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Abstract

Background: Mobilization typing (MOB) is a classification scheme for plasmid genomes based on their relaxase gene. The host ranges
of plasmids of different MOB categories are diverse, and MOB is crucial for investigating plasmid mobilization, especially the trans-
mission of resistance genes and virulence factors. However, MOB typing of plasmid metagenomic data is challenging due to the highly
fragmented characteristics of metagenomic contigs.

Results: We developed MOBFinder, an 11-class classifier, for categorizing plasmid fragments into 10 MOB types and a nonmobilizable
category. We first performed MOB typing to classify complete plasmid genomes according to relaxase information and then con-
structed an artificial benchmark dataset of plasmid metagenomic fragments (PMFs) from those complete plasmid genomes whose
MOB types are well annotated. Next, based on natural language models, we used word vectors to characterize the PMFs. Several ran-
dom forest classification models were trained and integrated to predict fragments of different lengths. Evaluating the tool using the
benchmark dataset, we found that MOBFinder outperforms previous tools such as MOBscan and MOB-suite, with an overall accuracy
approximately 59% higher than that of MOB-suite. Moreover, the balanced accuracy, harmonic mean, and F1-score reached up to 99%
for some MOB types. When applied to a cohort of patients with type 2 diabetes (T2D), MOBFinder offered insights suggesting that
the MOBF type plasmid, which is widely present in Escherichia and Klebsiella, and the MOBQ type plasmid might accelerate antibiotic
resistance transmission in patients with T2D.

Conclusions: To the best of our knowledge, MOBFinder is the first tool for MOB typing of PMFs. The tool is freely available at

https://github.com/FengTaoSMU/MOBFinder.
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Introduction

Plasmids are usually small, double-stranded, and circular DNA
molecules found within bacterial cells [1]. Being separate from
the bacterial chromosome, plasmids have the ability to replicate
independently and can be transferred between bacteria through
conjugation [2]. Bacteria, specifically pathogenic strains, can ac-
quire antibiotic resistance genes or virulence factors via plasmid-
mediated horizontal gene transfer, aiding their ability to adapt to
various environments [3].

Plasmid classification is important for investigating multiple
properties of plasmids, such as host range, replication patterns,
and mobilization mechanisms [4]. Many classification schemes
have been developed according to the distinct characteristics
of plasmids, including taxonomic classification, replicon typing
(Rep), incompatibility typing (Inc), mate-pair formation typing
(MPF), and mobilization typing (MOB). In taxonomic classification,
plasmids are categorized based on their host bacteria [5]. Rep typ-
ing classifies plasmids according to genes controlling their repli-
cation, known as replication initiation genes [4, 6]. Inc typing takes
advantage of the fact that plasmids with similar replication or
partition systems are incompatible within the same cell, catego-
rizing plasmids based on compatibility [6]. MPF typing is based on
genes encoding the MPF system, which consists of proteins that

mediate contact and DNA exchange between donor and recipient
cells during conjugation [4, 7]. Finally, MOB typing classifies plas-
mids based on the relaxase gene, which is present in all trans-
missible plasmids [2, 8, 9]. Plasmids with different relaxase types
are categorized as different MOB types, with each possessing a
distinct transmission mechanism that determines its taxonomic
hostrange [4, 10]. This variation among different MOB types is crit-
icalin researching the spread of virulence traits, the emergence of
antibiotic resistance, and the adaptation and evolution of bacte-
ria. Moreover, MOB typing has been found to be effective for identi-
fying novel mobilizable plasmids that were previously unassigned
to any Rep or Inc types and for investigating the mobilization char-
acteristics of plasmids with similar mobilization systems [9, 11].
Recently, many experimental and computational schemes have
been devised for plasmid typing, as well as to explore the diversity
and functionality of plasmids (Table 1). For example, plasmid tax-
onomic PCR (PlasTax-PCR) [12], PCR-based replicon typing (PBRT)
[13], and degenerate primer MOB typing (DPMT) [11] are multi-
plex PCR methods for identifying plasmids with analogous repli-
cation or mobilization systems. PlasTrans, based on deep learn-
ing, identifies mobilizable metagenomic plasmid fragments [14].
Web servers such as PlasmidFinder [6], pMLST, and oriTfinder [15]
were established based on collected maker gene databases and
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Table 1: Experimental and computational schemes developed for plasmid classification

Technology

category Method

Classification scheme

Material

Description

Experimental DPMT [11]

PlasTax-PCR [12]

PBRT [13]

MOB typing

Taxonomic typing

Rep typing or Inc typing

Plasmid DNA from clinical
isolates

Plasmid DNA from clinical
isolates

Plasmid DNA from clinical
isolates

Used degenerate primers to
hybridize relaxase-coding
genes to identify and classify
plasmids isolated from
clinical isolates

Utilized PCR primers that
target conserved segments of
the relaxase gene of plasmid
taxonomic units (PTUs) to
identify specific PTUs of
transmissible plasmids

Used multiplex PCR to
amplify DNA fragments of
replicons and detect known
replicon types of plasmids

Computational MOBscan [16]

MOB-suite [17,
18]

PlasTans [14]

PlasmidFinder [6]

DMLST [6]

oriTfinder [15]

COPLA [5]

MOB typing

MOB typing, MPF typing, and
Rep typing

Transmissible plasmid
identification

Rep typing or Inc typing

Rep typing or Inc typing

MOB typing, MPF typing

Taxonomic typing

Plasmid protein sequences

Complete plasmid genomes
or plasmid assembly clusters
(Linux)

