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Abstract

New protein-coding genes can evolve from previously noncoding genomic regions through a process known as de novo gene 
emergence. Evidence suggests that this process has likely occurred throughout evolution and across the tree of life. Yet, con-
fidently identifying de novo emerged genes remains challenging. Ancestral sequence reconstruction is a promising approach 
for inferring whether a gene has emerged de novo or not, as it allows us to inspect whether a given genomic locus ancestrally 
harbored protein-coding capacity. However, the use of ancestral sequence reconstruction in the context of de novo emergence 
is still in its infancy and its capabilities, limitations, and overall potential are largely unknown. Notably, it is difficult to formally 
evaluate the protein-coding capacity of ancestral sequences, particularly when new gene candidates are short. How well-sui-
ted is ancestral sequence reconstruction as a tool for the detection and study of de novo genes? Here, we address this question 
by designing an ancestral sequence reconstruction workflow incorporating different tools and sets of parameters and by intro-
ducing a formal criterion that allows to estimate, within a desired level of confidence, when protein-coding capacity originated 
at a particular locus. Applying this workflow on ∼2,600 short, annotated budding yeast genes (<1,000 nucleotides), we found 
that ancestral sequence reconstruction robustly predicts an ancient origin for the most widely conserved genes, which consti-
tute “easy” cases. For less robust cases, we calculated a randomization-based empirical P-value estimating whether the ob-
served conservation between the extant and ancestral reading frame could be attributed to chance. This formal criterion 
allowed us to pinpoint a branch of origin for most of the less robust cases, identifying 49 genes that can unequivocally be con-
sidered de novo originated since the split of the Saccharomyces genus, including 37 Saccharomyces cerevisiae-specific genes. 
We find that for the remaining equivocal cases we cannot rule out different evolutionary scenarios including rapid evolution, 
multiple gene losses, or a recent de novo origin. Overall, our findings suggest that ancestral sequence reconstruction is a valu-
able tool to study de novo gene emergence but should be applied with caution and awareness of its limitations.
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Significance
During evolution, entirely novel genes can arise “from scratch” in regions of the genome that previously had no function as 
genes. Accurately detecting such genes and studying the process by which they evolved are challenging. One approach to do 
so is to computationally reconstruct the ancestral state of a novel gene, but the robustness and suitability of this approach are 
unclear. Here, we constructed a computational workflow to apply this ancestral sequence reconstruction approach to short 
genes in budding yeast. We found that it performs well in capturing the ancient origins of widely conserved genes while also 
providing solid evidence for the recent evolutionary origin of a small number of cases. However, this approach should be ap-
plied with caution and awareness of its limitations, since it gives ambiguous results for approximately a quarter of cases.
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Introduction
How new genes originate is a fundamental question in 
biology because genetic novelty underlies molecular, 
phenotypic, and organismal novelty (Kaessmann 2010). 
Understanding how and when novel genes arise is therefore 
essential to understand evolution at every level of biological 
organization. For a long time, new genes and protein func-
tions were believed to result exclusively through tinkering 
and recombination, using preexisting genes and gene parts 
as raw material (Tautz 2014). Consequently, processes such 
as substitutions, duplication, and divergence, gene fusion 
and fission, exon shuffling, or horizontal gene transfer 
(HGT) have been extensively studied and their importance 
is established.

Nonetheless, a radically different route to genetic nov-
elty exists: a novel gene can evolve from entirely noncoding 
sequences in a process known as de novo gene emergence 
(McLysaght and Guerzoni 2015; Oss and Carvunis 2019). 
Long considered so improbable as to be impossible (Jacob 
1977), de novo gene emergence has high potential to pro-
duce an entirely new protein function since noncoding se-
quences are free of the constraints acting on preexisting 
coding sequences. De novo genes have been found in every 
eukaryotic lineage studied so far and can have central cellu-
lar functions (McLysaght and Guerzoni 2015). This has led 
to de novo emergence being increasingly viewed as a uni-
versal evolutionary mechanism.

It is challenging to distinguish whether a new gene has 
emerged de novo or through other evolutionary processes. 
Indeed, rapid sequence divergence beyond recognition fol-
lowing events such as duplications or rearrangements, as 
well as HGT, can also result in a gene appearing to be novel 
or taxonomically restricted (Vakirlis, Carvunis, et al. 2020; 
Weisman et al. 2020). It is thus important to develop robust 
methods for distinguishing between these different evolu-
tionary routes, in order to assess the impact of de novo 
gene emergence and study the characteristics and function 
of de novo genes.

Evidence for de novo gene emergence can be provided by 
computational comparative genetics approaches (Vakirlis and 
McLysaght 2019). The strongest kind of evidence is confident-
ly inferring that the genomic locus that now harbors a novel 
gene in a given lineage did not encode a protein sequence 
in the past. Until recently, the gold standard was to align 
the novel gene to its orthologous regions in multiple out- 
group species and demonstrate that these out-group loci 
were noncoding by identifying specific mutations that en-
abled the presence of an open reading frame (ORF) in the gen-
ome of interest. Parsimoniously one can then infer that the 
ancestral state of the positions in question was such that dis-
rupted the ORF currently present in the focal lineage.

