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Abstract 

Bac kgr ound: Mobilization typing (MOB) is a classification scheme for plasmid genomes based on their relaxase gene. The host ranges 
of plasmids of different MOB categories are diverse, and MOB is crucial for investigating plasmid mobilization, especially the trans- 
mission of resistance genes and virulence factors. However, MOB typing of plasmid metagenomic data is challenging due to the highly 
fr agmented c har acteristics of metagenomic contigs. 

Results: We developed MOBFinder, an 11-class classifier, for categorizing plasmid fragments into 10 MOB types and a nonmobilizable 
category. We first performed MOB typing to classify complete plasmid genomes according to relaxase information and then con- 
structed an artificial benchmark dataset of plasmid metagenomic fragments (PMFs) from those complete plasmid genomes whose 
MOB types are well annotated. Next, based on natural language models, we used word vectors to characterize the PMFs. Several ran- 
dom forest classification models were trained and integrated to pr edict fra gments of differ ent lengths. Ev aluating the tool using the 
benc hmark dataset, w e found that MOBF inder outperforms previous tools such as MOBscan and MOB-suite, with an over all accurac y 
appr oximatel y 59% higher than that of MOB-suite. Mor eov er, the balanced accuracy , harmonic mean , and F1-score reached up to 99% 

for some MOB types. When applied to a cohort of patients with type 2 diabetes (T2D), MOBFinder offered insights suggesting that 
the MOBF type plasmid, which is widely present in Esc heric hia and Klebsiella , and the MOBQ type plasmid might accelerate antibiotic 
resistance transmission in patients with T2D. 

Conclusions: To the best of our knowledge , MOBF inder is the first tool for MOB typing of PMFs. The tool is fr eel y av aila b le at 
https://github.com/FengTaoSMU/MOBFinder . 

Ke yw ords: MOB typing, language model, metagenomic sequencing, plasmid, random forest 
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Introduction 

Plasmids ar e usuall y small, double-str anded, and cir cular DN A 

molecules found within bacterial cells [ 1 ]. Being separate from 

the bacterial c hr omosome , plasmids ha ve the ability to replicate 
independently and can be transferred between bacteria through 

conjugation [ 2 ]. Bacteria, specifically pathogenic strains, can ac- 
quir e antibiotic r esistance genes or virulence factors via plasmid- 
mediated horizontal gene transfer, aiding their ability to adapt to 
v arious envir onments [ 3 ]. 

Plasmid classification is important for investigating multiple 
properties of plasmids, such as host range, replication patterns,
and mobilization mechanisms [ 4 ]. Many classification schemes 
have been developed according to the distinct characteristics 
of plasmids, including taxonomic classification, replicon typing 
(Rep), incompatibility typing (Inc), mate–pair formation typing 
(MPF), and mobilization typing (MOB). In taxonomic classification, 
plasmids are categorized based on their host bacteria [ 5 ]. Rep typ- 
ing classifies plasmids according to genes controlling their repli- 
cation, known as replication initiation genes [ 4 , 6 ]. Inc typing takes 
adv anta ge of the fact that plasmids with similar replication or 
partition systems are incompatible within the same cell, catego- 
rizing plasmids based on compatibility [ 6 ]. MPF typing is based on 

genes encoding the MPF system, which consists of proteins that 
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ediate contact and DNA exchange between donor and recipient 
ells during conjugation [ 4 , 7 ]. Finally, MOB typing classifies plas-
ids based on the relaxase gene, which is present in all trans-
issible plasmids [ 2 , 8 , 9 ]. Plasmids with differ ent r elaxase types

re categorized as different MOB types, with each possessing a
istinct transmission mechanism that determines its taxonomic 
ost range [ 4 , 10 ]. This variation among different MOB types is crit-

cal in r esearc hing the spr ead of virulence tr aits, the emer gence of
ntibiotic resistance, and the adaptation and evolution of bacte- 
ia. Mor eov er, MOB typing has been found to be effective for identi-
ying novel mobilizable plasmids that were previously unassigned 

o any Rep or Inc types and for investigating the mobilization char-
cteristics of plasmids with similar mobilization systems [ 9 , 11 ]. 

Recentl y, man y experimental and computational schemes have 
een devised for plasmid typing, as well as to explore the diversity
nd functionality of plasmids (Table 1 ). For example, plasmid tax-
nomic PCR (PlasTax-PCR) [ 12 ], PCR-based replicon typing (PBRT)
 13 ], and degenerate primer MOB typing (DPMT) [ 11 ] are multi-
lex PCR methods for identifying plasmids with analogous repli- 
ation or mobilization systems . PlasTrans , based on deep learn-
ng, identifies mobilizable metagenomic plasmid fragments [ 14 ].

eb servers such as PlasmidFinder [ 6 ], pMLST, and oriTfinder [ 15 ]
ere established based on collected maker gene databases and 
e. This is an Open Access article distributed under the terms of the Cr eati v e 
h permits unrestricted reuse, distribution, and reproduction in any 
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Table 1: Experimental and computational schemes developed for plasmid classification 

Technology 
category Method Classification scheme Material Description 

Experimental DPMT [ 11 ] MOB typing Plasmid DNA from clinical 
isolates 

Used degenerate primers to 
hybridize relaxase-coding 
genes to identify and classify 
plasmids isolated from 

clinical isolates 
PlasTax-PCR [ 12 ] Taxonomic typing Plasmid DNA from clinical 

isolates 
Utilized PCR primers that 
tar get conserv ed segments of 
the relaxase gene of plasmid 
taxonomic units (PTUs) to 
identify specific PTUs of 
transmissible plasmids 

PBRT [ 13 ] Rep typing or Inc typing Plasmid DNA from clinical 
isolates 

Used multiplex PCR to 
amplify DNA fr a gments of 
replicons and detect known 
replicon types of plasmids 

Computational MOBscan [ 16 ] MOB typing Plasmid protein sequences Used the HMMER model to 
annotate the relaxases and 
further perform MOB typing 

MOB-suite [ 17 , 
18 ] 

