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Abstract 

A larg e rang e of sophisticated brain imag e anal ysis tools hav e been dev eloped by the neur oscience comm unity, gr eatl y adv ancing 
the field of human brain mapping. Here we introduce the Computational Anatomy Toolbox (CAT)—a powerful suite of tools for brain 

morphometric analyses with an intuiti v e graphical user interface but also usa b le as a shell script. CAT is suita b le for beginners, ca- 
sual users, experts, and developers alike, pr oviding a compr ehensi v e set of anal ysis options, workflows, and inte gr ated pipelines. The 
av aila b le anal ysis str eams—illustrated on an example dataset—allow for v oxel-based, surface-based, and region-based morphometric 
anal yses. Nota b l y , CA T incorporates multiple quality control options and covers the entire analysis workflow, including the prepro- 
cessing of cross-sectional and longitudinal data, statistical analysis, and the visualization of results. The over ar c hing aim of this article 
is to provide a complete description and evaluation of CAT while offering a citable standard for the neuroscience community. 

Ke yw or ds: br ain, computational anatom y, longitudinal, morphometry , SPM12, CA T12, MRI, ROI, VBM, cortical thickness, cortical sur- 
face, cortical folding, Alzheimer’s disease 
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The study of the human brain using neuroimaging methods is still 
in its infancy, but r a pid tec hnical adv ances in ima ge acquisition 

and pr ocessing ar e enabling e v er mor e r efined c har acterizations 
of its micro- and macro-structure. Enormous efforts, for example,
have been made to map differences between groups (e.g., young 
vs . old, diseased vs . healthy, male vs . female), to ca ptur e c hanges 
over time (e.g., from infancy to old age, in the framework of neu- 
roplasticity, as a result of a clinical intervention), or to assess 
corr elations of br ain attributes (e.g., measur es of length, volume,
sha pe) with behavior al, cognitiv e, or clinical par ameters. Popu- 
lar neur oima ging softwar e pac ka ges include tools for analysis 
and visualization, such as SPM ( RRID:SCR _ 007037 ) [ 1 ], FreeSurfer 
( RRID:SCR _ 001847 ) [ 2 ], the Human Connectome Workbench [ 3 ],
FSL ( RRID:SCR _ 002823 ) [ 4 ], BrainVISA [ 5 ], CIVET [ 6 ], or the LONI 
tools [ 7 ], just to name a few. 

SPM (short for Statistical P ar ametric Ma pping) is one of the 
most fr equentl y used softwar e pac ka ges, whic h works with MAT- 
LAB ( RRID:SCR _ 001622 ) as well as Octa ve . Its library of accessible 
and editable scripts provides an ideal basis to extend the reper- 
toire of preprocessing and analysis options. Over the years, SPM 

has inspir ed de v elopers to cr eate po w erful tools that use SPM’s 
functionality and interface [ 8 ]. These tools are more than just ex- 
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ensions of SPM, offering a compr ehensiv e r ange of cutting-edge
ptions across the whole analysis spectrum, from the initial data
rocessing to the final visualization of the statistical effects. 

One such tool is CAT (short for Computational Anatomy Tool-
ox [ 9 ]). CAT constitutes a significant step forw ar d in the field of
uman brain mapping by adding sophisticated methods to pro- 
ess and analyze structural brain magnetic resonance imaging 
MRI) data using voxel-, surface-, and r egion-based a ppr oac hes.
 AT is a vailable as a collection of accessible scripts , with an intu-

tive user interface, and uses the same batch editor as SPM, which
llows for a seamless integration with SPM w orkflo ws and other
oolboxes, suc h as Br ainstorm [ 10 ] and Explor eASL [ 11 ]. Not onl y
oes this enable beginners and experts to run complex state-of- 
he-art structur al ima ge anal yses within the SPM environment,
ut it will also provide advanced users as well as de v elopers the
 uc h-a ppr eciated option to incor por ate a wide r ange of functions

n their own customized workflows and pipelines. 

indings 

oncept of CAT 

AT12 is the curr ent v ersion of the CAT software and runs in MAT-
AB (MathWorks) or as a standalone version with no need for a
e. This is an Open Access article distributed under the terms of the Cr eati v e 
h permits unrestricted reuse, distribution, and reproduction in any 
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Figure 1: Elements of the gr a phical user interface. The SPM menu (A) and CAT menu (B) allow access to the (C) SPM batch editor to control and 
combine a variety of functions. At the end of the processing stream, cross-sectional and longitudinal outputs are summarized in a brain-specific 
1-pa ge r eport (D, E). In addition, C AT pro vides options to c hec k ima ge quality (F) and sample homogeneity (G) to allow outliers to be r emov ed befor e 
a ppl ying the final statistical analysis, including threshold-free cluster enhancement—TFCE (H); the numerical and graphical output can then be 
r etrie v ed (I), including surface projections (J). For beginners, there is an interactive help (K) as well as a user manual (L). For experts, command line 
tools (M) are available under Linux and MacOS. 
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ATLAB license. It was originally designed to work with SPM12
 12 ] and is compatible with MATLAB versions 7.4 (R2007a) and
ater. No additional software or toolbox is r equir ed. The latest v er-
ion of CAT can be downloaded here: [ 9 ]. The precompiled stan-
alone version for Windows , Mac , or Linux operating systems can
e downloaded here: [ 13 ]. All steps necessary to install and run
AT are documented in the user manual [ 14 ] and in the com-
lementary online help, which can be accessed directly via CAT’s
elp functions . T he C AT softwar e is fr ee but copyrighted and dis-
ributed under the terms of the GNU General Public License, as
ublished by the Free Software Foundation. 