Plasmid assembly contigs
(Linux)

Raw reads or complete
plasmid genomes or plasmid
assembly contigs (web server)

Raw reads or complete
plasmid genomes or plasmid
assembly contigs (web server)

Complete plasmid genomes
(web server)

Complete plasmid genomes
or plasmid assembly sets
(Linux)

Used the HMMER model to
annotate the relaxases and
further perform MOB typing
Utilized collected relaxase,
oriT, replicon, and T4SS
sequences to construct the
database, then classified
plasmid assembly clusters
with BLAST

Used the convolutional
neural network deep learning
algorithm to classify plasmid
DNA fragments

Utilized collected replicon
sequences and BLASTn to
perform Rep typing and Inc
typing

Used collected plasmid
multilocus sequence typing
(pPMLST) allele sequences,
known sequence type
profiles, and BLAST to
perform Rep typing and Inc
typing

Utilized collected oriT,
relaxase, T4CP, and T4SS
sequences to annotate
plasmids with BLAST

Used average nucleotide
identity (ANI) metrics and
hierarchical stochastic block
modeling (HSBM) to create
plasmid taxonomic units
(PTUs) and predict taxonomic
hosts

alignment-based methods to facilitate Rep, Inc, and MOB typing.
COPLA [5], based on average nucleotide identity, performs taxo-
nomic classifications of complete plasmid genomes with an over-
all accuracy of 41%. For the MOB typing, MOBscan [16] uses the
HMMER model to annotate relaxase genes and classify plasmids
accordingly. MOB-suite [17, 18] performs plasmid typing for plas-
mid assemblies. First, it uses Mash distance to cluster plasmid as-
semblies into clusters; then, it uses marker gene databases to an-
notate them.

Metagenomic sequencing makes it possible to obtain all plas-
mid DNA from microbial communities at once, and a number

of computational tools for identifying plasmid fragments from
metagenomic data have been developed, such as PlasFlow [19],
PlasmidSeeker [20], PlasClass [21], PPR-Meta [22], and PlasForest
[23]. As DNA fragments of plasmids and bacteria are intermingled
in metagenomic data [24], recognizing the transmission mecha-
nisms and host ranges of plasmids can be challenging. To this
end, it is crucial to annotate MOB types of metagenomic plas-
mid fragments. However, this is difficult when plasmid assem-
bly fragments are incomplete and essential genes for annotation
are lacking. Therefore, it is worthwhile to consider alternative
methods. Given that plasmids of the same MOB type have similar



transmission mechanisms and host ranges, their genomic signa-
tures (e.g., GC content and codon usage) tend to also be alike, not
only relaxase [4, 25]. In this context, neural networks, which have
demonstrated strong performance in the classification and iden-
tification of biological sequences [26, 27], could be useful. Further-
more, language models [28, 29] derived from such neural networks
have also showcased their impressive ability to characterize se-
quence features [30, 31]. In this methodology, short sequences
of nucleotides (referred to as k-mers) or amino acids are anal-
ogous to “words,” and the longer sequences of DNA or proteins
are analogous to “sentences.” Through the application of unsu-
pervised learning on large datasets, each “word” is linked to a fea-
ture vector that captures its context, offering a more sophisticated
analysis than the traditional k-mer frequency method, which sim-
ply counts the occurrence of nucleotide sequences without ac-
knowledging their biochemical characteristics. Unlike the conven-
tional method, this language model-based approach assesses se-
quences based on their contextual importance across different
genetic environments, positioning contextually similar sequences
close together in a multidimensional space. This technique pro-
vides deeper insights into the biochemical complexities of nu-
cleotide sequences, thereby furnishing a more comprehensive
understanding of an organism’s functional biology [32]. To char-
acterize the features of plasmids within the same MOB type, we
employed language models to perform the MOB annotation. In ad-
dition to the relaxase-coding gene, language models exhibit the
ability to capture more biological features and associations within
comparable mobilization systems, making it possible to perform
MOB annotation for metagenomic plasmid assemblies.

Thus, we presented MOBFinder, a tool for annotating MOB types
from plasmid metagenomic fragments (PMFs). MOBFinder can
process single or multiple plasmid DNA sequences, and it provides
predicted MOB types for each input fragment, including MOBB,
MOBC, MOBF, MOBH, MOBL, MOBM, MOBP, MOBQ, MOBT, MOBY,
and non-MOB. Moreover, it provides the option to annotate plas-
mid bins from metagenomics data.

An overview of this work is shown in Fig. 1A, and the develop-
ment of MOBFinder involved the following steps: (i) Benchmark
dataset construction. Plasmid complete genomes obtained from
the National Center for Biotechnology Information (NCBI) were
classified into different MOB types based on relaxase databases.
Then, to simulate plasmid fragments in metagenomic data, an
artificial benchmark dataset of varying lengths was generated.
(if) Word embeddings. Numerical word vectors were generated us-
ing skip-gram to characterize the sequence features of different
MOB categories. (iii) Classification model ensemble and optimiza-
tion. Several classification models, specifically designed for differ-
ent lengths, were trained and integrated to predict fragments of
different lengths. Evaluations against a test dataset demonstrated
that MOBFinder is a powerful tool for MOB typing of plasmid frag-
ments and bins. Its application to a cohort of patients with type
2 diabetes (T2D) revealed a potential correlation between some
MOB types and the spread of antibiotic resistance genes among
T2D patients. This suggests that MOBFinder is an effective data
analysis approach for investigating plasmid-mediated horizontal
gene transfer within microbial communities.