However, visually inspecting such alignments does not 
always result in clear-cut conclusions. It is especially delicate 

to draw robust conclusions when the candidate new genes 
are short and when alignments contain frameshifts. In such 
tricky cases, conclusions are typically drawn based on a per-
sonal judgement call rather than a formal test. A potentially 
more powerful and accurate approach is to use ancestral 
sequence reconstruction (ASR). ASR allows both estimating 
whether an ancestral sequence contained an ORF or not, as 
well as tracing the mutational transition from noncoding to 
coding. Thus, the application of ASR to the task of de novo 
gene detection could be a potent tool to gain insights into 
this evolutionary process.

ASR has mostly been used in the context of protein align-
ments in order to reconstruct ancestral protein sequences 
from extant ones (Hochberg and Thornton 2017). Only a 
handful of studies have applied ASR to de novo genes 
(Vakirlis, Acar, et al. 2020; Lange et al. 2021; 
Papadopoulos et al. 2021; Vakirlis et al. 2018, 2022; 
Peng and Zhao 2024; Sandmann et al. 2023) thus far, 
and an in depth assessment of its performance and limita-
tions is lacking. Here, we evaluate how reliably existing ASR 
tools can estimate the emergence date of short ORFs anno-
tated in the budding yeast Saccharomyces cerevisiae’s gen-
ome. Using reading frame conservation (RFC) between an 
ORF and its inferred ancestor as a quantitative measure of 
ORF age, we conclude that ASR allows robust evolutionary 
inference for ancient genes but should be used with cau-
tion to infer recent events of de novo gene emergence.

Materials and Methods

Description of the Data Set

Our initial data set consisted of 2,816 annotated protein- 
coding genes of S. cerevisiae that were included in the data 
set analyzed by Vakirlis, Acar, et al. (2020) and were under 
1,000 nt long. The orthologous regions for each of these 
genes in seven Saccharomyces species (Saccharomyces para-
doxus, Saccharomyces mikatae, Saccharomyces kudriavzevii, 
Saccharomyces uvarum, Saccharomyces jurei, Saccharomyces 
arboricola, and Saccharomyces eubayanus) were identified as 
follows: first, genomes were obtained from the following 
sources: S. paradoxus from Liti et al. (2009), S. arboricolus 
from Liti et al. (2013), S. jurei from Naseeb et al. (2017), 
and S. mikatae, S. bayanus var. uvarum, S. eubayanus, and 
S. kudriavzevii from Scannell et al. (2011). Alignments were 
constructed between each S. cerevisiae ORF and its homo-
logs in each Saccharomyces relative using synteny informa-
tion. To identify anchor genes for syntenic blocks, BLASTP 
(Altschul et al. 1997) was run for each annotated ORF in 
S. cerevisiae against each ORF in the comparison species. 
Identified homolog pairs with E < 10−7 were selected as po-
tential anchors. For each ORF in the S. cerevisiae genome, 
the upstream anchor G0 and downstream anchor G1 were 
selected that minimized the sum of the distance between 
the anchors in S. cerevisiae and the distance between the 
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anchors in the comparison species; this sum was required to 
be less than 60 kb. The sequence between and including G0 
and G1 was then extracted from both the S. cerevisiae gen-
ome and the comparison species and a pairwise alignment 
of the syntenic region was generated using MUSCLE 
v.3.8.31. Multiple sequence alignments of the exact S. cere-
visiae gene locus to its orthologous Saccharomyces genomic 
regions were generated with MAFFT (Katoh and Standley 
2013) using default parameters. We removed 183 S. cerevi-
siae genes from the data set because the orthologous region 
of S. cerevisiae could only be identified in less than six other 
Saccharomyces species, or it contained >1,000 gaps/se-
quence. For the remaining 2,633 genes, we also generated 
an alternative, extended version of the multiple sequence 
alignments by including 500 nt flanking the S. cerevisiae 
ORF downstream and upstream. For each S. cerevisiae 
gene, we collected gene and protein properties from 
Carvunis et al. (2012) and Vakirlis, Acar, et al. (2020). We 
also performed protein-level sequence similarity searches for 
every gene, against a protein sequence database containing 
all fungal proteomes downloaded from NCBI’s RefSeq in 
May 2021 plus the 332 Saccharomycotina proteomes from 
Shen et al. (2018). This search was conducted with BLASTP 
(Altschul et al. 1997) using an E-value cutoff of 0.001 and 
the -max_target_seqs flag set to 1,000. The results of the 
similarity searches were processed as in Stavropoulou et al. 
(2022): for each gene, we first obtained the list of all fungal 
species with a significant similarity match. Phylogenetic age 
of each gene was then calculated as the most recent 
common ancestor of all species with a match. The NCBI 
Taxonomy common tree was used for this, resulting in 
classification into the following phylogenetic ages: species- 
specific, genus (Saccharomyces), family (Saccharomycetaceae), 
order (Saccharomycetales), division (Ascomycota), or kingdom 
(Fungi). For each gene, we also counted the number of species 
with match (number of species with homologs).