CAT can be started through SPM, from the MATLAB command
indow, from a shell, or as a standalone version. Except when

alled from the command shell (CAT is fully scriptable), a user
nterface will appear (see Fig. 1 ), allowing easy access to all analy-
is options and most additional functions. In addition, a gr a phical
utput window will display the inter activ e help to get started. This

nter activ e help will be replaced by the results of the analyses (i.e.,
n that same window) but can always be called again via the user
nterface. 

omputational morphometry 

AT’s processing pipeline (see Fig. 2 ) contains 2 main streams: (i)
oxel-based processing for voxel-based morphometry (VBM) and (ii)
urface-based processing for surface-based morphometry (SBM). The
ormer is a pr er equisite for the latter, but not the other way round.
oth processing streams can be extended to include additional
teps for (iii) region-based processing and region-based morphome-
ry (RBM). 
oxel-based processing 

o xel-based processing ste ps can be r oughl y divided into a mod-
le for tissue segmentation, follo w ed b y a module for spatial
 egistr ation. 

� Tissue Segmentation: The process is initiated by a ppl ying a
spatially adaptive nonlocal means (SANLM) denoising filter [ 15 ],
follo w ed b y SPM’s standar d unified segmentation [ 16 ]. The re-
sulting output serves as a starting point for further optimiza-
tions and CAT’s tissue segmentation steps: first, the brain
is parcellated into the left and right hemispheres, subcorti-
cal ar eas, v entricles, and cer ebellum. In addition, local white
matter hyperintensities are detected (to be later accounted
for during the spatial r egistr ation and the optional surface
processing). Second, a local intensity transformation is per-
formed to reduce the effects of higher gray matter intensities
in the motor cortex, basal ganglia, and occipital lobe, which
are influenced by varying degrees of my elination. Thir d, an
adaptive maximum a posteriori (AMAP) segmentation is applied,
which does not require any a priori information on the tissue
probabilities [ 17 ]. The AMAP segmentation also includes a par-
tial volume estimation [ 18 ]. Figur e 3 A pr ovides information on
the accuracy of CAT’s tissue segmentation. 

� Spatial Registration: Geodesic Shooting [ 24 ] is used to reg-
ister the individual tissue segments to standardized tem-
plates in the ICBM 2009c Nonlinear Asymmetric space
( MNI152NLin2009cAsym [ 25 ]), her eafter r eferr ed to as MNI
space. While MNI space is also used in many other software
pac ka ges, enabling cr oss-study comparisons , users ma y also
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Figure 2: Main processing streams. (A) Simplified pipeline: image processing in CAT can be separated into a mandatory voxel-based processing stream 

and an optional subsequent surface-based processing stream. Each stream requires different templates and atlases and, in addition, tissue probability 
maps for the voxel-based stream. The voxel-based stream consists of 2 main modules—for tissue segmentation and spatial registration—resulting in 
spatiall y r egister ed (and modulated) gr a y matter/white matter segments , whic h pr o vides the basis for voxel-based morphometry (VBM). T he 
surface-based stream also consists of 2 main modules—for surface creation and registration—resulting in spatially registered surface maps, which 
provide the basis for surface-based morphometry (SBM). Both streams also include an optional module each to analyze regions of interest (ROIs) resulting 
in ROI-specific mean volumes (mean surface v alues, r espectiv el y). This pr ovides the basis for region-based morphometry (RBM). (B) Detailed pipeline: to 
illustrate the differences from SPM, the CAT pipeline is detailed with its individual processing steps . T he SPM methods used are shown in blue and 
italic font: images are first denoised by a spatially adaptive nonlocal means (SANLM) filter [ 15 ] and resampled to an isotropic voxel size. After applying 
an initial bias correction to facilitate the affine registration, SPM’s unified segmentation [ 16 ] is used for the skull stripping and as a starting estimate 
for the ada ptiv e maxim um a posteriori (AMAP) segmentation [ 17 ] with partial volume estimation (PVE) [ 18 ]. In addition, SPM’s segmentation is used to 
locall y corr ect ima ge intensities. Finall y, the outcomes of the AMAP segmentation ar e r egister ed to the MNI template using SPM’s shooting r egistr ation. 
The outcomes of the AMAP segmentation are also used to estimate cortical thickness and the central surface using a projection-based thickness (PBT) 
method [ 19 ]. More specifically, after repairing topology defects [ 20 ], central, pial, and white matter surface meshes are generated. The individual left 
and right central surfaces are then registered to the corresponding hemisphere of the FreeSurfer template using a 2D version of the DARTEL approach 
[ 21 ]. In the final step, the pial and white matter surfaces are used to refine the initial cortical thickness estimate using the FreeSurfer thickness metric 
[ 22 , 23 ]. 
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choose to use their own templates. Figure 3 B provides infor- 
mation on the accuracy of CAT’s spatial registration. 

Voxel-based morphometry (VBM) 
VBM is applied to investigate the volume (or local amount) of a 
specific tissue compartment [ 16 , 26 ]—usually gray matter. VBM 

incor por ates differ ent pr ocessing steps: (i) tissue segmentation 
nd (ii) spatial r egistr ation, as detailed abov e, and in addition,
iii) adjustments for volume changes due to the r egistr ation (mod-
lation) as well as (iv) convolution with a 3-dimensional (3D)
aussian kernel (spatial smoothing). As a side note, the modu-