Materials and Methods
The workflow of MOBFinder

To annotate the MOB type of plasmid fragments in metage-
nomics, we designed MOBFinder (Fig. 1). As MOB-suite [17, 18]
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did not offer a quantitative likelihood score for the outcomes
and some plasmids would be classified into multiple MOB types
(Supplementary Fig. S1), we constructed a benchmark dataset us-
ing a high-resolution MOB typing strategy for categorizing com-
plete plasmid genomes (Fig. 1B, C). Then, based on a language
model and random forest, we designed an algorithm to perform
MOB typing for PMFs (Fig. 1D, E).

MOB typing of complete plasmid genomes

Traditionally, plasmid MOB typing of complete plasmid genomes
has been a bioinformatics task based on the analysis of re-
laxase sequence similarity. The practice of annotating MOB
types through BLAST similarity searches using representative se-
quences of different MOB type relaxases has gradually evolved
into the standard method for MOB typing (4, 17, 18]. In this work,
we constructed a benchmark dataset of simulated metagenomic
contigs based on complete plasmid genomes with known MOB
types. Previous studies have included a relatively small num-
ber of plasmids in their analyses. To further expand the MOB
typing training dataset, we annotated the newly collected plas-
mid complete genome data for MOB typing according to relaxase
information.

Ten validated MOB relaxase protein families were collected, in-
cluding MOBB, MOBC, MOBF, MOBH, MOBL, MOBM, MOBP, MOBQ,
MOBT, and MOBV [2, 7-9, 33, 34] (Fig. 1B). For each MOB cate-
gory, blastp (RRID:SCR_001010) [35] was used to search homolo-
gous protein sequences against the NCBI nonredundant protein
sequence database, with an e-value threshold of 1e-10, a query cov-
erage threshold of 70%, and an identity threshold of 70%. A previ-
ous study applied an e-value threshold of 1e-5 and minimum re-
quirements for query coverage and identity set at 50% [4]. However,
employing these criteria, we observed that some relaxases were
annotated as belonging to multiple MOB types. To eliminate am-
biguous annotations and construct a more reliable dataset for the
training of MOBFinder, we imposed the stricter criteria mentioned
above. After the expansion of protein sequences, local relaxase
databases were built using the “makeblastdb” command for MOB
typing of plasmid genomes.

Plasmid genomes were retrieved from the NCBI nucleotide
database using the keywords “complete” and “plasmid,” and in-
complete fragments were removed manually for further analysis.
The accession list of these plasmids is provided in Supplementary
Table S1. For each plasmid genome, coding sequences were ex-
tracted from the genebank file, and blastp [35] was employed
to search for the best alignment of local relaxase databases.
Here, we defined the mob_score to measure the likelihood of
homology:

mob_score = \/0.0l*qcou_max* (1 —1/log,, (bitscore_max))

where qcou_max and bitscore_max represent the query coverage and
bitscore corresponding to the match with the highest bit score, re-
spectively. To identify plasmid genomes encoding known relax-
ase families, we set a mob_score threshold of 0.5, which was estab-
lished in conjunction with a minimum query coverage of 50% and a
minimum bitscore of 100. To further enhance the reliability of our
classification, we introduced an e-value cutoff, conservatively set
at 1e-10, to complete the plasmid genome classification (Fig. 1C).
In instances where plasmid genomes yielded no blast results or
exhibited an e-value exceeding 0.01, we categorized them as non-
MOB.
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Figure 1: Flowchart of the technical approach utilized in this study. (A) General workflow of the development and testing of MOBFinder. (B) Using
plasmid relaxases with known MOB types as reference sequences, we developed a database of relaxases from the nonredundant (NR) database
representing different MOB types. (C) Utilizing the relaxase database, complete plasmid genomes from the NCBI were subjected to MOB typing.

(D) Those complete genomes were also used to train a 4-mer language model using the skip-gram algorithm, allowing each 4-mer to be represented by
a 100-dimensional word vector. For a DNA fragment, the average word vector of all 4-mers on its sequence serves as the feature vector for that DNA.
(E) We constructed simulated metagenomic contigs from the complete genomes that had been MOB typed as a benchmark and encoded these contigs
into word vectors. Then these word vectors were used to train a random forest algorithm. Then the trained model, with metagenomic DNA fragments
as input, was used to predict the MOB typing of the corresponding DNA fragment based on its word vectors.

Word embeddings using a language model

To characterize the features and patterns within each MOB cate-
gory and use numerical word vectors to represent them, we uti-
lized a skip-gram language model [28, 29] to learn from plasmid
genomes. Using a sliding window, the model calculated the likeli-
hood between segmented words and outputted a probability dis-
tribution over the context words. The training steps were as fol-
lows (Fig. 1D):

(1) Word generation. Since DNA sequences are composed of
different nucleotide characters, we used a k-mer sliding
window to generate overlapping input words. For example,
with k = 4, “ATCGCTGA” would be segmented into “ATCG,”
“TCGC” “CGCT,” “GCTG,” and “CTGA.” In this step, unique
words were generated.

(2)Word encoding initialization. Each word was initially as-
signed a random vector.