Phylogenetic Reconstruction

Phylogenetic trees were reconstructed using RAxML next 
generation (Kozlov et al. 2019) (raxml-ng) with the GTR 
substitution matrix, empirically estimated rates and nucleotide 
frequencies, four categories of rates drawn from a GAMMA 
distribution with ML inference of its shape parameter using 
the following command: raxml-ng --seed 12546582 –model 
GTR + F + G. For the species-topology phylogeny we 
additionally used the species topology as shown in Fig. 1b in 
newick format with the additional arguments: --evaluate 
–tree SACCH_TOP.nwk. The resulting phylogenetic tree, in 
the case of the species-topology, was rerooted using 
S. eubayanus and S. uvarum (Seub-Suva) as out-groups with 
the GoTree utility (Lemoine and Gascuel 2021) to ensure 
downstream consistency. The free topology tree was rerooted 
at midpoint using GoTree. For use with the ASR tool PREQUEL 

(see next subsection), a phylogenetic model had to be gener-
ated using the PHAST (Hubisz et al. 2011) utility PhyloFit. The 
trees generated by RAxML were provided to PhyloFit together 
with the initial input MSA. We then confirmed that the tree 
and model fitted with PhyloFit were identical to that of 
RAxML.

Ancestral Sequence Reconstruction

ASR was performed with FastML (Ashkenazy et al. 2012) 
using the following command: perl FastML_Wrapper.pl 
--MSA_File “INPUT_ALIGNMENT.fasta” --seqType nuc 
--Tree “INPUT_TREE.nwk” --SubMatrix GTR --OptimizeBL 
no --indelReconstruction ML --outDir “OUTPUT_DIR”.

ASR was performed with PRANK (Löytynoja and 
Goldman 2010) without iterations using the following 
command:

prank -d “INPUT_ALIGNMENT.fasta” -support -showall 
-keep -F -once -o=“OUTPUT_PREFIX” -t=“INPUT_TREE. 
nwk”.

ASR was performed with PREQUEL from the PHAST 
(Hubisz et al. 2011) package using the following command: 
prequel “INPUT_ALIGNMENT.fasta” “INPUT_MODEL.phylofit_ 
corTree.mod” OUTPUT_PREFIX, and then once again with 
the -n argument to obtain the posterior probabilities.

Identification of ORFs in Ancestral Sequences

For every ancestral sequence in each variation of ASR, we 
performed the following: first, we identified all ORFs on 
the forward strand using getorf from EMBOSS (Rice et al. 
2000) defined either as ATG-STOP or STOP-STOP. The coor-
dinates of each ORF on the ancestral sequence were stored. 
Then, a pairwise alignment of the entire ancestral sequence 
and the S. cerevisiae extant ORF was generated using 
the command “pairwise2.align.globalds (S.cer_sequence, 
Ancestral_sequence._data, subs_mat, -3, -.1, one_align-
ment_only = True)” from Biopython and the coordinates 
of each ORF were transposed to correspond to the coordi-
nates in the pairwise alignment. Subsequently, the RFC 
(Kellis et al. 2003; Wacholder et al. 2023) score was calcu-
lated for each ancestral ORF based on the pairwise align-
ment defined as follows: (length covered by the ancestral 
ORF aligned in the S. cerevisiae ORF frame)/(length of the 
S. cerevisiae ORF). For each ancestor of each ASR variation, 
we kept the ORF with the maximum RFC score.

To select the phylogenetic branch on which an ORF first ap-
peared, based on a predefined RFC cutoff, we performed the 
following: starting from the root of the phylogenetic tree and 
moving towards the leaves, we selected the first branch where 
an ancestral ORF existed with a maximum RFC higher than the 
predefined cutoff (e.g. 0.6) was selected as the evolutionary 
origin of the ORF. To select the phylogenetic branch on which 
an ORF first appeared, based on an empirical P-value, we per-
formed the following: first, we computed an empirical P-value 
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at each ancestral sequence of each ASR variation, by pseudor-
andomizing the ancestral sequence 1,000 times using the ran-
dom package in Python and then for each of the 1,000 
randomizations, ORFs (using the Stop-Stop definition only) 
were extracted, RFC was calculated for each one, and the 
maximum RFC was kept, as described above. This resulted 
in a set of “randomized” 1,000 best RFC values, representing 
an empirical null model. Based on this distribution, we then 
calculated a P-value for the real maximum RFC score (one 
for each ancestral sequence of each ASR variation) by count-
ing the number of randomized values greater than the real 
one and dividing by 1,000.