ation step results in voxel-wise gray matter volumes that are the
ame as in native space (i.e., before spatial registration) and not
orrected for brain size yet. To remove effects of brain size, users
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Figure 3: Evaluation of segmentation and registration accuracy. (A) Segmentation Accuracy: Most a ppr oac hes for brain segmentation assume that each 
voxel belongs to a particular tissue class, such as gray matter (GM), white matter (WM), or cerebrospinal fluid (CSF). Ho w e v er, the spatial resolution of brain 
images is limited, leading to so-called partial volume effects (PVE) in voxels containing a mixture of different tissue types, such as GM/WM and GM/CSF. 
As PVE a ppr oac hes ar e highl y susceptible to noise, we combined the PVE model [ 18 ] with a spatial ada ptiv e nonlocal means denoising filter [ 15 ]. To 
validate our method, we used a gr ound-truth ima ge fr om the Br ainWeb [ 31 ] database with varying noise le v els of 1–9%. The segmentation accur acy for 
all tissue types (GM, WM, CSF) was determined by calculating a kappa coefficient (a kappa coefficient of 1 means that there is perfect correspondence 
between the segmentation result and the ground truth). Left panel: The effect of the PVE model and the denoising filter on the tissue segmentation at 
the extremes of 1% and 9% noise. Right panel: The kappa coefficient over the range of different noise levels. Both panels demonstrate the advantage of 
combining the PVE model with a spatial ada ptiv e nonlocal means denoising filter, with particularly strong benefits for noisy data. (B) Registration 
Accuracy: To ensure an appropriate overlap of corresponding anatomical regions across brains, high-dimensional nonlinear spatial registration is 
r equir ed. CAT uses a sophisticated shooting a ppr oac h [ 24 ], together with an av er a ge template created from the IXI dataset [ 32 ]. The figure shows the 
impr ov ed accur acy (i.e., a mor e detailed av er a ge ima ge) when spatiall y r egistering 555 br ains using the so-called shooting r egistr ation and the Dartel 
r egistr ation compar ed to the SPM standard r egistr ation. (C) Preprocessing Accuracy: We v alidated the performance of region-based morphometry (RBM) in 
CAT by comparing measures derived from automatically extracted regions of interest (ROI) versus manually labeled ROIs. For the voxel-based analysis, 
we used 56 structur es, manuall y labeled in 40 brains that provided the basis for the LPBA40 atlas [ 33 ]. The gray matter volumes from those manually 
labeled regions served as the ground truth against which the gray matter volumes calculated using CAT and the LPBA40 atlas were then compared. 
For the surface-based analysis, we used 34 structures that were manually labeled in 39 brains according to Desikan et al. [ 34 ]. The mean cortical 
thic kness fr om those manuall y labeled r egions serv ed as the gr ound truth a gainst whic h the mean cortical thic kness calculated using CAT and the 
Desikan atlas were compared. The diagrams show excellent overlap between manually and automatically labeled regions in both voxel-based (left) 
and surface-based (right) analyses. (D) Consistency of Segmentation and Surface Creation: Data from the same brain were acquired on MRI scanners with 
differ ent isotr opic spatial r esolutions and differ ent field str engths: 1.5T MPRA GE with a 1-mm voxel size, 3T MPRA GE with a 0.8-mm voxel size, and 7T 

MP2RAGE with a 0.7-mm voxel size. Section Views: The left hemispheres depict the central ( green ), pial ( blue ), and white matter ( red ) surfaces; the right 
hemispheres show the gray matter segments. Rendered Views: The color bar encodes point-wise cortical thickness projected onto the left hemisphere 
central surface. Both section views and hemisphere renderings demonstrate the consistency of the outcomes of the segmentation and surface 
cr eation pr ocedur es acr oss differ ent spatial r esolutions and field str engths. 
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Figure 4: Cortical Measurements: Surface-based morphometry is applied to investigate cortical surface features (i.e., cortical thickness and various 
parameters of cortical folding) at thousands of surface points. Cortical Thickness: One of the best-known and most frequently used morphometric 
measures is cortical thickness, which captures the width of the gray matter ribbon as the distance between its inner boundary (white matter surface) 
and outer boundary (pial surface). Cortical Folding: CAT provides distinct cortical folding measur es, deriv ed fr om the geometry of the centr al surface: 
“Gyrification” is calculated via the absolute mean curv atur e [ 35 ] of the central surface. “Sulcal Depth” is calculated as the distance from the central 
surface to the enclosing hull [ 36 ]. “Cortical Complexity” is calculated using the fractal dimension of the central surface area from spherical harmonic 
r econstructions [ 37 ]. Finall y, “Surface Ratio” is calculated as the ratio between the area of the central surface contained in a sphere of a defined size 
and that of a disk with the same radius [ 38 ]. 
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have at least 2 options: (i) calculating the total intr acr anial volume 
(TIV) and including TIV as a covariate in the statistical model [ 27 ] 
or (ii) selecting “global scaling” (see second-le v el options in SPM).
The latter is recommended if TIV is linked with (i.e., not orthog- 
onal to) the effect of interest (e.g., sex), which can be tested (see 
“Design orthogonality” in SPM). 

Surf ace-based pr ocessing 

The optional surface-based processing comprises a series of steps 
that can be r oughl y divided into a module for surface creation,
follo w ed b y a module for surface r egistr ation. 

� Surface Creation: Fig. 3 illustrates the surface creation step 

in CAT for data obtained on scanners with different field 

strengths (1.5, 3.0, and 7.0 T esla). CA T uses a projection-based 

thickness method [ 19 ], which estimates the initial cortical 
thickness and initial central surface in a combined step, while 
handling partial volume information, sulcal blurring, and sul- 
cal asymmetries, without explicit sulcus reconstruction. Af- 
ter this initial step, topological defects (i.e., anatomically in- 
correct connections between gyri or sulci) ar e r epair ed using 
spherical harmonics [ 20 ]. The topological correction is fol- 
lo w ed b y a surface r efinement, whic h r esults in the final cen- 
tral, pial, and white surface meshes. In the last step, the fi- 
nal pial and white matter surfaces are used to refine the ini- 
tial cortical thickness estimate using the FreeSurfer thickness 
metric [ 22 , 23 ]. Alternativ el y, the final central surface can be 
used to calculate metrics of cortical folding, as described un- 
der “Surface-based morphometry (SBM).”