MOB typing, MPF typing, and 
Rep typing 

Complete plasmid genomes 
or plasmid assembly clusters 
(Linux) 

Utilized collected relaxase, 
oriT, replicon, and T4SS 
sequences to construct the 
database, then classified 
plasmid assembly clusters 
with BLAST 

PlasTans [ 14 ] Transmissible plasmid 
identification 

Plasmid assembly contigs 
(Linux) 

Used the convolutional 
neural network deep learning 
algorithm to classify plasmid 
DNA fr a gments 

PlasmidFinder [ 6 ] Rep typing or Inc typing Raw reads or complete 
plasmid genomes or plasmid 
assembly contigs (web server) 

Utilized collected replicon 
sequences and BLASTn to 
perform Rep typing and Inc 
typing 

pMLST [ 6 ] Rep typing or Inc typing Raw reads or complete 
plasmid genomes or plasmid 
assembly contigs (web server) 

Used collected plasmid 
multilocus sequence typing 
(pMLST) allele sequences, 
known sequence type 
profiles, and BLAST to 
perform Rep typing and Inc 
typing 

oriTfinder [ 15 ] MOB typing, MPF typing Complete plasmid genomes 
(web server) 

Utilized collected oriT, 
relaxase, T4CP, and T4SS 
sequences to annotate 
plasmids with BLAST 

COPLA [ 5 ] Taxonomic typing Complete plasmid genomes 
or plasmid assembly sets 
(Linux) 

Used av er a ge nucleotide 
identity (ANI) metrics and 
hier arc hical stoc hastic bloc k 
modeling (HSBM) to create 
plasmid taxonomic units 
(PTUs) and predict taxonomic 
hosts 
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lignment-based methods to facilitate Rep, Inc, and MOB typing.
OPLA [ 5 ], based on av er a ge nucleotide identity, performs taxo-
omic classifications of complete plasmid genomes with an over-
ll accuracy of 41%. For the MOB typing, MOBscan [ 16 ] uses the
MMER model to annotate relaxase genes and classify plasmids
ccordingly. MOB-suite [ 17 , 18 ] performs plasmid typing for plas-
id assemblies. First, it uses Mash distance to cluster plasmid as-

emblies into clusters; then, it uses marker gene databases to an-
otate them. 

Metagenomic sequencing makes it possible to obtain all plas-
id DNA from microbial communities at once, and a number
f computational tools for identifying plasmid fr a gments fr om
etagenomic data have been developed, such as PlasFlow [ 19 ],

lasmidSeeker [ 20 ], PlasClass [ 21 ], PPR-Meta [ 22 ], and PlasForest
 23 ]. As DNA fr a gments of plasmids and bacteria are intermingled
n metagenomic data [ 24 ], recognizing the transmission mecha-
isms and host ranges of plasmids can be challenging. To this
nd, it is crucial to annotate MOB types of metagenomic plas-
id fr a gments. Ho w e v er, this is difficult when plasmid assem-

l y fr a gments ar e incomplete and essential genes for annotation
r e lac king. Ther efor e, it is worthwhile to consider alternative
ethods. Given that plasmids of the same MOB type have similar
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tr ansmission mec hanisms and host r anges, their genomic signa- 
tures (e.g., GC content and codon usage) tend to also be alike, not 
onl y r elaxase [ 4 , 25 ]. In this context, neur al networks, whic h hav e 
demonstr ated str ong performance in the classification and iden- 
tification of biological sequences [ 26 , 27 ], could be useful. Further- 
mor e, langua ge models [ 28 , 29 ] deriv ed fr om suc h neur al networks 
have also showcased their impressive ability to characterize se- 
quence features [ 30 , 31 ]. In this methodology, short sequences 
of nucleotides (r eferr ed to as k -mers) or amino acids are anal- 
ogous to “w or ds,” and the longer sequences of DNA or proteins 
are analogous to “sentences .” T hrough the application of unsu- 
pervised learning on lar ge datasets, eac h “w or d” is linked to a fea- 
tur e v ector that ca ptur es its context, offering a more sophisticated 

analysis than the traditional k -mer frequency method, which sim- 
ply counts the occurrence of nucleotide sequences without ac- 
knowledging their biochemical characteristics. Unlike the conven- 
tional method, this language model-based approach assesses se- 
quences based on their contextual importance across different 
genetic en vironments , positioning contextually similar sequences 
close together in a multidimensional space . T his technique pro- 
vides deeper insights into the biochemical complexities of nu- 
cleotide sequences, thereby furnishing a more comprehensive 
understanding of an organism’s functional biology [ 32 ]. To char- 
acterize the features of plasmids within the same MOB type, we 
emplo y ed language models to perform the MOB annotation. In ad- 
dition to the relaxase-coding gene, language models exhibit the 
ability to ca ptur e mor e biological features and associations within 

comparable mobilization systems, making it possible to perform 

MOB annotation for metagenomic plasmid assemblies. 
T hus , we presented MOBFinder, a tool for annotating MOB types 

from plasmid metagenomic fragments (PMFs). MOBFinder can 

process single or multiple plasmid DNA sequences, and it provides 
predicted MOB types for each input fragment, including MOBB,
MOBC, MOBF, MOBH, MOBL, MOBM, MOBP, MOBQ, MOBT, MOBV,
and non-MOB. Mor eov er, it pr ovides the option to annotate plas- 
mid bins from metagenomics data. 

An ov ervie w of this w ork is sho wn in Fig. 1 A, and the de v elop-
ment of MOBFinder involved the following steps: (i) Benchmark 
dataset construction. Plasmid complete genomes obtained from 

the National Center for Biotechnology Information (NCBI) were 
classified into different MOB types based on relaxase databases.
Then, to simulate plasmid fragments in metagenomic data, an 

artificial benchmark dataset of varying lengths was generated. 
(ii) Word embeddings. Numerical word vectors wer e gener ated us- 
ing skip-gram to characterize the sequence features of different 
MOB categories. (iii) Classification model ensemble and optimiza- 
tion. Se v er al classification models, specifically designed for differ- 
ent lengths, were trained and integrated to predict fragments of 
differ ent lengths. Ev aluations a gainst a test dataset demonstr ated 

that MOBFinder is a po w erful tool for MOB typing of plasmid fr a g- 
ments and bins. Its application to a cohort of patients with type 
2 diabetes (T2D) r e v ealed a potential corr elation between some 
MOB types and the spread of antibiotic resistance genes among 
T2D patients . T his suggests that MOBFinder is an effective data 
anal ysis a ppr oac h for inv estigating plasmid-mediated horizontal 
gene transfer within microbial communities. 