Statistical Analyses

All statistics were done in R v.3.6.2 (R Core Team 2023). Plots 
were generated using ggplot2 (Wickham 2011). All statistical 
details including the type of statistical test performed and ex-
act value of n (n represents either number of ORFs, sequence 
reconstructions or ancestors) can be found in the Results and 
figure legends. Boxplots show median (horizontal line inside 
the box), first and third quartiles of data (lower and upper 
hinges), and values no further or lower than 1.5 ∗ distance be-
tween the first and third quartiles (upper and lower whisker).

Results

A Computational Pipeline to Reconstruct and 
Conservatively Estimate the Coding Capacity of 
Ancestral Nucleotide Sequences

We assembled nucleotide multiple sequence alignments 
of all annotated S. cerevisiae ORFs shorter than 1,000 nt 
(n = 2,633; Fig. 1a) with their respective orthologous gen-
omic loci in at least six closely related Saccharomyces 
species (see Materials and Methods and Fig. 1b). These 
alignments served as inputs for ASR, using a pipeline we de-
signed to test how robust ASR inferences would be to 
methodological choices. This pipeline combines three dif-
ferent phylogenetic tools, phylogenetic trees built with 
and without the species topology as a constraint, and 
two different types of input alignments: one based only 
on the exact region of the S. cerevisiae ORF and one based 
on an extended region (see Materials and Methods). The 
phylogenetic tools used are the following: FastML 
(Ashkenazy et al. 2012), which performs both marginal 
and joint maximum likelihood (ML) reconstructions of char-
acters and ML reconstruction of indels (hereafter 
FastML_joint and FastML_marginal); PREQUEL from the 
PHAST (Hubisz et al. 2011) package, which performs ML re-
construction of characters and parsimonious reconstruc-
tion of indels and prefers to infer deletions when 
insertions and deletions cannot be distinguished (produ-
cing an upward bias on the length of the sequence at 
root); and PRANK (Löytynoja and Goldman 2010), which 

uses ML reconstruction of characters and a custom algo-
rithm for the inference of insertions and deletions (Fig. 1a).

After running our ASR pipeline on all input alignments, 
we searched each ancestral sequence for the presence of 
ORFs that could correspond to ancestral versions of the ex-
tant S. cerevisiae gene. We excluded the Saccharomyces 
root node from all downstream analyses due to uncertainty 
about the position of the root node along the root branch 
(Fig. 1b). The position of the root node can significantly in-
fluence the resulting reconstruction: if it sits closer to the 
out-group, the reconstructed sequence will be more similar 
to the out-group sequences, whereas if it sits closer to the 
in-group, the reconstructed sequence will be more similar 
to in-group sequences. The root reconstruction therefore 
cannot be trusted in the absence of additional out-groups.

We defined putative ancestral ORFs in two ways: 
ATG-STOP hereafter “ATG” or STOP-STOP (that is, be-
tween two stop codons) hereafter “noATG.” The similarity 
of each ancestral ORF longer than 30 nt relative to the ex-
tant one of S. cerevisiae was scored using the RFC measure 
(Kellis et al. 2003; Wacholder et al. 2023): (length covered 
by the ancestral ORF aligned in the S. cerevisiae ORF frame)/ 
(length of the S. cerevisiae ORF). An RFC value = 1 means 
that an ancestral ORF exists that is at least as long as the 
S. cerevisiae ORF and aligns to it in the same frame and 
without frameshifts. Figure 1c shows an example alignment 
with an RFC of 0.86. We inferred whether a S. cerevisiae ORF 
originated de novo since the Saccharomyces common ances-
tor according to each combination of methodological choices 
implemented in our pipeline, for a range of RFC cutoffs (0.5, 
0.6, 0.7, and 0.9).

We compared the outputs of ASR with a classification of 
the input ORFs into emerging or established previously de-
veloped by Vakirlis, Acar, et al. (2020) using a combination 
of sequence and selection signatures. Figure 2 shows the 
results using the species topology and the definition of 
ORF without the need for an ATG start codon (“noATG”). 
Results with free tree topology and using the alternative 
ORF definition (“ATG”) can be found in supplementary 
fig. S1, Supplementary Material online.

In agreement with the initial analysis, the vast majority 
of established ORFs were classified by ASR as ancient and 
the majority of emerging ORFs were classified by ASR as 
S. cerevisiae specific (Fig. 2, top). The predicted origin of 
emerging ORFs is more sensitive to the choice of cutoff 
than that of established ORFs (as evidenced by the height 
difference of bars of the same color within each ancestral 
node in Fig. 2, top). The type of initial alignment used as in-
put (ORF only or extended ORF region) had minimal impact, 
with the vast majority of ORFs being predicted to have the 
same origin. Note that under a free topology, due to a result-
ing tree topology that differs from the species one and 
where Anc5 does not exist, the most ancient ancestor for 
a number of ORFs predictably shifts to the next available 
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ancestors 3 and 4 (supplementary fig. S1a, Supplementary 
Material online). When setting an arbitrary RFC cutoff 
of 0.6, ORFs predicted to be ancient by ASR have initial align-
ments with shorter genetic distance and more gaps 
than those predicted to be S. cerevisiae specific (Fig. 2, mid-
dle and bottom). This is consistent with young ORFs evolv-
ing faster, which has been reported before (Albà and 
Castresana 2005; Cai and Petrov 2010; Moyers and 
Zhang 2015), but it can also be explained with faster evolv-
ing ancient genes whose more “difficult” initial align-
ments are challenging for ASR.