� Surface Registr ation: The r esulting individual centr al sur- 
faces are registered to the corresponding hemisphere of the 
FreeSurfer FsAverage template [ 28 ]. During this process, the 
individual central surfaces are spherically inflated with min- 
imal distortions [ 29 ], and a one-to-one mapping between the 
folding patterns of the individual and template spheres is cre- 
ated by a 2-dimensional (2D) version of the DARTEL a ppr oac h 

[ 21 , 30 ]. Figur e 3 D pr ovides information on the accur acy of 
CAT’s surface r egistr ation. 
urf ace-based morphometr y (SBM) 
BM can be used to investigate cortical thickness or various pa-
ameters of cortical folding. The measurement of “cortical thick- 
ess” ca ptur es the width of the gray matter ribbon as the distance
etween its inner and outer boundary at thousands of points (see
ig. 4 ). To obtain measurements of “cortical folding,” the user has
 variety of options in CAT, ranging from Gyrification [ 35 ] to Sul-
al Depth [ 36 ] to Cortical Complexity [ 37 ] to the Surface Ratio [ 38 ], as
xplained and illustrated in Fig. 4 . Similar to VBM, SBM incorpo-
ates a series of different steps: (i) surface creation and (ii) sur-
ace r egistr ation, as detailed abov e, and (iii) spatial smoothing. As
 side note, since the measurements in native space ar e ma pped
ir ectl y to the template during the spatial r egistr ation, no addi-
ional modulation (as in VBM) is needed to pr eserv e the individ-
al differences. In contrast to VBM, SBM does not require brain
ize corrections because cortical thickness and cortical folding are 
ot closely associated with total brain volume (unlike gray matter 
olume) [ 39 ]. 

egion-based processing and morphometry 

n addition to voxel- or point-wise analyses via VBM or SBM, CAT
rovides an option to conduct regional analyses via region-based 
orphometry (RBM). For this purpose, the processing steps under 

oxel-based processing (surface-based processing, respectively) 
hould be applied and follo w ed b y automatically calculating re-
ional measurements . T his is ac hie v ed b y w orking with regions of
nterest (ROIs), defined using standardized atlases . T he r equir ed
tlases are provided in CAT (see Supplementary Table S1 and
upplementary Table S2 ), but users can also work with their own
tlases. 

� Voxel-based R OIs: The v olumetric atlases a vailable in C AT
have been defined on brain templates in MNI space and may
be mapped to the individual brains by using the spatial regis-
tr ation par ameters determined during voxel-based pr ocess- 
ing. Volumetric measur es, suc h as r egional gr ay matter vol-
ume, can then be calculated for each ROI in native space. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
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� Surface-based ROIs: The surface atlases available in CAT are
supplied on the FsAverage surface and can be mapped to the
individual surfaces by using the spherical r egistr ation pa-
rameters determined during the surface-based processing.
Surface-based measur es, suc h as cortical thic kness or corti-
cal folding, are then calculated for each ROI in native space. 

erformance of CAT 

AT allows pr ocessing str eams to be distributed to m ultiple pr o-
essing cores, to reduce processing time. For example, CAT’s anal-
sis of 50 subjects (see “Example a pplication”), le v er a ging the in-
uilt par allel pr ocessing ca pabilities on 4 cor es, r equir ed 7 hours
f processing time when analyzing 1 image per subject (cross-
ectional stream) and 18 hours when processing 3 images per sub-
ect (longitudinal stream) for the entire sample. Application of all
vailable w orkflo ws for a single T1-w eighted ima ge takes ar ound
5 minutes, as timed on an iMac with Intel Core i7 with 4 GHz and
2 GB RAM using MATLAB version 2017b, SPM12 version r7771,
nd CAT12.8 version r1945. 

CAT’s performance has been thor oughl y tested by e v aluating
ts accuracy , sensitivity , and robustness in comparison to other
ools fr equentl y used in the neur oima ging comm unity. For this
ur pose, we a pplied CAT and anal yzed r eal data (see “Example
pplication”) as well as simulated data generated from BrainWeb
 40 ]. The e v aluation pr ocedur es ar e detailed in Supplementary
ote 1 and Supplementary Note 2 ; the outcomes are presented

n Supplementary Fig. S1 and Supplementary Fig. S2 . C AT pro ved
o be accur ate, sensitiv e, r eliable, and r obust, outperforming other
ommon neur oima ging tools. 

i v e selected features of CAT 

ongitudinal processing 

side from offering a standard pipeline for cross-sectional anal-
ses , C AT has specific longitudinal pipelines that ensure a local
omparability both across subjects and across time points within
ubjects. Compared to the cross-sectional pipeline, these longi-
udinal pipelines render analysis outcomes more accurate when

a pping structur al c hanges ov er time. The user can choose be-
ween 3 different longitudinal pipelines: the first one for analyz-
ng brain plasticity (o ver da ys , weeks , months), the second one for
nal yzing br ain de v elopment (ov er months and years), and the
hird one for br ain a ging (ov er months , years , decades). For more
etails, refer to Supplementary Note 3 . 

uality control 
AT intr oduces a r etr ospectiv e quality contr ol fr ame work for
he empirical quantification of essential image parameters, such
s noise, intensity inhomogeneities, and image resolution (all of
hese can be impacted, for example, by motion artifacts). Separate
ar ameter-specific r atings ar e pr ovided as well as a handy ov er all
 ating [ 41 ]. Mor eov er, ima ge outliers can be easily identified, ei-
her dir ectl y based on the afor ementioned indicators of the ima ge
uality or by calculating a z -score determined by the quality of the

ma ge pr ocessing as well as by the anatomical c har acteristics of
ac h br ain. For mor e details, r efer to Supplementary Note 4 . 

apping onto the cortical surface 
AT allows the user to map voxel-based values (e .g., quantitative ,

unctional, or diffusion parameters) to individual brain surfaces
i.e., pial, central, and/or white matter) for surface-based anal-
ses . T he integrated equi-volume model [ 42 ] also considers the
hift of c ytoar chitectonic lay ers caused b y the local folding. Op-
ionall y, CAT also allows ma pping of voxel v alues at m ultiple posi-
ions along the surface normal at each node—supporting a layer-
pecific analysis of ultra-high resolution functional MRI data [ 43 ,
4 ]. For more details, refer to Supplementary Note 5 . 

 hr eshold-fr ee cluster enhancement (TFCE) 
AT comes with its own thr eshold-fr ee cluster enhancement

TFCE) toolbox and provides the option to apply TFCE [ 45 ] in any
tatistical second-level analysis in SPM, for both voxel-based and
urface-based analyses. It can also be emplo y ed to analyze func-
ional MRI (fMRI) or diffusion tensor imaging (DTI) data. A particu-
arl y helpful featur e of the TFCE toolbox is that it automatically
 ecognizes exc hangeability bloc ks and potential nuisance par am-
ters [ 46 ] from an existing statistical design in SPM. For more de-
ails, refer to Supplementary Note 4 . 