Materials and Methods 

T he w orkflo w of MOBFinder 
To annotate the MOB type of plasmid fr a gments in meta ge- 
nomics, we designed MOBFinder (Fig. 1 ). As MOB-suite [ 17 , 18 ] 
id not offer a quantitati ve lik elihood score for the outcomes
nd some plasmids would be classified into multiple MOB types
 Supplementary Fig. S1 ), we constructed a benchmark dataset us-
ng a high-resolution MOB typing strategy for categorizing com- 
lete plasmid genomes (Fig. 1 B, C). Then, based on a language
odel and random forest, we designed an algorithm to perform
OB typing for PMFs (Fig. 1 D, E). 

OB typing of complete plasmid genomes 

r aditionall y, plasmid MOB typing of complete plasmid genomes 
as been a bioinformatics task based on the analysis of re-

axase sequence similarity. The practice of annotating MOB 

ypes through BLAST similarity searches using re presentati ve se-
uences of different MOB type relaxases has gradually evolved 

nto the standard method for MOB typing [ 4 , 17 , 18 ]. In this work,
e constructed a benchmark dataset of simulated metagenomic 

ontigs based on complete plasmid genomes with known MOB 

ypes. Pr e vious studies hav e included a r elativ el y small num-
er of plasmids in their analyses. To further expand the MOB
yping training dataset, we annotated the newly collected plas- 

id complete genome data for MOB typing according to relaxase 
nformation. 

Ten v alidated MOB r elaxase pr otein families were collected, in-
luding MOBB, MOBC, MOBF, MOBH, MOBL, MOBM, MOBP, MOBQ,
OBT, and MOBV [ 2 , 7–9 , 33 , 34 ] (Fig. 1 B). For each MOB cate-

ory, blastp ( RRID:SCR _ 001010 ) [ 35 ] was used to search homolo-
ous protein sequences against the NCBI nonredundant protein 

equence database, with an e-v alue thr eshold of 1e-10, a query cov-
rage threshold of 70%, and an identity threshold of 70%. A previ-
us study applied an e-value threshold of 1e-5 and minimum re-
uirements for query coverage and identity set at 50% [ 4 ]. Ho w e v er,
mploying these criteria, we observed that some relaxases were 
nnotated as belonging to multiple MOB types. To eliminate am- 
iguous annotations and construct a mor e r eliable dataset for the
raining of MOBFinder, we imposed the stricter criteria mentioned 

bo ve . After the expansion of protein sequences, local relaxase
atabases were built using the “makeblastdb” command for MOB 

yping of plasmid genomes. 
Plasmid genomes were retrieved from the NCBI nucleotide 

atabase using the k e yw or ds “complete” and “plasmid,” and in-
omplete fr a gments wer e r emov ed manuall y for further anal ysis.
he accession list of these plasmids is provided in Supplementary
able S1 . For each plasmid genome, coding sequences were ex-
r acted fr om the genebank file, and blastp [ 35 ] w as emplo y ed
o search for the best alignment of local relaxase databases.
ere, we defined the mob_score to measure the likelihood of
omology: 

mo b _ sco re = 

√ 

0 . 01 ∗qcov _ max ∗ ( 1 − 1 / log 10 ( bitscore _ max ) ) 

here qcov_max and bitscore_max represent the query coverage and 

itscore corresponding to the match with the highest bit score, re-
pectiv el y. To identify plasmid genomes encoding known relax- 
se families, we set a mob_score threshold of 0.5, which was estab-
ished in conjunction with a minimum query coverage of 50% and a

inimum bitscore of 100. To further enhance the reliability of our
lassification, we introduced an e-value cutoff, conservatively set 
t 1e-10, to complete the plasmid genome classification (Fig. 1 C).
n instances where plasmid genomes yielded no blast results or
xhibited an e-value exceeding 0.01, we categorized them as non-
OB. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae047#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_001010
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae047#supplementary-data
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F igure 1: Flo wc hart of the tec hnical a ppr oac h utilized in this study. (A) Gener al w orkflo w of the de v elopment and testing of MOBFinder. (B) Using 
plasmid relaxases with known MOB types as reference sequences, we developed a database of relaxases from the nonredundant (NR) database 
r epr esenting differ ent MOB types. (C) Utilizing the r elaxase database, complete plasmid genomes fr om the NCBI wer e subjected to MOB typing. 
(D) Those complete genomes were also used to train a 4-mer language model using the skip-gr am algorithm, allowing eac h 4-mer to be r epr esented by 
a 100-dimensional w or d vector. For a DNA fragment, the average w or d vector of all 4-mers on its sequence serves as the feature vector for that DNA. 
(E) We constructed simulated metagenomic contigs from the complete genomes that had been MOB typed as a benchmark and encoded these contigs 
into w or d vectors . T hen these w or d vectors w er e used to tr ain a r andom for est algorithm. Then the tr ained model, with meta genomic DNA fr a gments 
as input, was used to predict the MOB typing of the corresponding DNA fragment based on its w or d vectors. 
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ord embeddings using a language model 
o c har acterize the featur es and patterns within eac h MOB cate-
ory and use numerical w or d vectors to r epr esent them, we uti-
ized a skip-gram language model [ 28 , 29 ] to learn from plasmid
enomes. Using a sliding window, the model calculated the likeli-
ood between segmented words and outputted a probability dis-
ribution over the context w or ds. The training steps were as fol-
ows (Fig. 1 D): 

(1) Word generation. Since DNA sequences are composed of
differ ent nucleotide c har acters, we used a k -mer sliding
window to generate overlapping input w or ds . For example ,
with k = 4, “ATCGCTGA” would be segmented into “ATCG , ”
“TCGC, ” “CGCT, ” “GCTG , ” and “CTGA. ” In this step, unique
w or ds w er e gener ated. 

