

Received 10 May 2024 Accepted 1 July 2024

Edited by Y. Ozawa, University of Hyogo, Japan

Keywords: crystal structure; co-crystal; quinolin-8-ol sulfonate; DMAP; N—H···N interactions.

CCDC reference: 2366836

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the 1:1 co-crystal 4-(dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5sulfonate-*N*,*N*-dimethylpyridin-4-amine

Mami Isobe,^a Yukiyasu Kashiwagi^{b*} and Koji Kubono^c

^aDepartment of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan, ^bOsaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan, and ^cOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan. *Correspondence e-mail: kasiwagi@orist.jp

The asymmetric unit of the title compound is composed of two independent ion pairs of 4-(dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate (HDMAP⁺·HqSA⁻, C₇H₁₁N₂⁺·C₉H₆NO₄S⁻) and neutral *N*,*N*-dimethylpyridin-4-amine molecules (DMAP, C₇H₁₀N₂), co-crystallized as a 1:1:1 HDMAP⁺: HqSA⁻:DMAP adduct in the monoclinic system, space group *Pc*. The compound has a layered structure, including cation layers of HDMAP⁺ with DMAP and anion layers of HqSA⁻ in the crystal. In the cation layer, there are intermolecular N-H···N hydrogen bonds between the protonated HDMAP⁺ molecule and the neutral DMAP molecule. In the anion layer, each HqSA⁻ is surrounded by other six HqSA⁻, where the planar network structure is formed by intermolecular O-H···O and C-H···O hydrogen bonds. The cation and anion layers are linked by intermolecular C-H···O hydrogen bonds and C-H··· π interactions.

1. Chemical context

Ionic co-crystals have much attention in pharmaceuticals for the development of improved drugs based on crystal engineering (Bolla et al., 2022) and in organic functional materials for achieving rare and multifunctional properties through tunable structures, morphologies, and sizes in co-crystal assemblies (Sun et al., 2019). In structural chemistry, ionic cocrystals containing pyridine-pyridinium derivatives bridged by an N-H···N hydrogen bond have already been proposed (Doring & Jones, 2016; Fabry et al., 2017; Zhang et al., 2018; Vladiskovic et al., 2023). In addition, the supramolecular synthon preference of pyridinium salts to 8-hydroxyquinoline-5-sulfonate (HqSA⁻) and various sulfonates has been investigated (Ganie et al., 2021). On the other hand, quinolin-8-ol and its sulfonated derivative, quinoline-8-ol sulfonic acid (H_2qSA) , are well-known chelating ligands and analytical reagents (Wiberley et al., 1949; Kashiwagi et al., 2020; Kubono et al., 2023). H₂qSA shows higher solubility to water than quionolin-8-ol, especially under basic conditions. We report here the crystal structure of the title compound as an ionic cocrystal composed of the salt of 4-(dimethylamino)pyridin-1ium (HDMAP⁺) and quinolin-8-ol-5-sulfonate (HqSA⁻) with neutral N,N-dimethylpyridin-4-amine (DMAP).

2. Structural commentary

The title compound is composed of two independent HDMAP $^+$ ·HqSA⁻ ion pairs and neutral DMAP molecules, co-crystallized in the monoclinic system, space group *Pc* as shown in Fig. 1. The phenolic H atoms (H6, H10) in the $\rm HqSA^-$ moieties are not dissociated.

There are intramolecular O-H···N hydrogen bonds involving the hydroxy groups and quinoline N atoms $(O6-H6\cdots N11 \text{ and } O10-H10\cdots N12; \text{ Table 1})$ generating S(5) ring motifs (Fig. 2). The proton of the sulfonate group in H₂qSA is dissociated and bound to the pyridyl N atom of one DMAP molecule, but there is also another non-protonated DMAP molecule in the crystal. As a result, the co-crystal is formulated as a 1:1:1 HDMAP⁺:HqSA⁻:DMAP adduct. The cations of HDMAP⁺ are formed through intermolecular N14-H14...N15 and N18-H18...N19 hydrogen bonds in a linear geometry (Fig. 2, see below). Each H atom attached to the N atom of the pyridine ring in HDMAP⁺ could be located in a Fourier density map, and the N14-H14 and N18-H18 bond lengths are similar, 0.90 (3) Å. The N atoms of the dimethylamino groups (N13, N16, N17 and N20) show no pyramidalization, with deviations from the plane of the bonded three C atoms of 0.029 (7), 0.031 (3), 0.037 (8) and 0.020 (4) Å, respectively. The quinoline ring systems in HqSA⁻ are essentially planar, the dihedral angles between the mean planes of the pyridine and benzene rings N12/C34-C38 and C30-C34/C38, and N11/C25-C29 and C21-C25/C29 being 0.46 (14) and 0.78 (13) $^{\circ}$, respectively.