isualization 

AT allows a user to generate graphs and images, which creates
 solid basis to explore findings as well as to generate ready-to-
ublish figures according to prevailing standards. More specifi-
ally, it includes 2 distinct sets of tools to visualize results: the first
et pr epar es both voxel- and surface-based data for visualization
y providing options for thresholding the default SPM T -maps or
 -maps and for converting statistical parameters (e.g., T -maps and
 -maps into p -maps). The second set of tools visualizes the data
ffering the user ample options to select from different brain tem-
lates , views , slices , significance parameters , significance thresh-
lds , color schemes , and so on (see Fig. 5 ). 

xample application 

o demonstrate an application of C AT, we in vestigated an actual
ataset focusing on the effects of Alzheimer’s disease on brain
tructur e. Mor e specificall y, we set out to compar e 25 patients
ith Alzheimer’s disease and 25 matched controls. We applied (i)
 VBM analysis focusing on voxel-wise gray matter volume, (ii)
n RBM analysis focusing on regional gray matter volume (i.e., a
 oxel-based R OI anal ysis), (iii) a surface-based anal ysis focusing
n point-wise cortical thickness, and (iv) an RBM analysis focus-
ng on regional cortical thickness (i.e., a surface-based ROI analy-
is). Given the wealth of liter atur e on Alzheimer’s disease, we ex-
ected atrophy in gray matter volume and cortical thickness in
atients compared to controls, particularly in regions around the
edial temporal lobe and the default mode network [ 47 , 48 ]. In

ddition to distinguishing between the 4 morphological measures
i–iv), all analyses were conducted using both cross-sectional and
ongitudinal streams in CAT. Overall, we expected that longitu-
inal changes would manifest in similar brain regions to cross-
ectional group differences but that cross-sectional effects would
e more pronounced than longitudinal effects . T he outcomes of
his example analysis are presented and discussed in the next
ection. 

iscussion 

xample application 

s shown in Fig. 6 , all 4 cross-sectional streams—investigating
oxel-based gray matter volume, regional gray matter vol-
me , point-wise thickness , and r egional thic kness—r e v ealed
idespr ead gr oup differ ences between patients with Alzheimer’s
isease (AD) and matched controls. Overall, the effects were com-
ar able between cr oss-sectional and longitudinal str eams, but the

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
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Figure 5: Examples of CAT’s visualization of results. Both surface- and voxel-based data can be presented on surfaces such as (A) the (inflated) 
FsAverage surface or (B) the flatmap of the Connectome W orkbench. V olumetric maps can also be displayed as (C) slice overlays on the MNI av er a ge 
brain or (D) a maximum intensity projection (so-called glass brains). All panels show the corrected P values from the longitudinal VBM study in our 
example (see “Example application”). 
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significant clusters wer e mor e pr onounced cr oss-sectionall y (note 
the different thresholds cross-sectionally and longitudinally). 

Mor e specificall y, using VBM, significantl y smaller voxel-wise 
gray matter volumes were observed in patients with AD compared 

to contr ols, particularl y in the medial and later al tempor al lobes 
and within regions of the default mode network (Fig. 6 A, top). Sim- 
ilarly, the longitudinal follow-up revealed a significantly stronger 
gray matter volume loss in patients compared to controls, with 

effects located in the medial temporal lobe as well as the default 
mode network (Fig. 6 A, bottom). The voxel-based ROI analysis re- 
sulted in a significance pattern similar to the VBM study, with 

particularl y pr onounced gr oup differ ences in the tempor al lobe 
that extended into additional brain areas, including those com- 
prising the default mode network (Fig. 6 B, top). Again, the longitu- 
dinal analysis yielded similar but less pronounced findings than 

the cross-sectional analysis, although longitudinal effects were 
stronger than in the VBM analysis (Fig. 6 B, bottom). 

Using SBM, the point-wise cortical thickness analysis yielded a 
pattern similar to the VBM analysis with significantly thinner cor- 
tices in patients, particularly in the medial and lateral temporal 
lobe and within regions of the default mode network (Fig. 6 C, top).
Just as in the VBM analysis, significant clusters were widespread 

and r eac hed far into adjacent r egions. Again, the r esults fr om the 
longitudinal stream were less widespread and significant than the 
r esults fr om the cr oss-sectional str eam (Fig. 6 C, bottom). Finally,
the surface-based ROI analysis largely replicated the local find- 
ings from the SBM analysis (Fig. 6 D, top/bottom). 

Ov er all, the r esults of all anal ysis str eams corr obor ate prior 
findings in the Alzheimer’s disease liter atur e, particularl y the 
strong disease effects within the medial temporal lobe and regions 
of the default mode network [ 47 , 48 ]. Furthermore, the compara- 
le pattern across measures suggests a considerable consistency 
etween av ailable mor phometric options, e v en if gr ay matter vol-
me and cortical thickness are biologically different and not per-

ectl y r elated [ 49 , 50 ]. 

v alua tion of CAT12 

s shown in Supplementary Fig. S1 and Supplementary Fig. S2 ,
 AT12 pro ved to be accurate , sensitive , reliable , and robust, out-
erforming other common neur oima ging tools. Similar conclu- 
ions have been drawn in independent evaluations testing 1 or
or e softwar e in comparison with C AT12. For example , Guo et al.

 51 ] e v aluated the r epeatability and r epr oducibility of br ain vol-
me measurements using F reeSurfer, FSL-SIEN AX, and SPM and
ighlighted the reliability of C AT12. Similarly, C AT12 emerged as
 robust option when demonstrating that the choice of the pro-
essing pipeline influences the location of neuroanatomical brain 

arkers [ 52 ]. Last but not least, Khlif et al. [ 53 ] compared the
utcomes of CAT12’s automated segmentation of the hippocam- 
us with those ac hie v ed based on manual tracing and demon-
trated that both approaches produced comparable hippocampal 
olume. 