(2) Word encoding initialization. Each word was initially as-
signed a random vector. 

(3) Skip-gram model. We emplo y ed a standard skip-gram model
as described in pr e vious studies [ 28 , 29 ] to generate w or d
v ectors thr ough the dna2v ec module [ 29 ]. A 2-layer neur al
netw ork w as used to construct the skip-gram model. The
initialized v ectors wer e used as input, and the output was
a probability distribution over the input w or ds . La yer 1 was
a hidden layer to convert the initialized vectors into a 100-
dimensional w or d v ector r epr esentation as pr edefined by Ng
[ 29 ]. Lay er 2 w as used to compute and maximize the prob-
ability of the correct context w or ds using the negative sam-
pling function, with the size of context w or ds set to 20 (10
w or ds for upstream and downstream, respectively) as pre-
set by Ng [ 29 ]. 

(4) Model training. For each input plasmid genome, we used an
optimization algorithm to minimize the loss function. Then,
using the default settings, we used bac kpr opa gation to up-
date the neural network parameters (w or d vectors) for 10
epochs. 

(5) Word v ector extr action. After the tr aining pr ocess, the w or d
vectors in the hidden layer were extracted to characterize
the plasmid fr a gments. 

enchmark dataset construction 

ecause there are no real metagenomic data to serve as a bench-
ark, using simulated data as a benchmark dataset is a com-
on a ppr oac h when de v eloping bioinformatics tools [ 14 , 22 ].
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Ther efor e, in the de v elopment of MOBFinder, we artificiall y gen- 
er ated sim ulated datasets thr ough the following steps: 

(1) For classified plasmid genomes in each MOB category, we 
r andoml y split them at a proportion of 70% and 30% to con- 
struct the training and test datasets. 

(2) T raining dataset. T o pr edict plasmid fr a gments with differ- 
ent lengths, we generated contigs of different length ranges: 
100–400 bp , 401–800 bp , 801–1,200 bp , and 1,201–1,600 bp . For 
each MOB class in each length range, we randomly gener- 
ated 90,000 artificial contigs. Plasmid fr a gments longer than 

1,600 bp were segmented into shorter contigs and predicted 

using models designed for the corresponding lengths. 
(3) Test dataset. Because some plasmid fr a gments in real 

metagenomics datasets were much longer, we generated 

4 length groups to assess the performance of MOBFinder: 
group A with a length range of 801–1,200 bp, group B with a 
length range of 1,201–1,600 bp, group C with a length range 
of 3,000–4,000 bp, and group D with a length range of 5,000–
10,000 bp. For each MOB class in these 4 groups, 500 frag- 
ments were randomly extracted. 

Classification algorithm 

To efficiently handle the training dataset and improve the robust- 
ness of MOBFinder, w e emplo y ed random forest to train 4 predic- 
tive models using the training dataset. The detailed steps are as 
follows (Fig. 1 E): 

(1) Word r epr esentation calculation. For eac h contig in the 
training dataset, we used a 4-mer sliding window to gener- 
ate ov erla pping w or ds and transformed them into numerical 
w or d vectors using trained w or d embeddings. To character- 
ize the underlying features and patterns of the input contigs,
we summed all the word vectors to compute their average as 
input of random forest. 

(2) Classification model training. To improve the performance 
of MOBFinder, we trained 4 classification models on different 
lengths in the training dataset: 100–400 bp , 401–800 bp , 801–
1,200 bp, and 1,201–1,600 bp. The number of trees was set to 
500 to generate predictive models. 

(3) Model ensemble . T he 4 tr ained models wer e ensembled into 
MOBFinder to make more accurate predictions. For frag- 
ments shorter than 100 bp, we used a model designed for 
100–400 bp to predict the MOB type. For those longer than 

1,600 bp, we segmented them into short contigs and made 
predictions using the corresponding model. For example, a 
fr a gment with a length of 4,000 bp would be segmented 

into 3 contigs: 2 with a length of 1,600 bp and 1 of 800 bp.
After pr edicting fr a gments with the corr esponding models,
we a ggr egated and calculated the weighted av er a ge scor es 
for each MOB class, and the MOB type with the highest 
score was selected as the final pr ediction r esult for the input 
fr a gment. 

(4) Plasmid bin classification. Metagenomic binning is an essen- 
tial step in the reconstruction of genomes from individual 
micr oor ganisms . T hus , we designed MOBFinder to perform 

MOB typing on both plasmid contigs and plasmid bins. If the 
input is a plasmid bin, MOBFinder predicts the likelihood of 
each MOB class for fragments within the bin. For each MOB 

category, MOBFinder a ggr egates the scor es of eac h sequence 
within the bin and calculates the weighted av er a ge scor es 
based on the sequence length. The MOB category with the 
maxim um scor e is selected as the pr ediction r esult. 
erformance v alida tion 

 test dataset was used to assess the performance of MOBFinder
nd compare it to MOB-suite and MOBscan. Because MOBscan can
nl y pr edict MOB type using plasmid protein sequences rather
han DN A sequences, w e first annotated the proteins in the plas-

id fr a gments of the test set using Prokka ( RRID:SCR _ 014732 ) [ 36 ]
nd then used MOBscan to predict the MOB type based on the
nnotated proteins. We calculated ov er all accuracy , kappa , and run
ime by comparing the predicted classes and true classes. We used
he online server of MOBscan to perform the MOB annotation, and
he calculation of run time for MOBScan was confined to the du-
ation spent on preprocessing with Prokka locally. The ov er all ac-
urac y w as the proportion of accur ate pr edictions . T he kappa (a)
as calculated to assess the ov er all consistency between the pre-
ictions and true classes, which took into account the possibil-

ty of random prediction. Po represented observed accuracy [ Po =
 A 11 + A 22 + … + Ann )/ N ], where A 11 , A 22 , and Ann represented the
alues on the diagonal of the confusion matrix and n represented
he number of MOB categories. N r epr esented the total number
f samples. Pe represented the expected accuracy [ Pe = ( E 11 +
 22 + … + Enn )/ N 