Overall, ASR methodologies based on the species phyl-
ogeny unanimously inferred 1,554 ORFs to be at least as an-
cient as the earliest ancestor we considered (Anc5), with 
RFC > 0.9. All but five of these ORFs were also classified 

as “established” by Vakirlis et al., and, in 1,515/1,554 
(97.5%) cases, all downstream ancestors (Anc4, 3, etc.) 
have an RFC > 0.9. Therefore, the presence of the intact 
ORF is highly robust throughout the tree and these 1,554 
cases can safely be considered ancient. We conclude that 
ASR performs well in such cases (supplementary table S1, 
Supplementary Material online).

An Empirical P-Value Allows to Confidently Select a 
Most Likely Branch of Origin for Many ORFs

For the remaining 1,076 ORFs, different ASR methodologic-
al variations gave at least partly conflicting estimates 
(YCR039C, YJL077W-B, and YOR202W were removed 
from the analysis due to missing sequences in at least one 
of the species, which led to failure of some ASR tools). 

Fig. 1. a) Overview of the workflow followed in the present study to generate a set of ASR methodological variations. b) Tree topology of the Saccharomyces 
genus used in our analyses. Reconstructions of the root node (in gray) are not taken into account due to uncertainty of its placement. c) An example alignment 
to illustrate how the RFC measure is calculated. The reading frame of each sequence and how it changes with the presence of gaps is shown. Numbers (1, 2, 
and 3) correspond to the three forward reading frames. RFC is calculated by counting nongap positions where the two frames match (marked with blacked 
dots) and dividing by the length of the reference sequence, which in this study is always the S. cerevisiae ORF. In this example, the RFC score would be 43 
(number of black dots) divided by the length of the reference sequence, which is 50: 43/50 = 0.86.
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Two examples of such ORFs and the best RFC scores in an-
cestral sequences predicted by different methodologies can 
be found in Fig. 3a. On the left, we show a case where, 
using an RFC cutoff of 0.5, some methodologies would pre-
dict a much more ancient origin than others. On the right, 
we show a case where no methodology retrieves an ORF 
with RFC > 0.4 in any ancestor; thus, using an RFC cutoff 
of 0.5 would result in a coherent classification as species- 
specific, across ASR methodological variations, but an 
RFC cutoff of 0.3 would not. These examples illustrate 
that relying on an arbitrary RFC cutoff for inferring ORF ori-
gination is problematic.

We thus asked whether one can systematically infer 
when an ORF has formed, taking into account the fact 
that ORFs can form randomly. To this end, we randomized 

each entire ancestral sequence while keeping its original 
nucleotide composition and then logged the best 
RFC-scoring ORF, repeating this procedure 1,000 times 
(see Materials and Methods). This produced an empirical 
distribution of values which we then used to assign a 
P-value on the best RFC-scoring ORF of the real ancestral 
sequence. The most ancient phylogenetic node where a 
P-value of <0.01 was recorded was then kept as the 
most likely branch of origination of this ORF, that is, the 
most ancient branch where the presence of such an ORF 
is unlikely to be due to chance. It is important to stress 
that, ultimately, this approach may lead to strongly con-
servative estimates because de novo emergence could 
start from genomic loci, which do happen to harbor un-
usually long ORFs, something that is bound to occur given 

Fig. 2. Distributions of branches of origin and input multiple sequence alignment statistics. Top: Distributions of branch where the most ancient ancestral ORF 
has been identified using four different RFC cutoffs and eight different ASR methodologies (tools + alignment type). Bars within each node (e.g. “Anc5”) 
correspond, from left to right, to RFC cutoff of 0.5, 0.6, 0.7, and 0.9. Results using species topology and “noATG” definition of ORFs are shown. Results 
for free topology and ATG definition can be found in supplementary fig. S1, Supplementary Material online. Middle: Distributions of average gap count 
per sequence in the initial multiple sequence alignment, over the different predicted branches of origin (most ancient ancestral ORF, using an RFC cutoff 
of 0.6). Bottom: Same as above, but for the average pairwise Kimura distance in the input alignment.
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that the genomic space is continuously explored through-
out evolutionary time. The relationship between the em-
pirical P-value and the best RFC ORFs at the Anc5 
ancestor, which appears to have a sigmoid-like shape, 

can be found in supplementary fig. S2, Supplementary 
Material online.