In ad dition, n umer ous e v aluations suggest that CA T12 per -
orms at least as well as other common neur oima ging tools and,
s such, offers a valuable alternative. For example, Tav ar es et al.
 54 ] conducted a VBM study and concluded that the segmentation
ipelines implemented in CAT12 and SPM12 pr ovided r esults that
r e highl y corr elated and that the c hoice of the pipeline had no
mpact on the accuracy of any brain volume measure. Along the
ame lines, but for SBM, Ay et al. [ 55 ] reported that CAT12 and
r eeSurfer pr oduced equall y v alid r esults for parcel-based cor-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
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Figure 6: Pronounced atrophy in gray matter and cortical thickness in patients with Alzheimer’s disease compared to healthy control subjects. (A) 
Voxel-based morphometry (VBM) findings: Results were estimated using threshold-free cluster enhancement (TFCE), corrected for multiple comparisons by 
controlling the family-wise error (FWE), and thresholded at P < 0.001 for cross-sectional data and P < 0.05 for longitudinal data. Significant findings were 
projected onto orthogonal sections intersecting at (x = −27 mm, y = −10 mm, z = −19 mm) of the mean brain created from the entire study sample 
( n = 50). (B) Volumetric regions of interest (ROI) findings: ROIs were defined using the Neuromorphometrics atlas. Results were corrected for multiple 
comparisons by controlling the false discovery rate (FDR) and thresholded at q < 0.001 for cross-sectional data and q < 0.05 for longitudinal data. 
Significant findings were projected onto the same orthogonal sections as for the VBM findings. (C) Surface-based morphometry (SBM) findings: Results 
were estimated using TFCE, FWE-corrected, and thresholded at P < 0.001 for cross-sectional data and P < 0.05 for longitudinal data. Significant findings 
wer e pr ojected onto the Fr eeSurfer FsAverage surface. (D) Surface R OI findings: R OIs w ere defined using the DK40 atlas. Results w er e FDR-corr ected 
and thresholded at q < 0.001 for cross-sectional data and q < 0.05 for longitudinal data. Significant findings were projected onto the FsAverage surface. 
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ical thickness calculations. de Fátima Machado Dias et al. [ 56 ]
ddressed the issue of reproducibility and observed that cortical
hic kness measur es using CAT12 and Fr eeSurfer wer e compar a-
le at the individual le v el. Mor eov er, Seiger et al. [ 57 ] conducted
 study in patients with Alzheimer’s disease and healthy con-
r ols, in whic h CAT12 and Fr eeSurfer pr ovided consistent cortical
hickness estimates and excellent test–retest variability scores.
elázquez et al. [ 58 ] supported these findings when comparing
AT12 and FreeSurfer with 3 voxel-based methods in a test–
 etest anal ysis and clinical a pplication. Finall y, Righart et al. [ 59 ]
ompared volume and surface-based cortical thickness measure-
ents in multiple sclerosis and emphasized CAT12’s consistent

erformance. 

m  
These collective findings from multiple studies support the no-
ion that CAT is a robust and reliable tool for both VBM and SBM
nal yses, pr oducing r esults that ar e compar able to and, in some
ases, superior to other established neur oima ging softwar e. 

onclusion 

AT is suitable for desktop and laptop computers as well as high-
erformance clusters. It is fully integrated into the SPM environ-
ent within MATLAB but also allows process execution dir ectl y

rom the command shell, without having to start SPM. CAT can
lso run without a MATLAB license by using the stand-alone ver-
ion or by using Octave instead of MATLAB. In terms of perfor-
ance , C AT allows for ultra-fast processing and analysis and also
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is more sensitive in detecting significant effects compared to other 
common tools used by the neur oima ging comm unity. Mor eov er, it 
better handles varying levels of noise and signal inhomogeneities.
Furthermore , C AT is easy to integrate with non-SPM software 
pac ka ges and also supports the Br ain Ima ging Data Structur e 
(BIDS) standards [ 60 ]. Ther efor e, CAT is ideall y suited to process 
not only small datasets (as demonstrated in the example applica- 
tion) but also big datasets, such as samples of the UK Biobank [ 61 ] 
or ENIGMA [ 62 ]. Finally, while CAT is currently targeted at struc- 
tur al ima ging data, some features (e.g., high-dimensional spatial 
r egistr ation or ma pping onto the cortical surface) may also be 
used for the analysis of functional, diffusion, or quantitative MRI 
or EEG/MEG data. 

Methods 

Application example 

Data source 
Data for the application example were obtained from the 
Alzheimer’s Disease Neur oima ging Initiativ e (ADNI) database 
[ 63 ]. The ADNI ( RRID:SCR _ 003007 ) was launched in 2003 as a 
public–private partnership, led by Principal Investigator Michael 
W. Weiner, MD. The primary goal of ADNI has been to test whether 
serial MRI, positron emission tomography (PET), other biological 
markers, and clinical and neur opsyc hological assessment can be 
combined to measure the pr ogr ession of mild cognitive impair- 
ment (MCI) and early AD. For up-to-date information, see [ 64 ]. 

Sample characteristics 
For the purpose of the current study, we compiled a sample of 
50 subjects with 3D T1-weighted structural brain images from 

the ADNI database. Specificall y, we r andoml y selected the first 
25 subjects (16 males/9 females) classified as patients with AD 

(mean age 75.74 ± 8.14 years; mean Minimal Mental Status Ex- 
amination [MMSE] score: 23.44 ± 2.04) and matched them for sex 
and age with 25 healthy controls (mean age 76.29 ± 3.90 years; 
mean MMSE: 28.96 ± 1.24). Informed consent was obtained from 

all r esearc h participants. All subjects had br ain scans at baseline 
(first scan at enrollment) and at 2 follow-up visits, at 1 year and 

2 years after the first scan. All brain images were acquired on 1.5 
Tesla scanners (Siemens, General Electric, Philips) using a 3D T1- 
weighted sequence with an in-plane resolution between 0.94 and 

1.25 mm and a slice thickness of 1.2 mm. 

