progression.

Our data indicate that lipid deficiency is
one of themajor defects of AEC2s in IPF and
bleomycin-induced lung fibrosis in old mice.
We further tested the role of lipid metabolism
in AEC2 progenitor function with 3D
organoid cultures. Our results showed that the
lipid supplementation and PPARg activation
promoted renewal of both human andmouse
AEC2s, and PPARg antagonist inhibited
AEC2 colony formation. Previous studies
suggested that PPARg in lung epithelial cells
is essential for normal lung development (29),
and PPARg plays a role in myofibroblast
differentiation (31, 32). In this study, we
showed that PPARgmay play an important
role in epithelial repair in fibrotic lungs by
promoting AEC2 renewal. Themolecular
mechanisms that regulate lipid deficiency in

AEC2s in fibrotic lungs are not clear and need
further investigation. Our current findings
provide important new data resources to the
research community to further investigate
lipidmetabolism in lung fibrosis, lung
progenitor cell renewal, and aging.

In summary, we have performed
comprehensive scRNA-seq analysis of lung
alveolar epithelial cells in mice and humans
under homeostatic conditions, after lung
injury in both old and young mice, and in
human disease. We showed dysregulated
lipid metabolism–related gene expression in
injured mouse AEC2s and IPF AEC2s. The
aberrant metabolism of injured AEC2s was
manifested as decreased fatty acid and
phospholipid biosynthesis–related gene
expression in both injured mouse AEC2s and
IPF AEC2s, resulting in lipid deficiency in
AEC2s. Importantly, aging enhanced the

lipid deficiency in injured AEC2s. We then
linked lipid metabolism with AEC2
progenitor function and found that
enhancing lipid metabolism with PPARg
activation and lipid replenishment promoted
AEC2 renewal. These data suggest that
efforts to restore the lipid metabolic balance
in AEC2s with chemical or pharmaceutical
reagents might promote AEC2 cell renewal
and offer new opportunities for therapeutic
approaches for diseases such as IPF.�
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