(3) Skip-gram model. We employed a standard skip-gram model
as described in previous studies [28, 29] to generate word
vectors through the dna2vec module [29]. A 2-layer neural
network was used to construct the skip-gram model. The
initialized vectors were used as input, and the output was

a probability distribution over the input words. Layer 1 was
a hidden layer to convert the initialized vectors into a 100-
dimensional word vector representation as predefined by Ng
[29]. Layer 2 was used to compute and maximize the prob-
ability of the correct context words using the negative sam-
pling function, with the size of context words set to 20 (10
words for upstream and downstream, respectively) as pre-
set by Ng [29].

(4)Model training. For each input plasmid genome, we used an
optimization algorithm to minimize the loss function. Then,
using the default settings, we used backpropagation to up-
date the neural network parameters (word vectors) for 10
epochs.

(5) Word vector extraction. After the training process, the word
vectors in the hidden layer were extracted to characterize
the plasmid fragments.

Benchmark dataset construction

Because there are no real metagenomic data to serve as a bench-
mark, using simulated data as a benchmark dataset is a com-
mon approach when developing bioinformatics tools [14, 22].



Therefore, in the development of MOBFinder, we artificially gen-
erated simulated datasets through the following steps:

(1)For classified plasmid genomes in each MOB category, we
randomly split them at a proportion of 70% and 30% to con-
struct the training and test datasets.

(2) Training dataset. To predict plasmid fragments with differ-
ent lengths, we generated contigs of different length ranges:
100-400 bp, 401-800 bp, 801-1,200 bp, and 1,201-1,600 bp. For
each MOB class in each length range, we randomly gener-
ated 90,000 artificial contigs. Plasmid fragments longer than
1,600 bp were segmented into shorter contigs and predicted
using models designed for the corresponding lengths.

(3) Test dataset. Because some plasmid fragments in real
metagenomics datasets were much longer, we generated
4 length groups to assess the performance of MOBFinder:
group A with a length range of 801-1,200 bp, group B with a
length range of 1,201-1,600 bp, group C with a length range
of 3,000-4,000 bp, and group D with a length range of 5,000~
10,000 bp. For each MOB class in these 4 groups, 500 frag-
ments were randomly extracted.

Classification algorithm

To efficiently handle the training dataset and improve the robust-
ness of MOBFinder, we employed random forest to train 4 predic-
tive models using the training dataset. The detailed steps are as
follows (Fig. 1E):

(1)Word representation calculation. For each contig in the
training dataset, we used a 4-mer sliding window to gener-
ate overlapping words and transformed them into numerical
word vectors using trained word embeddings. To character-
ize the underlying features and patterns of the input contigs,
we summed all the word vectors to compute their average as
input of random forest.

(2) Classification model training. To improve the performance
of MOBFinder, we trained 4 classification models on different
lengths in the training dataset: 100-400 bp, 401-800 bp, 801-
1,200 bp, and 1,201-1,600 bp. The number of trees was set to
500 to generate predictive models.

(3)Model ensemble. The 4 trained models were ensembled into
MOBFinder to make more accurate predictions. For frag-
ments shorter than 100 bp, we used a model designed for
100-400 bp to predict the MOB type. For those longer than
1,600 bp, we segmented them into short contigs and made
predictions using the corresponding model. For example, a
fragment with a length of 4,000 bp would be segmented
into 3 contigs: 2 with a length of 1,600 bp and 1 of 800 bp.
After predicting fragments with the corresponding models,
we aggregated and calculated the weighted average scores
for each MOB class, and the MOB type with the highest
score was selected as the final prediction result for the input
fragment.

(4) Plasmid bin classification. Metagenomic binning is an essen-
tial step in the reconstruction of genomes from individual
microorganisms. Thus, we designed MOBFinder to perform
MOB typing on both plasmid contigs and plasmid bins. If the
input is a plasmid bin, MOBFinder predicts the likelihood of
each MOB class for fragments within the bin. For each MOB
category, MOBFinder aggregates the scores of each sequence
within the bin and calculates the weighted average scores
based on the sequence length. The MOB category with the
maximum score is selected as the prediction result.
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Performance validation

A test dataset was used to assess the performance of MOBFinder
and compare it to MOB-suite and MOBscan. Because MOBscan can
only predict MOB type using plasmid protein sequences rather
than DNA sequences, we first annotated the proteins in the plas-
mid fragments of the test set using Prokka (RRID:SCR_014732) [36]
and then used MOBscan to predict the MOB type based on the
annotated proteins. We calculated overall accuracy, kappa, and run
time by comparing the predicted classes and true classes. We used
the online server of MOBscan to perform the MOB annotation, and
the calculation of run time for MOBScan was confined to the du-
ration spent on preprocessing with Prokka locally. The overall ac-
curacy was the proportion of accurate predictions. The kappa (a)
was calculated to assess the overall consistency between the pre-
dictions and true classes, which took into account the possibil-
ity of random prediction. Po represented observed accuracy [Po =
(A1 + Ay + ... + Ann)/N], where A1, Ay, and Ann represented the
values on the diagonal of the confusion matrix and n represented
the number of MOB categories. N represented the total number
of samples. Pe represented the expected accuracy [Pe = (Ei1 +
Ey) + ... + Enn)/N?], where E11, By, and Enn were the expected val-
ues in each cell of the confusion matrix; n was the number of MOB
classes; and N was the total number of samples. The run time was
recorded using the command “time” in Linux.