If our P-value-based branch of origin estimates are evo-
lutionarily meaningful, we expect that P-values in ancestors 

Fig. 3. a) One example of maximum RFC score for different ancestors, as predicted using ancestral sequences from different methodologies (tool + 
phylogeny + inp. alignment). noATG ORF definition shown. Example is gene YER088C-A, a representative case where picking a branch of origin is 
not immediately obvious since when using an arbitrary RFC cutoff (e.g. 0.6) some methodologies lead to presence of ORFs in much older nodes 
than others; for example, FastML_marginal + species + ORF would place the origin at Anc3, whereas PRANK + species + extORF would lead to a 
species-specific origin. b) Another example (YMR001C-A) where no methodology predicts presence of an ancestral ORF, even with an RFC cutoff 
as low as 0.5, and should thus be considered species-specific. c) Best RFC scores at ancestors before (−1, −2, and −3) and after (1, 2, and 3) the branch 
of origin, when it is defined based on our empirical P-value. Values corresponding to the same gene (149 genes in total) are connected by lines. 
d) Heatmap showing the ancestral branches of origin as defined using our empirical P-value cutoff of 0.01, for each of the 1,076 ORFs that were 
not previously predicted to be robustly ancient, using four different ASR tools (species topology, ORF-only alignments, noATG ORF definition). 
Based on the agreement among methodologies, we can group them into high-confidence ancient (top group), high-confidence de novo including 
S. cerevisiae-specific (second from the top), low-confidence but potentially ancient since at least one methodology predicts and ancient origin (third 
from the top), and the rest (bottom). e) Number of methodologies agreeing in the ancestral branch of origin of each ORF. Same data as in d).
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below the one where we predict an ORF originated would 
also be significant, consistent with an enduring ORF pres-
ence. Indeed, this is what we find: we analyzed 967 cases 
with a predicted branch of origin at Anc5, 4, 3, or 2 (so 
that at least one ancestor lower can be examined) and 
found that for 749/967 (77%), all downstream ancestors 
have a P-value of <0.01, and for a further 7.5% all but 
one downstream ancestors do. There are only 15% of cases 
with high uncertainty. Thus, relying on the P-value to define 
a branch of origin leads to consistent results downstream of 
the branch of origin.

An additional prediction is that best RFC scores should 
be significantly lower in ancestors prior to the branch of ori-
gin, compared with those later, and this is what we found. 
We analyzed 149 cases with a P-value-defined branch of 
origin at Anc4, 3, or 2, allowing for at least one ancestor 
higher and one ancestor lower of the origin to be exam-
ined. We then compared the distributions of best RFC 
scores in ancestors before (n = 202) and after (n = 498) 
the branch of origin (the branch of origin itself included 
in the latter), and we observed a strong difference in means 
(0.25 before vs. 0.54 after; Wilcoxon test P < 10−16). These 
findings are visualized in Fig. 3c.

An overview of the predictions of branches of origin of 
the different methodologies using the species topology, 
when relying on the empirical P-value, can be found in 
Fig. 3d and the raw data can be found in supplementary 
table S2, Supplementary Material online. Note that since re-
sults between the ORF-only and extended-ORF alignments 
were highly similar, we only use the ORF-only alignments 
for this and all downstream analyses. When comparing 
the predictions of the different methodologies, FastML_ 
joint stands out as resulting in more species-specific esti-
mates than the rest (424 ORFs or 39.3%, compared with 
12.7% on average for the rest). This is because this method 
has a strong tendency to infer deletions when encountering 
gaps in the input alignment, resulting in longer ancestral se-
quences. No other significant bias among methodologies 
was found.

We observed that for 442 ORFs, an ancient origin was 
predicted by all ASR methodologies, and we classified these 
as “high-confidence ancient” (Fig. 3d, top group). For an-
other 49 ORFs, all methodologies agreed on an origin after 
the split of the genus and so we can safely conclude that 
these have emerged de novo (Fig. 3d; “high-confidence 
de novo”). Notably, 37 of them are S. cerevisiae specific. 
Integrating ASR with a systematic RFC P-value, therefore, 
improved the robustness of evolutionary inferences relative 
to an arbitrary RFC cutoff. However, the remaining 623 
ORFs should be considered “low-confidence” with discord-
ant predictions that suggest uncertainty about when they 
originated, including 273 potentially ancient ones where 
only one or two methodologies predict an origin at Anc5. 
In Fig. 3e, we provide a condensed view of these findings, 

allowing to compare the numbers of confident predictions 
as well as those of more uncertain ones. We next asked 
what could explain this uncertainty.