Data processing 

All T1-weighted data were processed using CAT12 following the 
cross-sectional (or longitudinal, respectively) processing stream 

for VBM, SBM (cortical thickness), and ROI analyses (see Fig. 2 ) ac- 
cording to the descriptions provided under “Computational mor- 
phometry.” For each subject, only their first time point was in- 
cluded in the cross-sectional stream, whereas all 3 time points 
were included in the longitudinal stream. The processing streams 
for the VBM analysis resulted in modulated and registered gray 
matter segments, whic h wer e smoothed using a 6-mm Gaussian 

kernel. The ima ge-pr ocessing str eams for the SBM anal ysis r e- 
sulted in the r egister ed point-wise cortical thickness measures,
whic h wer e smoothed using a 12-mm Gaussian k ernel. The vo xel- 
based ROI analysis used the Neuromorphometrics atlas ( RRID: 
SCR _ 005656 ) [ 65 ] to calculate the regional gray matter volumes; 
the surface-based ROI analysis employed the DK40 atlas [ 34 ] to 
calculate regional cortical thickness. 
tatistical analysis 
or each variable of interest—voxel-wise gray matter volume, re- 
ional gray matter volume, point-wise cortical thickness, and re- 
ional cortical thickness—the dependent measures (e.g., the regis- 
ered, modulated, and smoothed gray matter segments for voxel- 
ise gray matter) were entered into the statistical model. For the

r oss-sectional str eam, group (patients with AD vs. contr ols) was
efined as the independent variable. For the longitudinal stream,
he interaction between group and time was defined as the inde-
endent v ariable, wher eas subject was defined as a v ariable of no

nterest. For the VBM and the v oxel-based R OI analyses, data w ere
orrected for TIV using “global scaling” (because TIV correlated 

ith group , the effect of interest). Since cortical thickness does
ot scale with brain size [ 39 ], no corrections for TIV were applied

or the SBM and the surface-based ROI analyses. For the cross-
ectional analysis, we additionally included age as a nuisance 
arameter. 

For the VBM and SBM anal yses, r esults wer e corr ected for
ultiple comparisons by applying TFCE [ 45 ] and controlling the

amil y-wise err or at P ≤ 0.001 (cross-sectional) and P ≤ 0.05 (longi-
udinal). For the voxel-based and surface-based ROI anal yses, r e-
ults wer e corr ected for m ultiple comparisons by contr olling the
alse discov ery r ate [ 66 ] at q ≤ 0.001 (cross-sectional) and q ≤ 0.05
longitudinal). All statistical tests were 1-tailed given our a priori
ypothesis that patients with AD have less gray matter at baseline
nd a larger loss of gray matter over time. 

The outcomes of the VBM and voxel-based ROI analyses were 
verlaid onto orthogonal sections of the av er a ge br ain that was
r eated fr om the spatiall y r egister ed T1-weighted ima ges of the
tudy sample ( n = 50); the outcomes of the SBM and surface-based
OI analyses were projected onto the FsAverage surface. 

ource Code Availability and Requirements 

roject name: Computational Anatomy Toolbox 
r oject homepa ge: [ 9 , 69 ] 
oftware documentation: [ 14 ] 
perating system(s): Platform inde pendent (MacOS, Lin ux,
indows) 

r ogr amming langua ge: MATLAB, C 

ther r equir ements: MATLAB (7.4 or ne wer) 
icense: GPL 2.0 
RID:SCR _ 019184 

dditional Files 

upplementary Note 1. Comparison with other tools. 
upplementary Note 2. Evaluation with simulated data. 
upplementary Note 3. Longitudinal processing. 
upplementary Note 4. Quality control. 
upplementary Note 5. Mapping onto the cortical surface. 
upplementary Note 6. Thr eshold-fr ee cluster enhancement 

TFCE). 
upplementary Note 7. Customized methods for clinical data. 
upplementary Fig. S1. Comparisons between CAT12 and other 
ommon tools. Here we compared the baseline gray matter im-
ges of 25 patients with Alzheimer’s disease and 25 matched con-
r ols. (a) VBM anal yses of voxel-wise gr ay matter volume using
SL-FAST6 (top), SPM12-Shooting (middle), and CAT12 (bottom).
b) SBM analyses of point-wise cortical thickness using CIVET2.1 
top), Freesurfer7.2 (middle), and C AT12 (bottom). (c , d) Sensitivity
f VBM and SBM analyses . T he effect sizes (Cohen’s d ) are shown

https://scicrunch.org/resolver/RRID:SCR_003007
https://scicrunch.org/resolver/RRID:SCR_005656
https://scicrunch.org/resolver/RRID:SCR_019184
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n the x-axis; their frequency is shown on the y-axis (occurrence
s normalized to 1 to facilitate comparisons between histograms).
or both VBM and SBM, CAT12 demonstrates a larger sensitivity
n detecting structural differences . T his is reflected in the more
xtended significance clusters and lo w er P values (panels a and b)
s well as larger effect sizes (panels c and d). 
upplementary Fig. S2. Evaluation of CAT12 and other common
ools using Brainweb data. Higher kappa values correspond to
 better ov erla p, lar ger r eliability, and incr eased r obustness. (a)
v erla p between gr ound truth and segmentation outputs for dif-

erent noise levels . C AT12 is similar to FSL-FAST6 at lo w er noise
e v els but clearl y outperforms both SPM12 and FSL-FAST6 at
igher noise le v els . T he latter is due to the implemented denois-