kappa = (Po— Pe) / (1 — Pe)
balanced accuracy = (TPR + TNR) /2
harmonic mean = 2 % Sn * Sp/ (Sn + Sp)

For each MOB category, we also calculated the balanced accuracy
(b), harmonic mean (c), and F1-score (d). Considering the class im-
balance within the training dataset, balanced accuracy was used to
measure the average accuracy of each MOB category, where TPR
was the true-positive rate [TRP = true positives/(true positives +
false negatives)] and TNR was the true-negative rate [TNR = true
negatives/(true negatives + false positives)]. The harmonic mean
provided an overall evaluation of the model’s performance, where
Sn and Sp represented sensitivity [Sn = true positives/(true posi-
tives + false negatives)] and specificity [Sp = true negatives/(true
negatives + false positives)], respectively. The F1-score combined
precision and recall, providing a balanced measure of the model’s
performance, where precision was the number of correct positive
predictions out of all positive predictions [precision = true posi-
tives/(true positives + false positives)] and recall was the number
of correct positive predictions out of all actual positive predictions.
[recall = true positives/(true positives + false negatives)].

A receiver operating characteristic (ROC) curve was used to vi-
sualize the performance of MOBFinder in predicting each MOB
category, where the x-axis and y-axis were the false-positive rate
(FPR) and true-positive rate (TPR). Plots closer to the left and top
indicate higher TPR and lower FPR, which means better perfor-
mance. For each MOB class, the area under the curve (AUC) value
was calculated to quantify the performance of MOBFinder. An
AUC value between 0.5 and 1 indicates that the model performs
better than random chance, and a higher AUC value indicates bet-
ter prediction capability.

Annotation and analysis of T2D metagenomic
data

Metagenomic sequencing data (SRA045646 and SRA050230) were
retrieved from the NCBI Short Read Archive (SRA) database to
investigate whether the plasmids within different MOB classes
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Table 2: Number, average length, and GC content of plasmid genomes for each MOB type

Class Number Average length GC (%)
MOBB 623 10,921.77 51.27
MOBC 3,218 19,965.28 47.14
MOBF 21,268 103,802.80 52.07
MOBH 4,880 151,108.10 48.37
MOBL 3,446 51,430.63 34.57
MOBM 1,761 2,684.14 27.12
MOBP 15,617 32,237.88 49.70
MOBQ 9,347 89,357.64 56.77
MOBT 1,181 11,643.24 36.92
MOBV 4,405 6,595.43 37.75
Non-MOB 24,649 37,581.85 49.84
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Figure 2: Benchmark dataset construction using a high-resolution strategy. (A) Proportion of classified plasmid genomes. A confidence level of “sure”
means that the classified plasmid genomes had a mob_score of more than 0.5 and an e-value of less than 1e-10, while “possible” did not. Plasmid
genomes identified as “sure” were used to generate benchmark datasets. Non-MOB, nonmobilizable plasmid. (B) Host range of the classified plasmid
genomes at the genus level. Different colors represent different genera, and genera accounting for less than 5% of the total abundance are grouped

under the category “other.”

were associated with antibiotic resistance enrichment in T2D
patients, as suggested by previous studies [37, 38]. All metage-
nomic data were preprocessed using the same protocols. PRINSEQ
(RRID:SCR_005454) [39] was used to remove low-quality reads and
bowtie2 (RRID:SCR_016368) [40] was used to remove host reads
by aligning them to the human GRCH38 reference genome down-
loaded from the ENSEMBL database. We excluded metagenomic
samples that did not pass quality control. Because the abun-
dance of plasmids in metagenomes was much lower than that
of bacteria, we only retained samples with more than 10,000,000
paired-end reads for downstream analysis (Supplementary
Table S2).

To improve the efficiency and accuracy of assembly, we used
MEGAHIT (RRID:SCR_018551) [41] to generate metagenomic con-
tigs. PPR-Meta (RRID:SCR_016915) [22] was utilized to identify and
extract plasmid fragments from the assembled fragments while
filtering out bacteria and phage sequences. COCACOLA [42] was
employed to cluster plasmid fragments into bins based on se-
quence similarity and composition. This allowed us to investigate
the plasmid fragments from same originate and enabled better
annotation and analysis of their functions.

MOBFinder was applied to annotate the MOB types in each
plasmid bin. The average fragments per kilobase per million of
each plasmid bin was calculated using bowtie2 to represent its

abundance. Next, we analyzed the significance of differences
in plasmid bins and various MOB types between healthy and
T2D groups using the Wilcoxon rank-sum test. The calcula-
tion of P values was adjusted for multiple comparisons using
the Benjamini-Hochberg method (denoted as p.adjust). ABRicate
(RRID:SCR_021093) [43] was utilized to annotate antibiotic resis-
tance genes (identity >50% and qcov >50%) in each plasmid bin,
based on 4 antibiotic resistance gene databases [44—47]. The Tukey
honest significant difference test was performed to compare the
identified resistance genes among different MOB classes. All sta-
tistical analyses were conducted using R.