2 ], where E 11 , E 22 , and Enn were the expected val-
es in each cell of the confusion matrix; n was the number of MOB
lasses; and N was the total number of samples . T he run time was
ecorded using the command “time” in Linux. 

kappa = ( Po − Pe ) / ( 1 − Pe ) ( a ) 
balanced accuracy = ( T PR + T NR ) / 2 ( b ) 
harmonic mean = 2 ∗ Sn ∗ Sp/ ( Sn + Sp ) ( c ) 
F 1 − score = 2 ∗ precision ∗ recall / ( precision + recall ) ( d ) 

For each MOB category, we also calculated the balanced accuracy
b), harmonic mean (c), and F1-score (d). Considering the class im-
alance within the training dataset, balanced accuracy was used to
easure the average accuracy of each MOB category, where TPR
as the true-positive rate [ TRP = true positives/(true positives +

alse negatives)] and TNR was the true-negative rate [ TNR = true
egati ves/(true negati ves + false positives)]. The harmonic mean
ro vided an o verall evaluation of the model’s performance, where
n and Sp r epr esented sensitivity [ Sn = true positives/(true posi-
ives + false negatives)] and specificity [ Sp = true negatives/(true
egatives + false positiv es)], r espectiv el y. The F1-score combined
recision and recall , providing a balanced measure of the model’s
erformance, where precision was the number of correct positive 
redictions out of all positive predictions [ precision = true posi-
i ves/(true positi ves + false positives)] and recall was the number
f corr ect positiv e pr edictions out of all actual positiv e pr edictions.
 recall = true positives/(true positives + false negatives)]. 

A r eceiv er oper ating c har acteristic (ROC) curv e was used to vi-
ualize the performance of MOBFinder in pr edicting eac h MOB
ategory, where the x-axis and y-axis were the false-positive rate
 FPR ) and true-positiv e r ate ( TPR ). Plots closer to the left and top
ndicate higher TPR and lo w er FPR , which means better perfor-

ance. For each MOB class, the area under the curve (AUC) value
as calculated to quantify the performance of MOBFinder. An 

UC value between 0.5 and 1 indicates that the model performs
etter than random chance, and a higher AUC value indicates bet-
er prediction capability. 

nnotation and analysis of T2D metagenomic 

ata 

etagenomic sequencing data (SRA045646 and SRA050230) were 
 etrie v ed fr om the NCBI Short Read Arc hiv e (SRA) database to
nvestigate whether the plasmids within different MOB classes 

https://scicrunch.org/resolver/RRID:SCR_014732
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T able 2: Number , av er a ge length, and GC content of plasmid genomes for eac h MOB type 

Class Number Average length GC (%) 

MOBB 623 10,921.77 51 .27 
MOBC 3,218 19,965.28 47 .14 
MOBF 21,268 103,802.80 52 .07 
MOBH 4,880 151,108.10 48 .37 
MOBL 3,446 51,430.63 34 .57 
MOBM 1,761 2,684.14 27 .12 
MOBP 15,617 32,237.88 49 .70 
MOBQ 9,347 89,357.64 56 .77 
MOBT 1,181 11,643.24 36 .92 
MOBV 4,405 6,595.43 37 .75 
Non-MOB 24,649 37,581.85 49 .84 

Figure 2: Benchmark dataset construction using a high-resolution strategy. (A) Proportion of classified plasmid genomes. A confidence level of “sure”
means that the classified plasmid genomes had a mob_score of more than 0.5 and an e-value of less than 1e-10, while “possible” did not. Plasmid 
genomes identified as “sur e” wer e used to generate benchmark datasets. Non-MOB, nonmobilizable plasmid. (B) Host range of the classified plasmid 
genomes at the genus le v el. Differ ent colors r epr esent differ ent gener a, and gener a accounting for less than 5% of the total abundance ar e gr ouped 
under the category “other.”
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a  
ere associated with antibiotic resistance enrichment in T2D
atients, as suggested by pr e vious studies [ 37 , 38 ]. All metage-
omic data were preprocessed using the same protocols. PRINSEQ
 RRID:SCR _ 005454 ) [ 39 ] was used to r emov e low-quality r eads and
owtie2 ( RRID:SCR _ 016368 ) [ 40 ] was used to r emov e host reads
y aligning them to the human GRCH38 r efer ence genome down-
oaded from the ENSEMBL database. We excluded metagenomic
amples that did not pass quality control. Because the abun-
ance of plasmids in metagenomes was much lo w er than that
f bacteria, we only retained samples with more than 10,000,000
air ed-end r eads for downstr eam anal ysis ( Supplementary
able S2 ). 

To impr ov e the efficiency and accuracy of assembly, we used
EGAHIT ( RRID:SCR _ 018551 ) [ 41 ] to gener ate meta genomic con-

igs. PPR-Meta ( RRID:SCR _ 016915 ) [ 22 ] was utilized to identify and
xtract plasmid fragments from the assembled fragments while
ltering out bacteria and phage sequences . COC ACOLA [ 42 ] was
mplo y ed to cluster plasmid fr a gments into bins based on se-
uence similarity and composition. This allo w ed us to investigate
he plasmid fr a gments fr om same originate and enabled better
nnotation and analysis of their functions. 