Multiple Evolutionary Scenarios Could Account for the 
Uncertain Origin of Low-Confidence ORFs

We compared the properties of high-confidence ancient 
ORFs, where all methodologies agreed that the node of ori-
gin is Anc5 (n = 442), with those of low-confidence (but po-
tentially) ancient ORFs where only one or two 
methodologies predict an origin at Anc5 (n = 273). We 
found that high-confidence ancient ORFs are on average 
longer and have more similar initial alignments which also 
contain fewer gaps, than low-confidence ancient ones 
(Fig. 4a). This supports the status of the high-confidence 
ones as more robustly ancient since it is suggestive of con-
servation of a true protein-coding ORF. Low-confidence an-
cient ORFs have also significantly lower maximum RFC 
scores in their Anc5-reconstructed ancestor (Fig. 4a). In 
other words, either their best-reconstructed ORFs are 
much shorter than the extant S. cerevisiae one, or they 
are long but do not align well on the same frame as the ex-
tant S. cerevisiae ORF. Note here that 70 of the high- 
confidence ancient ORFs have relatively low best RFC score 
(<0.5), yet thanks to our empirical P-value we can confi-
dently classify them as ancient. Finally, the posterior prob-
abilities of the Anc5 reconstruction (as predicted by 
FastML_marginal) are lower both for indels and for individ-
ual positions (Fig. 4a). Thus, low-confidence ancient ORFs 
should be viewed as much harder cases than high- 
confidence ancient ones, with borderline predictions of 
their phylogenetic origins.

While informative regarding the limitations of ASR, these 
differences between high-confidence and low-confidence 
ancient ORFs do not allow to propose a most likely evolu-
tionary scenario for the origin of the latter. Indeed, we 
would expect to see the same set of differences if low- 
confidence ancient ORFs were fast-evolving ancient ORFs 
for which only some of the methods happened to success-
fully capture their ancient status, or if they were recently 
emerged ORFs from regions of the genome where the 
probability of forming an ORF was high, making detection 
of a long enough in-frame ORF in one of the reconstruc-
tions more likely.

A relatively independent approach to estimate the 
timing of origination of a gene is protein-level phylostrati-
graphy (Domazet-Lošo et al. 2007). We analyzed protein- 
level sequence similarity searches against all available 
fungal proteomes (see Materials and Methods) and ob-
tained, for each S. cerevisiae ORF, a phylostratigraphic 
node of origin (most recent common ancestor of species 
with match in the fungal tree). In Fig. 4b, we show the 
distribution of phylostratigraphic origins in the high- 
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Fig. 4. Comparison of low-confidence and high-confidence ancient ORFs and all other remaining ORFs. a) ORF size, best RFC score at Anc5 ancestor, number 
of gaps per sequence in the initial ORF-only MSA, average pairwise Kimura distance in the initial ORF-only MSA, average posterior probability of characters at 
the Anc5 ancestor as calculated by FastML_marginal, and average posterior probability of indels as calculated by FastML_marginal. b) Counts of ORFs per 
major phylostratigraphic origin for high-confidence ancient ORFs, low-confidence ancient ORFs, and all other ORFs. Bars are ordered from ancient to recent, 
left to right. For visual purposes, only phylogenetic branches corresponding to named taxonomic groups are shown.
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confidence and low-confidence ancient ORFs as well as for 
the other ORFs analyzed.

Most of the low-confidence ancient ORFs were 
S. cerevisiae-specific according to phylostratigraphy (64%). 
This percentage was significantly lower for high-confidence 
ancient ones (45.7%, χ2 test P = 0.011) yet still surprisingly 
high. Thus, for a significant percentage of ORFs, our ASR- 
based analyses point to a phylogenetic origin that is strikingly 
older than the one recovered by phylostratigraphy. This 
suggests that the origins established using our approach 
are conservative and best viewed as upper bounds. One pos-
sible explanation for this is that some of these ORFs might 
not be protein-coding at all (and hence correctly not anno-
tated as such in other species) but could instead happen to 
overlap conserved noncoding elements. Another explan-
ation is that their homologs have erroneously not been an-
notated in other species.

When looking at ORFs with an ancient phylostratigraphic 
origin, we find a much higher percentage among the high- 
confidence ancient ones (26% at Fungi) compared with the 
low-confidence ones (9.2%, χ2 test P = 7.7 ∗ 10−6). These 
trends suggest that the two groups, defined on the basis 
of ASR-predicted origin uncertainty, are qualitatively differ-
ent, if only moderately. The origins of most of the low- 
confidence group as well as a significant percentage of 
the high-confidence one remain equivocal, because these 
results are what we would expect if they were mostly an-
cient but fast evolving, perhaps also easily lost genes, but 
it is also what we would expect if most of them were of truly 
recent origin.

Out of the 37 high-confidence S. cerevisiae-specific 
genes based on ASR, only four are not S. cerevisiae-specific 
according to phylostratigraphy. The first (YGR219W) has 
matches in only three distant species out of the thousands 
of fungal species contained in the target database, which 
strongly suggests this it is a S. cerevisiae-specific HGT. The 
second (YOL013W-A) has matches in 13 species, including 
Saccharomyces eubayanus and Saccharomyces uvarum but 
not in other Saccharomyces. This is an interesting case, as 
this gene has a paralog on the same chromosome 
(YOR072W-B, which also only has homologs in six species) 
and both overlap proline tRNA genes. The S. uvarum pro-
tein match is within part of a much longer protein 
(N7582_004276; 349 aa compared with 63 aa) that is 
not located in the orthologous region of YOL013W-A 
(which is found in chromosome XV) but in chromosome 
XIII. It is thus not surprising that ASR does not capture the 
ancient status of this ORF, whose evolution seems to in-
clude duplication and pseudogenization. The third gene 
(YLR390W) has matches with 266 species including all 
Saccharomyces; thus, it is clearly a conserved gene. 
Inspection of the orthologous alignment revealed that 
there is a strongly conserved part of the alignment that 
starts downstream of the annotated start codon in S. cerevisiae, 