Results
MOB typing of plasmid genomes

To construct the benchmark datasets, we obtained 90,395
complete plasmid genomes and categorized them into 11 MOB
categories using blast (Table 2). We removed 22,470 of them poten-
tially classified into more than 1 MOB class, leaving 67,925 clas-
sified genomes for the training and optimization of MOBFinder
(Fig. 2A). Our analysis results revealed significant differences in
the number, average length, and GC content of plasmid genomes
among MOB types. Notably, non-MOB types included the genomes
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Figure 3: Overall performance of MOBFinder and comparison to MOB-suite and MOBScan. Evaluation and comparison in terms of (A) accuracy,

(B) kappa, and (C) run time (C). The 4 fragment length groups in the test dataset were group A (801-1,200 bp), group B (1,201-1,600 bp), group C
(3,000-4,000 bp), and group D (5,000-10,000bp). (D) For each MOB type, the balanced accuracy, harmonic mean, and F1-score were used to assess the
performance of MOBFinder and compared to MOB-suite and MOBscan. Since MOB-suite and MOBscan do not include the prediction of MOBL, only the
results of MOBL from MOBFinder are provided. MOBFinder, MOB-suite, and MOBscan are represented by blue lines, orange lines, and gray lines,

respectively.

with the most and longest average length, whereas MOBB and
MOBM had the fewest plasmid genomes and shortest average
length, respectively. In terms of GC content, MOBL had the low-
est and MOBQ had the highest amounts. Moreover, plasmids of
different MOB types exhibited diverse host ranges at the genus
level (Fig. 2B). MOBB was predominantly found in Bacteroides, Hy-
menobacter, Parabacteroides, Phocaeicola, and Spirosoma. Particularly,
Phocaeicola has been detected in the human gut and possessed the
gene for porphyran degradation through horizontal gene transfer
[48]. MOBC, MOBF, MOBH, and MOBP were all found in Escherichia
and Klebsiella. Klebsiella also is a multidrug-resistant bacterium
that has demonstrated resistance to multiple antibiotics [49].
MOBL, MOBT, and MOBV were mainly discovered in Bacillus and En-
terococcus. Almost all MOBM-type plasmid genomes were present
in Clostridium and Enterocloster, and some species in Clostridium
could cause various diseases [50]. MOBQ demonstrated a broader
host range, including Acinetobacter, Agrobacterium, Escherichia, Rhi-
zobium, Lactiplantibacillus, and Staphylococcus. Non-MOB plasmids
were detected in the majority of bacteria. These results illus-
trate the relationship between different MOB types and their host

ranges, as well as demonstrate that MOB typing of plasmid frag-
ments is feasible in the absence of relaxases.

We evaluated the overall performance of MOBFinder in terms of
accuracy, kappa, and run time and compared the tool to MOBscan
and MOB-suite. MOBscan did not perform well, achieving low ac-
curacy and kappa values across sequences of varying lengths, while
MOB-suite exhibited marginally better performance than MOB-
scan when handling sequences of greater length (Fig. 3A, B). In
comparison, the accuracy of MOBFinder ranged from 70% to 77%, a
significant improvement of at least 59% over MOB-suite (Fig. 3A).
The kappa of MOBFinder ranged between 67% and 75% and was
approximately 65% higher than that of MOB-suite (Fig. 3B). More-
over, MOBFinder exhibited a shorter run time in the test dataset,
with a more gradual increase trend (Fig. 3C). In general, these
results indicate that MOBFinder greatly outperformed the other
tools and consistently improved in accuracy and consistency as
the sequence length increased.



MOBB MOBC MOBF MOBH MOBL MOBM MOBP MOBQ MOBT MOBV Non-mob
1.00 [~ - : - : . : - - .
0.75 /- ' s r / ( z ‘ r_ ¥ : . R &
0.50 iz ) y 7 S
0.25 0.99 0.93 0.93 0.96 0.97 099 |||,- o092 © 096 7 083 © 004 081 |pY
0.00
1.00 5 : = : - . -
0.75 7 I 17 ( : ( r_i _ . | ¢
0.50 7 - . . ! =
I ; ! ; ; =
0.25 0.99 0.94 0.94 oo |l .- o098 0.99 0.94 T 067 0.83 0.95 o
0.00
1.00 - - ‘
075 r ; : (' ( P r i r_/ r L BG‘)
0.50 : 7 iz : 7 ; / / I
025 .- o099 095 © 085 0.97 © 098 0.99 0.95 ‘ o0s8 0.83 0.96 0O
0.00 ]
1.00 =
075 { NG g f r r +f r— %)
0.50 . . . L 5
025 .« oge [||,© oses |||,- oss 0.07 0.8 099 |||, o9e " og8 0.83 0.96 085 |
OOOD N OWw o0 1N O W oo W OWw OO0 1N O W OO0 N O W 00 W O W 00 1 O W OO0 W O W O00C N O W OO0 N O Ww 00 1 O wn O
O N M~ CO N UVUNOO AN UUR OCON ULNNOO AN UMM OO N LN OO AN MR OCO N VKOO AN U NMNOCOCO N LN OO N W N~ O
OO0 00 +0 0O OO0 OO OO0 00O OO0 OO0 OO OO 0O O 0G0 +~0 0 O0O0T«~00O0O0T+00O0OO v0O0O0 OO v
Length

Group A: 801-1200 bp Group C: 3000-4000 bp
Group B: 1201-1600 bp  Group D: 5000-10000 bp

Figure 4: ROC curves and AUC values for MOBFinder. The curves were plotted using the output scores of MOBFinder, and the AUC values were

calculated to quantify the performance of the tool for each MOB class.