MOBFinder was applied to annotate the MOB types in each
lasmid bin. The av er a ge fr a gments per kilobase per million of
ach plasmid bin was calculated using bowtie2 to r epr esent its
bundance. Next, we analyzed the significance of differences
n plasmid bins and various MOB types between healthy and
2D groups using the Wilcoxon rank-sum test. The calcula-

ion of P values was adjusted for multiple comparisons using
he Benjamini–Hoc hber g method (denoted as p.adjust ). ABRicate
 RRID:SCR _ 021093 ) [ 43 ] was utilized to annotate antibiotic resis-
ance genes ( identity > 50% and qcov > 50%) in each plasmid bin,
ased on 4 antibiotic resistance gene databases [ 44–47 ]. The Tuk e y
onest significant difference test was performed to compare the

dentified resistance genes among different MOB classes. All sta-
istical analyses were conducted using R. 

esults 

OB typing of plasmid genomes 

o construct the benchmark datasets, we obtained 90,395
omplete plasmid genomes and categorized them into 11 MOB
ategories using blast (Table 2 ). We r emov ed 22,470 of them poten-
ially classified into more than 1 MOB class , lea ving 67,925 clas-
ified genomes for the training and optimization of MOBFinder
Fig. 2 A). Our analysis results revealed significant differences in
he number, av er a ge length, and GC content of plasmid genomes
mong MOB types. Notably, non-MOB types included the genomes

https://scicrunch.org/resolver/RRID:SCR_005454
https://scicrunch.org/resolver/RRID:SCR_016368
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae047#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_018551
https://scicrunch.org/resolver/RRID:SCR_016915
https://scicrunch.org/resolver/RRID:SCR_021093
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Figure 3: Ov er all performance of MOBFinder and comparison to MOB-suite and MOBScan. Ev aluation and comparison in terms of (A) accuracy , 
(B) kappa , and (C) run time (C). The 4 fr a gment length groups in the test dataset were group A (801–1,200 bp), group B (1,201–1,600 bp), group C 

(3,000–4,000 bp), and group D (5,000–10,000bp). (D) For each MOB type, the balanced accuracy , harmonic mean , and F1-score were used to assess the 
performance of MOBFinder and compared to MOB-suite and MOBscan. Since MOB-suite and MOBscan do not include the prediction of MOBL, only the 
results of MOBL from MOBFinder are provided. MOBFinder, MOB-suite, and MOBscan are represented by blue lines, orange lines, and gray lines, 
r espectiv el y. 
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with the most and longest av er a ge length, wher eas MOBB and 

MOBM had the fewest plasmid genomes and shortest av er a ge 
length, r espectiv el y. In terms of GC content, MOBL had the low- 
est and MOBQ had the highest amounts . Moreo ver, plasmids of 
different MOB types exhibited diverse host ranges at the genus 
le v el (Fig. 2 B). MOBB was pr edominantl y found in Bacteroides , Hy- 
menobacter , Parabacteroides , Phocaeicola , and Spirosoma . P articularl y,
Phocaeicola has been detected in the human gut and possessed the 
gene for por phyr an degr adation thr ough horizontal gene tr ansfer 
[ 48 ]. MOBC, MOBF, MOBH, and MOBP were all found in Escherichia 
and Klebsiella . Klebsiella also is a m ultidrug-r esistant bacterium 

that has demonstrated resistance to multiple antibiotics [ 49 ].
MOBL, MOBT, and MOBV were mainly discovered in Bacillus and En- 
terococcus . Almost all MOBM-type plasmid genomes were present 
in Clostridium and Enterocloster , and some species in Clostridium 

could cause various diseases [ 50 ]. MOBQ demonstrated a broader 
host range, including Acinetobacter , Agrobacterium , Esc heric hia , Rhi- 
zobium , Lactiplantibacillus , and Staphylococcus . Non-MOB plasmids 
were detected in the majority of bacteria. These results illus- 
tr ate the r elationship between differ ent MOB types and their host 
anges, as well as demonstrate that MOB typing of plasmid frag-
ents is feasible in the absence of relaxases. 

verall performance of MOBFinder 
e e v aluated the ov er all performance of MOBFinder in terms of

ccuracy , kappa , and run time and compared the tool to MOBscan
nd MOB-suite. MOBscan did not perform well, ac hie ving low ac-
uracy and kappa values across sequences of varying lengths, while
OB-suite exhibited mar ginall y better performance than MOB- 

can when handling sequences of greater length (Fig. 3 A, B). In
omparison, the accuracy of MOBFinder ranged from 70% to 77%, a
ignificant impr ov ement of at least 59% ov er MOB-suite (Fig. 3 A).
he kappa of MOBFinder ranged between 67% and 75% and was
 ppr oximatel y 65% higher than that of MOB-suite (Fig. 3 B). More-
ver, MOBFinder exhibited a shorter run time in the test dataset,
ith a more gradual increase trend (Fig. 3 C). In general, these

esults indicate that MOBFinder greatly outperformed the other 
ools and consistently improved in accuracy and consistency as 
he sequence length increased. 
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F igure 4: R OC curv es and AUC v alues for MOBFinder. The curv es wer e plotted using the output scor es of MOBFinder, and the AUC v alues wer e 
calculated to quantify the performance of the tool for each MOB class. 
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v alua tion b y MOB ca tegory 

ext, to e v aluate the discrimination ability of MOBFinder for eac h
OB type, we calculated the balanced accuracy , harmonic mean , and

1-score using the test dataset (Fig. 3 D). It demonstrated the high-
st performance for MOBB and MOBM, while its ability to identify
on-MOB types was compar ativ el y low. For MOBM, the balanced
ccuracy and harmonic mean r eac hed up to 99% and the F1-score
xceeded 96% for all length groups. For non-MOB, the balanced ac-
urac y w as 65%, the harmonic mean w as 49%, and the F1-score w as
0%. Compared to MOB-suite, MOBFinder exhibited m uc h better
erformance in predicting all MOB classes. Even for non-MOB, it
ho w ed an a ppr oximate 13% impr ov ement ov er the other tools in
erms of balanced accuracy , 34% in terms of harmonic mean , and 24%
n terms of F1-score . 