ng step (see also Fig. 3 A for the effect of denoising). (b) Ov erla p
etween ground truth and segmentation outputs for different sig-
al inhomogeneities . C AT12 is extr emel y r obust acr oss the entir e
ange of intensity nonuniformity; it outperforms both SPM12 and
SL-FAST6. 
upplementary Fig. S3. Comparison between CAT12’s cross-
ectional and longitudinal pipelines. Here we compared the lon-
itudinal gray matter images of 25 patients with Alzheimer’s dis-
ase and 25 matched controls. Voxel-based morphometry (VBM)
 esults ar e shown on the left and surface-based morphometry
SBM) results on the right. For both VBM and SBM, the longitu-
inal pr epr ocessing leads to an incr eased sensitivity compar ed
o cross-sectional processing, which is evident as larger clusters
nd lo w er P values (panels a and b) as well as larger effect sizes
panels c and d). The effect sizes are captured as Cohen’s d on
he x-axis with the frequency of its occurrence normalized to a
otal sum of 1 (to ease comparisons between histograms) on the
-axis. 
upplementary Fig. S4. CAT12’s longitudinal processing work-
ows to examine (a) neuroplasticity, (b) aging, and (c) neurodevel-
pment. The first step in all 3 w orkflo ws is the creation of a high-
uality av er a ge ima ge ov er all time points. For this pur pose , C AT12
ealigns the images from all time points for each participant us-
ng inverse-consistent (or symmetric) rigid-body r egistr ations and
ntrasubject bias field correction. While this is sufficient to cre-
te the r equir ed av er a ge ima ge for the neur oplasticity and a ging
 orkflo ws, the neur ode v elopmental w orkflo w r equir es nonlinear
 egistr ations in addition. In either case, the resulting av er a ge im-
ge is segmented using CAT12’s r egular pr ocessing w orkflo w to
reate a subject-specific tissue probability map (TPM). This TPM is
sed to enhance the time point–specific processing to create the
nal segmentations . T he final tissue segments ar e then r egister ed
o MNI space to obtain a voxel comparability across time points
nd subjects, which differs between all 3 workflows. In the neu-
oplasticity w orkflo w, an average of the time point–specific regis-
r ations is cr eated to tr ansform the tissue segments of all time
oints to MNI space . T he aging w orkflo w does the same in princi-
le but adds additional (very smooth) deformations between the

ndividual images across time points to account for inevitable age-
 elated c hanges ov er time (e.g., enlar gements of the v entricles).
n contrast, the neurodevelopmental w orkflo w needs to account
or major c hanges, suc h as ov er all head and brain growth, which
 equir es independent nonlinear r egistr ations to MNI space of all
ma ges acr oss time points (whic h ar e obtained using the default
r oss-sectional r egistr ation model). 
upplementary Fig. S5. Subject-specific quality control. Individ-
al quality ratings for each scan are helpful for determining
otential problems and issues for the use of single scans . T he “Im-
ge Quality Ratings” (top) employ measures of noise , bias , and im-
 ge r esolution to gener ate a summary gr ade for eac h ima ge [ 41 ].
 “CAT Processing Report” (left) is automatically saved for each
mage after the processing w orkflo w is completed; it provides in-
ormation on image quality measures and the ov er all gr ade, in
ddition to visualizations, which allow for an easy assessment
f the quality of the skull stripping, tissue segmentation, and
urface ma pping. Mor eov er, a “Longitudinal Report” (right) is au-
omaticall y sav ed when an y of the longitudinal pipelines hav e
een used (see Supplementary Note 3 ). This longitudinal report—
onsidering all images of 1 br ain acr oss all time points—provides
he same information as the standard cross-sectional report but
ocuses on the assessment of differences between the individual
ime points. 
upplementary Fig. S6. Group-specific quality control. In addi-
ion to the subject-specific quality contr ol, lar ger studies in par-
icular might benefit from scrutinizing those images that are ei-
her low in their individual quality ratings and/or different from
he other images, suggesting anatomic anomalies, imperfect pro-
essing, or other issues that might hamper the subsequent sta-
istical analysis . T he “Group Boxplot” (left) allows one to com-
ar e an y ima ge based on their similarity to the mean and re-
ects the homogeneity of the sample, by calculating the av er a ge
 -score of all spatially registered images (or surface parameter
les). Lo w er av er a ge z -scor e v alues indicate that the data points
r e mor e similar to the mean. Outliers (i.e., images with high z -
cor e v alues) indicate either a potential problem (with the im-
ge per se or with the outcomes of the image processing) or sim-
ly a variation in the neuroanatomy (e.g., enlarged ventricles).
uch outliers should be checked carefully. An additional “IQR ×
ean Z-Score Window” (right) compares the average z -scores with

he weighted image quality rating (IQR) for each subject and al-
ows a combined view of sample homogeneity and ov er all ima ge
uality. 
upplementary Fig. S7. Volume mapping. CAT12 offers multiple
ays to map voxel values onto the surface . T he default mapping
xtracts voxel values at multiple positions along a surface nor-
al between the white matter surface and the pial surface . T he

xact location of these positions along the normal is determined
 y an equi-v olumetric model [ 42 ], whic h r eflects the shift of corti-
al layers caused by local folding. Howe v er, voxel v alues can also
e extracted at a specific user-defined displacement (in mm) from
n y giv en surface location. 
upplementary Ta ble S1. Voxel-based R OI atlases available in
AT12 (as of October 2023). 
upplementary Ta ble S2. Surface-based R OI atlases available in
AT12 (as of October 2023). 

bbreviations 

D: Alzheimer’s disease; AMAP: ada ptiv e maxim um a posteri-
ri; BIDS: Br ain Ima ging Data Structur e; CAT: Computational
natom y Toolbo x; CSF: cer ebr ospinal fluid; DTI: diffusion ten-
or imaging; EEG: electroencephalography; FDR: false discovery
ate; fMRI: functional magnetic resonance imaging; FWE: family-
ise error; FWHM: full width at half maxim um; GM: gr ay matter;

QR: image quality rating; MEG: magnetoencephalography; MMSE:
inimal Mental Status Examination; MNI: Montreal Neurologi-

al Institute; MPRAGE: Magnetization Prepared Rapid Acquisition
r adient Ec ho; MP2RAGE: Ma gnetization Pr epar ed 2 Ra pid Acqui-
ition Gradient Echoes; MRI: magnetic resonance imaging; PBT:
r ojection-based thic kness; PVE: partial volume estimation; RBM:
 egion-based mor phometry; ROI: r egion of inter est; SANLM: spa-
iall y ada ptiv e nonlocal means; SBM: surface-based morphom-
try; SLC: stroke lesion correction; SPM: statistical parametric

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae049#supplementary-data
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ma pping; TFCE: thr eshold-fr ee cluster enhancement; TIV: total in- 
tr acr anial volume; TPM: tissue probability map; VBM: voxel-based 
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tensity; WMHC: white matter hyperintensity correction. 
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