Next, to evaluate the discrimination ability of MOBFinder for each
MOB type, we calculated the balanced accuracy, harmonic mean, and
F1-score using the test dataset (Fig. 3D). It demonstrated the high-
est performance for MOBB and MOBM, while its ability to identify
non-MOB types was comparatively low. For MOBM, the balanced
accuracy and harmonic mean reached up to 99% and the F1-score
exceeded 96% for all length groups. For non-MOB, the balanced ac-
curacy was 65%, the harmonic mean was 49%, and the F1-score was
40%. Compared to MOB-suite, MOBFinder exhibited much better
performance in predicting all MOB classes. Even for non-MOB, it
showed an approximate 13% improvement over the other tools in
terms of balanced accuracy, 34% in terms of harmonic mean, and 24%
in terms of F1-score.

In AUC analyses (Fig. 4), all values were greater than 0.8, in-
dicating that the tool effectively distinguished between positive
and negative samples in each MOB class. In fact, most values were
higher than 0.9, except for MOBT and non-MOB. The performance
differences by MOB type might be attributable to the differences
in host ranges and sequence features among types. Additionally,
the imbalance in the training dataset for each MOB type may also
be a primary factor contributing to the performance disparities.

In a previous study, enrichment analysis of fecal samples iden-
tified antibiotic resistance pathways in patients with T2D [38].
The precise mechanism of this enrichment, however, remained
elusive. We used MOBFinder to analyze real T2D metagenomic
data [37]. After preprocessing and assembly, 2,217,064 metage-
nomic fragments were generated, and plasmid assemblies were
identified using PPR-Meta. Subsequently, the plasmid fragments
were clustered into 55 bins and annotated using MOBFinder. By
employing MOBFinder, we assigned 2 bins to the MOBF class, 8
bins to MOBL, and 17 bins to MOBQ and identified 28 bins as
non-MOB (Fig. 5A). Furthermore, we detected 15 bins that exhib-

ited significant differences between the T2D group and a control
group. Among them, 1 bin was classified as MOBF, 2 as MOBL, 5 as
MOBQ, and 7 as non-MOB (Supplementary Fig. S2). Among above
MOB types, MOBQ contains the highest number of bins enriched
in T2D, while MOBF is widely present in Escherichia and Klebsiella
(Fig. 2B); some strains of Klebsiella are resistant to multiple antibi-
otics, including carbapenems [51], and these 2 MOB types might
contribute to antibiotic resistance in T2D patients. Indeed, when
we compared the average abundance of each MOB type between
the T2D group and the control group (Fig. 5B), the abundances of
MOBF and MOBQ were significantly greater in the T2D group.

In addition, these 2 MOB types can be transferred among mul-
tiple bacterial species. This suggests that an increase in these 2
MOB types could potentially raise the risk of bacterial infection
among individuals with T2D. Subsequently, we used 4 databases
[44-47] to detect drug resistance genes in 4 MOB types (Fig. 6). The
number of such genes was significantly higher in MOBF than in
the other 3 MOB types. This suggests that MOBF plasmids may
carry more drug resistance genes than the other MOB types. Fur-
thermore, the increase in MOBF and MOBQ plasmids could result
in more bacteria acquiring drug resistance genes, thereby leading
to more antibiotic resistance pathways in T2D patients. In sum-
mary, our results demonstrate the utility of MOBFinder for anno-
tating plasmid fragments in metagenomes, uncovering the poten-
tial mechanisms underlying the antibiotic resistance enrichment
in metagenomic analysis.

MOBFinder can predict the MOB type of plasmid fragments and
bins in metagenomics. For PMFs, it takes a FASTA file as input.
The output file consists of 13 columns. The first column represents
the fragment ID, the second column displays the predicted MOB
type, and columns 3 to 13 represent the scores for each MOB class,
namely, MOBB, MOBC, MOBF, MOBH, MOBL, MOBM, MOBP, MOBQ,
MOBT, MOBV, and non-MOB.
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For plasmid metagenomic bins, MOBFinder requires 2 input
files: a FASTA file containing the plasmid fragments and a metat-
able that records the mapping between plasmid fragment IDs
and bin IDs. The output results are similar to those of plasmid
fragments. The first column is the plasmid bin ID. The second is
the predicted MOB class of the plasmid bins. The other columns
present the MOB scores of the different MOB types.

Discussion

We developed MOBFinder based on a language model and the
random forest algorithm to classify plasmid fragments and bins
from metagenomics data into MOB types. First, using the relaxase-
alignment method, plasmid genomes were classified into distinct
MOB categories. Analyses revealed substantial differences in pa-
rameters such as the number, average length, and GC content
of plasmid genomes across MOB types. Additionally, there were
noteworthy differences in the host ranges among different MOB
classes. These results suggest the potential of utilizing sequence
features from different MOB types for PMF MOB typing. To char-
acterize the plasmids within each MOB type, we used the skip-
gram model to generate word vectors. Our tool demonstrated su-
perior overall performance compared to other tools. Specifically,
for each MOB category, MOBFinder exhibited significant improve-
ments in balanced accuracy, harmonic mean, and F1-score, with val-
ues reaching up to 99% for the first 2 measures in the MOBM
category.