In AUC analyses (Fig. 4 ), all values were greater than 0.8, in-
icating that the tool effectiv el y distinguished between positive
nd negative samples in each MOB class. In fact, most values were
igher than 0.9, except for MOBT and non-MOB. The performance
ifferences by MOB type might be attributable to the differences

n host ranges and sequence features among types. Additionally,
he imbalance in the training dataset for each MOB type may also
e a primary factor contributing to the performance disparities. 

pplication to T2D metagenomic data 

n a pr e vious study, enric hment anal ysis of fecal samples iden-
ified antibiotic resistance pathways in patients with T2D [ 38 ].
he precise mechanism of this enrichment, ho w ever, remained
lusive. We used MOBFinder to anal yze r eal T2D meta genomic
ata [ 37 ]. After pr epr ocessing and assembl y, 2,217,064 meta ge-
omic fr a gments wer e gener ated, and plasmid assemblies were

dentified using PPR-Meta. Subsequently, the plasmid fragments
er e cluster ed into 55 bins and annotated using MOBFinder. By
mplo ying MOBFinder, w e assigned 2 bins to the MOBF class, 8
ins to MOBL, and 17 bins to MOBQ and identified 28 bins as
on-MOB (Fig. 5 A). Furthermore, we detected 15 bins that exhib-
ted significant differences between the T2D group and a control
roup. Among them, 1 bin was classified as MOBF, 2 as MOBL, 5 as
OBQ, and 7 as non-MOB ( Supplementary Fig. S2 ). Among above
OB types, MOBQ contains the highest number of bins enriched

n T2D, while MOBF is widely present in Escherichia and Klebsiella
Fig. 2 B); some strains of Klebsiella are resistant to multiple antibi-
tics, including carbapenems [ 51 ], and these 2 MOB types might
ontribute to antibiotic resistance in T2D patients. Indeed, when
e compared the average abundance of each MOB type between

he T2D group and the control group (Fig. 5 B), the abundances of
OBF and MOBQ were significantly greater in the T2D group. 
In addition, these 2 MOB types can be tr ansferr ed among m ul-

iple bacterial species . T his suggests that an increase in these 2
OB types could potentially raise the risk of bacterial infection

mong individuals with T2D. Subsequently, we used 4 databases
 44–47 ] to detect drug resistance genes in 4 MOB types (Fig. 6 ). The
umber of such genes was significantly higher in MOBF than in
he other 3 MOB types . T his suggests that MOBF plasmids may
arry more drug resistance genes than the other MOB types. Fur-
hermor e, the incr ease in MOBF and MOBQ plasmids could result
n more bacteria acquiring drug resistance genes, thereby leading
o more antibiotic resistance pathways in T2D patients. In sum-

ary, our r esults demonstr ate the utility of MOBFinder for anno-
ating plasmid fr a gments in meta genomes , unco vering the poten-
ial mechanisms underlying the antibiotic resistance enrichment
n metagenomic analysis. 

se of MOBFinder 
OBFinder can predict the MOB type of plasmid fr a gments and

ins in metagenomics. For PMFs, it takes a FASTA file as input.
he output file consists of 13 columns . T he first column r epr esents
he fr a gment ID, the second column displays the predicted MOB
ype, and columns 3 to 13 r epr esent the scor es for eac h MOB class,
amely , MOBB, MOBC, MOBF , MOBH, MOBL, MOBM, MOBP , MOBQ,
OBT, MOBV, and non-MOB. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae047#supplementary-data
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Figure 5: Annotation of T2D-related plasmid bins using MOBFinder. (A) Heatmap of plasmid bins between T2D patients and controls. Each column 
r epr esents a sample, and eac h r ow r epr esents a plasmid bin. (B) Comparison of the abundance of the 4 identified MOB types between T2D patients and 
controls . T he P value was calculated using the Wilcoxon rank-sum test, adjusted using the Benjamini–Hochberg method for multiple comparisons 
( ∗P-adjust < 0.05, ∗∗P-adjust < 0.01, and ∗∗∗P-adjust < 0.001). 

Figure 6: Comparison of resistance genes among different MOB types. Four databases were used to identify antibiotic resistance gene within each 
MOB type, and the P value was calculated using the Tuk e y honest significant difference test. The 2 groups without significance markings indicate no 
statistical difference ( ∗P-adjust < 0.05, ∗∗P-adjust < 0.01, and ∗∗∗P-adjust < 0.001). 
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For plasmid metagenomic bins, MOBFinder requires 2 input
les: a FASTA file containing the plasmid fr a gments and a metat-
ble that records the mapping between plasmid fr a gment IDs
nd bin IDs . T he output r esults ar e similar to those of plasmid
r a gments . T he first column is the plasmid bin ID. The second is
he predicted MOB class of the plasmid bins . T he other columns
resent the MOB scores of the different MOB types. 

iscussion 

e de v eloped MOBFinder based on a langua ge model and the
 andom for est algorithm to classify plasmid fr a gments and bins
r om meta genomics data into MOB types. First, using the r elaxase-
lignment method, plasmid genomes were classified into distinct
OB categories. Anal yses r e v ealed substantial differences in pa-

 ameters suc h as the number, av er a ge length, and GC content
f plasmid genomes across MOB types. Additionally, there were
ote worthy differ ences in the host ranges among different MOB
lasses . T hese results suggest the potential of utilizing sequence
eatur es fr om differ ent MOB types for PMF MOB typing. To char-
cterize the plasmids within each MOB type, we used the skip-
ram model to generate w or d vectors. Our tool demonstrated su-
erior ov er all performance compar ed to other tools. Specifically,
or each MOB category, MOBFinder exhibited significant impr ov e-

ents in balanced accuracy , harmonic mean , and F1-score , with val-
es r eac hing up to 99% for the first 2 measures in the MOBM
ategory. 