where there is a conserved start codon in all species. Thus in 
this case the inclusion of this additional sequence segment 
contributed to the erroneous result (interestingly, FastML 
marginal predicts the ORF as being present at the root, but 
these reconstructions were not taken into account). The final 
gene (YBL112C) has homologs in 139 species including 
Saccharomyces, but here again, this is a protein with para-
logs, as it is contained within the telomeric helicase- 
encoding Y element, which is found in many S. cerevisiae 
chromosomes. Its identified homologs are not within its 
orthologous regions, and the alignment of its orthologous re-
gions shows no signs of conservation. Overall then, out of 
these four cases, only one presents a true ASR false positive.

Discussion
ASR is a promising approach allowing to peek into the evo-
lutionary past of sequences and elucidate the process of de 
novo gene origination. It has the potential to provide im-
portant novel insights both into the frequency and the evo-
lutionary forces that drive de novo gene emergence. 
Nonetheless, it has been demonstrated that ASR is sensitive 
to many factors, including the methodology of multiple se-
quence alignment and the phylogeny (Vialle et al. 2018; 
Holmes 2017). In addition, other biases might come into 
play when the ancestral sequences are examined for the 
presence of relevant ORFs in the context of de novo emer-
gence. For these reasons, we performed a systematic exam-
ination and assessment of ASR for the study of de novo 
gene origination.

Overall, we find that ASR is well suited to be used as a tool 
for the inference of de novo origination and that the variabil-
ity in the results from the different methodologies is limited. 
With the notable exception of the marginal reconstructions 
of FastML, the rest of the methodologies were for the 
most part in good agreement as per the node of origin of 
an ORF relative to random expectations. It is possible that, 
while in the context of ancestral protein sequence resurrec-
tion, slight variations might lead to changes in functionally 
critical amino acids (e.g. that could affect the active site of 
a resurrected enzyme), the same slight variations might not 
impact the inference of the timing of origination of an ORF 
in the context of the present study.

One limitation of our approach stems from the crude null 
model that we employed that relies on pseudorandomiza-
tion of genomic loci. Real evolution of genomic ORFs 
almost certainly deviates from this simplistic model, includ-
ing by being slower due to overlap with other functional 
genomic elements. Future work could focus on reconstruct-
ing the evolution of real noncoding genomic ORFs to pro-
vide a more accurate estimation of their stochastic 
disruption along the tree.

An important point is that while we had one part of a 
good positive control set in genes with widespread 
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presence and protein-level conservation in other species, 
we lack an independently generated “gold standard” set 
of de novo genes to compare to, and, most importantly, 
we lack an appropriate negative control. A potential solu-
tion to the latter would be to establish a gold standard col-
lection of pseudogenes or, if this is not available, generate 
them through evolutionary simulations. These would re-
present evolution in the opposite direction of de novo 
emergence (gene death vs. gene birth), and they would 
be valuable as a test to our ASR-based workflow. For 
what percentage of such pseudogenes would we be able 
to accurately reconstruct their ancestral protein-coding sta-
tus and the timing of their pseudogenization? This could be 
the focus of future work. At the same time, such work 
could also address the generalizability of the present find-
ings in other lineages, including ones experiencing slower 
or faster evolution.

We believe that it is always best to start from a conserva-
tive place. Our empirical P-value approach might in fact be 
too conservative in considering all in-frame ORFs longer 
than would be expected randomly as potential evidence 
for selection. This is inextricably linked to the poorly under-
stood questions of how de novo gene emergence begins, at 
which point during de novo gene evolution a protein is first 
expressed, and at which point the incipient ORF is subjected 
to selection at the level of its size. If the initial evolutionary 
“version” of a de novo gene has on average the same 
length as any spurious small ORF on the genome, then 
our assumption and the empirical P-value approach would 
be valid. If a slightly longer than usual small ORF is mostly 
what de novo emergence starts from, then it would be 
strongly conservative, since such ORFs continuously appear 
and disappear in the genome throughout evolution. One 
can envision a future approach that incorporates this prob-
ability into the calculation of a P-value to make it more real-
istic. Furthermore, it is important to consider that the 
evolutionary timing of the initial formation of an ORF might 
not coincide with it, or its wider locus, becoming protein- 
coding, which at the very least requires transcription and 
translation. This means that our estimated origins might 
not always correspond to the true origins of the 
S. cerevisiae protein-coding genes in question. Nonetheless, 
the consistency of the RFC scores and P-values in ancestors 
following the estimated branches of origin suggests that 
this should have limited impact on our conclusions.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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