Traditionally, k-mer frequency models and one-hot encoding
have commonly been employed to digitize biological sequences,
extensively applied across various machine learning algorithms
[52]. However, both models simply mark or count the frequency
of various characters in sequences, failing to reflect the biological
significance underlying each character. These models may also
encounter dimensionality issues [52]. For instance, in the k-mer
model, if k is set to 8, the dimensionality of the k-mer vector of
each DNA sequence becomes 48, which is problematic in metage-
nomics where most fragment lengths do not reach this magni-
tude. This would result in significant noise in the feature vector
and cause overfitting. Similarly, in the one-hot model, for a se-
quence of length L using 4-mers as the base unit, it would require
L one-hot vectors each with a dimensionality of 4*. In such in-
stances, if the dataset for training is not sufficiently large, this
representation method could also lead to overfitting due to high
dimensionality. In contrast, word vector models offer a superior
solution to these problems. Such models initially perform a ran-
dom initialization of vectors for each “word.” Taking the skip-gram
algorithm utilized in this study as an example, the dimension of
a random vector can be 1-of-n, where n represents the size of
the vocabulary [28]. Following unsupervised pretraining on large
datasets, the algorithm maps characters with similar contexts to
similar feature spaces. The dimensions of the coordinates (i.e., the
word vectors) of these feature spaces will be lower than those
of the initial random vectors. Thus, through unsupervised pre-
training on large datasets, language models can compress high-
dimensional initial vectors into lower-dimensional word vectors
(e.g., MOBFinder’s word vectors have a dimensionality of 100), en-
abling the feature vectors to contain more character informa-
tion while effectively avoiding dimensionality issues during su-
pervised training.

In a metagenomic sequences classification task, 4-mer is
widely used as the basic unit in various bioinformatics tools [53],
and thus MOBFinder takes this as a “word.” To assess the impact
of training word vectors with different k-mer lengths on perfor-

mance, we compared models with k-mer lengths of 2, 3, 4, 5, 6,
7, and 8 (Supplementary Fig. S3). We observed lower overall ac-
curacy and kappa values for k = 2. At k = 4, the balanced accu-
racy, harmonic mean, F1-score, and AUC values stabilized across dif-
ferent MOB types. Subsequently, as the k-mer length increased,
there was no significant improvement in accuracy or other met-
rics, while the run time gradually increased. Therefore, we chose
a k-mer length of 4 for training word vectors and developing
MOBFinder.

Interestingly, in an analysis of T2D metagenomic sequencing
data [37], we noted a significant increase in MOBF and MOBQ type
plasmids in T2D patients. Moreover, we found more drug resis-
tance genes in the MOBF class, whose dominant hosts are Klebsiella
and Escherichia, which are associated with the spread of multidrug
resistance. Although previous analyses of gut metagenomic data
from patients with T2D have reported enrichment of drug resis-
tance pathways [38], our results suggest a potential reason for it:
the increased abundance of MOBF- and MOBQ-type plasmids in
the guts of individuals with T2D may disseminate more antibiotic
resistance genes, resulting in such enrichment.

At present, databases contain a large amount of human
metagenomic data derived from second-generation sequencing.
However, understanding of the functions of numerous disease-
linked microbial sequences remains limited, attributable to the
incomplete nature of metagenomic fragments. The development
of MOBFinder enables MOB annotation for plasmid fragments
from metagenomics data and provides a powerful tool for inves-
tigating the transmission mechanisms of plasmid-mediated an-
tibiotic resistance genes and virulence factors.

Conclusions

In summary, MOBFinder is a tool for MOB typing of plasmid frag-
ments and bins from metagenomic data. Analyses of classified
plasmid genomes unveiled notable differences in sequence char-
acteristics and host ranges across MOB types. Hence, we employed
a language model to extract the sequence features specific to
each MOB type and represented them using word vectors. Addi-
tionally, we boosted prediction accuracy by training and integrat-
ing several random forest classification models. MOBFinder sur-
passed other tools in performance tests and successfully detected
an increase in certain MOB-type plasmids in T2D patients. Im-
portantly, these MOB-type plasmids harbor potential drug resis-
tance genes, thus offering an explanation for the observed antibi-
otic resistance in T2D individuals. This suggests that MOBFinder
could potentially aid the formulation of specific medications to
curb drug resistance transmission. We anticipate that MOBFinder
will be a powerful tool for the analysis of plasmid-mediated
transmission.

Availability of Source Code and
Requirements

® Project name: MOBFinder

® Project homepage:
MOBFinder

® Operating system(s): Linux

® Programming language: Python, R script

® Other requirements: BLAST, biopython

® License: GPL-3.0

® RRID:SCR_024451

® biotoolsID: MOBFinder

https://github.com/FengTaoSMU/
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Additional Files

Supplementary Table S1. Accessions list of classified plasmid
genomes.

Supplementary Table S2. List of metagenomic samples used in
our analysis.

Supplementary Fig. S1. MOB typing using MOB-suite. Single-class,
plasmid genomes classified into 1 MOB type; multiclass, plasmid
genomes classified into more than 1 MOB category; non-MOB,
nonmobilizable plasmids.

Supplementary Fig. S2. Abundance of each significantly different
plasmid bin from various MOB types between patients with type
2 diabetes and controls.

Supplementary Fig. S3. Comparison results for the development
of MOBFinder using word vectors trained with different k-mer
lengths. (A-C) Overall accuracy, kappa, and run time of the MOB clas-
sification model trained with word vectors trained using different
lengths of k-mers. (D) Balanced accuracy, harmonic mean, F1-score,
and AUC of word vectors trained with different k-mer lengths
across different MOB types.
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