Tr aditionall y, k -mer fr equency models and one-hot encoding
av e commonl y been emplo y ed to dig itize biolog ical sequences,
xtensiv el y a pplied acr oss v arious mac hine learning algorithms
 52 ]. Ho w e v er, both models simply mark or count the frequency
f v arious c har acters in sequences, failing to r eflect the biological
ignificance underl ying eac h c har acter. T hese models ma y also
ncounter dimensionality issues [ 52 ]. For instance, in the k -mer
odel, if k is set to 8, the dimensionality of the k -mer vector of

ach DNA sequence becomes 4 8 , which is problematic in metage-
omics where most fragment lengths do not reach this magni-
ude . T his would result in significant noise in the feature vector
nd cause ov erfitting. Similarl y, in the one-hot model, for a se-
uence of length L using 4-mers as the base unit, it would r equir e
 one-hot v ectors eac h with a dimensionality of 4 4 . In such in-
tances, if the dataset for training is not sufficiently large, this
 epr esentation method could also lead to overfitting due to high
imensionality. In contrast, w or d vector models offer a superior
olution to these pr oblems. Suc h models initially perform a ran-
om initialization of vectors for each “w or d.” Taking the skip-gram
lgorithm utilized in this study as an example, the dimension of
 r andom v ector can be 1-of- n , wher e n r epr esents the size of
he v ocabulary [ 28 ]. Follo wing unsupervised pr etr aining on lar ge
atasets, the algorithm maps characters with similar contexts to
imilar feature spaces . T he dimensions of the coordinates (i.e., the
 or d vectors) of these feature spaces will be lo w er than those
f the initial r andom v ectors . T hus , thr ough unsupervised pr e-
r aining on lar ge datasets, langua ge models can compress high-
imensional initial vectors into lo w er-dimensional w or d vectors

e.g., MOBFinder’s w or d v ectors hav e a dimensionality of 100), en-
bling the feature vectors to contain more character informa-
ion while effectiv el y avoiding dimensionality issues during su-
ervised training. 

In a metagenomic sequences classification task, 4-mer is
idely used as the basic unit in various bioinformatics tools [ 53 ],
nd thus MOBFinder takes this as a “w or d.” To assess the impact
f training w or d vectors with different k -mer lengths on perfor-
ance, we compared models with k -mer lengths of 2, 3, 4, 5, 6,
, and 8 ( Supplementary Fig. S3 ). We observed lo w er ov er all ac-
uracy and kappa values for k = 2. At k = 4, the balanced accu-
acy , harmonic mean , F1-score , and AUC v alues stabilized acr oss dif-
er ent MOB types. Subsequentl y, as the k -mer length incr eased,
here was no significant improvement in accuracy or other met-
ics, while the run time gr aduall y incr eased. Ther efor e, we c hose
 k -mer length of 4 for training w or d vectors and developing
OBFinder. 
Inter estingl y, in an anal ysis of T2D meta genomic sequencing

ata [ 37 ], we noted a significant increase in MOBF and MOBQ type
lasmids in T2D patients . Moreo ver, we found more drug resis-
ance genes in the MOBF class, whose dominant hosts are Klebsiella
nd Esc heric hia , whic h ar e associated with the spr ead of m ultidrug
 esistance. Although pr e vious anal yses of gut meta genomic data
rom patients with T2D have reported enrichment of drug resis-
ance pathways [ 38 ], our results suggest a potential reason for it:
he increased abundance of MOBF- and MOBQ-type plasmids in
he guts of individuals with T2D may disseminate more antibiotic
 esistance genes, r esulting in suc h enric hment. 

At present, databases contain a large amount of human
eta genomic data deriv ed fr om second-gener ation sequencing.
o w e v er, understanding of the functions of numerous disease-

inked microbial sequences remains limited, attributable to the
ncomplete nature of metagenomic fragments . T he development
f MOBFinder enables MOB annotation for plasmid fr a gments
r om meta genomics data and pr ovides a po w erful tool for inves-
igating the transmission mechanisms of plasmid-mediated an-
ibiotic resistance genes and virulence factors. 

onclusions 

n summary, MOBFinder is a tool for MOB typing of plasmid fr a g-
ents and bins from metagenomic data. Analyses of classified

lasmid genomes unveiled notable differences in sequence char-
cteristics and host ranges across MOB types . Hence , w e emplo y ed
 language model to extract the sequence features specific to
ach MOB type and represented them using w or d vectors. Addi-
ionally, we boosted prediction accuracy by training and integrat-
ng se v er al r andom for est classification models. MOBFinder sur-
assed other tools in performance tests and successfully detected
n increase in certain MOB-type plasmids in T2D patients. Im-
ortantly, these MOB-type plasmids harbor potential drug resis-
ance genes, thus offering an explanation for the observed antibi-
tic resistance in T2D individuals . T his suggests that MOBFinder
ould potentially aid the formulation of specific medications to
urb drug resistance transmission. We anticipate that MOBFinder
ill be a po w erful tool for the analysis of plasmid-mediated

ransmission. 

vailability of Source Code and 

equirements 

� Project name: MOBFinder 
� Pr oject homepa ge: https:// github.com/ FengTaoSMU/

MOBFinder
� Operating system(s): Linux 
� Pr ogr amming langua ge: Python, R script 
� Other r equir ements: BLAST, biopython 

� License: GPL-3.0 
� RRID:SCR _ 024451 
� biotoolsID: MOBFinder 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae047#supplementary-data
https://github.com/FengTaoSMU/MOBFinder
https://scicrunch.org/resolver/RRID:SCR_024451
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Additional Files 

Supplementary Table S1. Accessions list of classified plasmid 

genomes. 
Supplementary Table S2. List of metagenomic samples used in 

our analysis. 
Supplementary Fig. S1. MOB typing using MOB-suite. Single-class, 
plasmid genomes classified into 1 MOB type; multiclass, plasmid 

genomes classified into more than 1 MOB category; non-MOB,
nonmobilizable plasmids. 
Supplementary Fig. S2. Abundance of each significantly different 
plasmid bin from various MOB types between patients with type 
2 diabetes and controls. 
Supplementary Fig. S3. Comparison results for the development 
of MOBFinder using w or d vectors trained with different k -mer 
lengths. (A–C) Ov er all accuracy , kappa , and run time of the MOB clas- 
sification model trained with w or d vectors trained using different 
lengths of k -mers. (D) Balanced accuracy , harmonic mean , F1-score ,
and AUC of w or d v ectors tr ained with differ ent k -mer lengths 
acr oss differ ent MOB types. 
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