3. Supramolecular features

In the title co-crystal, both the cation layers of $[HDMAP\cdot DMAP]^+$ and the anion layers of $HqSA^-$ run parallel to the *ab* plane. The hydrogen-bond geometry is

Figure 1

The molecular structure of the title compound with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

 $\mathit{Cg1}, \mathit{Cg2}$ are the centroids of the N11/C25–C29 and N12/C34–C38 rings, respectively

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O6−H6···O8 ⁱ	0.84 (5)	2.00 (5)	2.679 (3)	137 (4)
O6−H6···N11	0.84 (5)	2.24 (5)	2.728 (3)	117 (4)
O10−H10···O4	0.89 (5)	1.90 (5)	2.674 (3)	144 (4)
O10−H10···N12	0.89 (5)	2.31 (5)	2.730 (3)	109 (4)
N14-H14···N15	0.90 (3)	1.91 (3)	2.814 (4)	174 (3)
N18−H18· · ·N19	0.90 (3)	1.92 (4)	2.816 (4)	177 (7)
$C27 - H27 \cdots O6^{ii}$	0.95	2.58	3.219 (4)	125
$C27 - H27 \cdots O8^{iii}$	0.95	2.27	3.194 (4)	164
$C36-H36\cdots O4^{iv}$	0.95	2.33	3.244 (4)	160
$C36-H36\cdots O10^{iv}$	0.95	2.58	3.216 (4)	125
$C39-H39\cdots O3^{v}$	0.95	2.32	3.200 (4)	154
C43-H43···O5	0.95	2.22	3.160 (4)	169
C46-H46···O5	0.95	2.46	3.373 (4)	161
$C50-H50\cdots O3^{v}$	0.95	2.43	3.292 (4)	151
$C53-H53\cdots O9^{vi}$	0.95	2.22	3.146 (4)	164
$C54-H54\cdots O10^{vii}$	0.95	2.55	3.450 (4)	158
C57-H57···O7	0.95	2.22	3.143 (4)	165
C60-H60···O7	0.95	2.40	3.325 (4)	163
$C64 - H64 \cdots O9^{vi}$	0.95	2.35	3.267 (4)	162
$C40-H40\cdots Cg1^{v}$	0.95	2.63	3.498 (3)	153
C49 $-$ H49 $\cdot \cdot \cdot Cg2^{viii}$	0.95	2.87	3.754 (3)	156
$C61 - H61 \cdots Cg2$	0.95	2.70	3.571 (3)	152

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) x - 1, y - 1, z; (iv) x + 1, y, z; (v) $x, -y + 1, z + \frac{1}{2}$; (vi) $x, -y + 2, z + \frac{1}{2}$; (vii) $x + 1, -y + 2, z + \frac{1}{2}$; (viii) $x - 1, -y + 1, z + \frac{1}{2}$.

summarized in Table 1. The pyridine rings in the cation layer are stacked along the *ab* plane as shown in Fig. 2. In the cation layer, two independent cation units of $[HDMAP \cdot DMAP]^+$ are formed by intermolecular $N-H \cdots N$ hydrogen bonds $(N14-H14 \cdots N15 \text{ and } N18-H18 \cdots N19)$. The

Figure 2

The layer structure of the $[HDMAP\cdot DMAP]^+$ cationic unit in the *ab* plane. The intermolecular $N-H\cdot\cdot\cdot N$ hydrogen bonds are shown as dashed lines.

The S(5) ring motifs formed by intramolecular $O-H \cdots N$ hydrogen bonds involving the hydroxy groups and quinoline N atoms of the HqSA⁻ anionic units. The intramolecular $O-H \cdots N$ hydrogen bonds are shown as dashed lines. The sheet structure of the HqSA⁻ anionic units is formed by the planar intermolecular hydrogen-bond networks in the *ab* plane. The intermolecular $O-H \cdots O$, $C-H \cdots O$, $O-H \cdots N$ hydrogen bonds are also shown as dashed lines. [Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) x - 1, y - 1, z; (iv) x + 1, y, z.].

N14-H14···N15 and N18-H18···N19 angles are 174(3)and 177 (7)°, respectively. The dihedral angles between the two pyridine rings in the [HDMAP·DMAP]⁺ units are 0.21 (15)° (N14/C39-C43 and N15/C46-C50 rings) and 1.60 (15)° (N18/C53-C57 and N19/C60-C64). The quinoline ring system in the anion layer faces the *ab* plane as shown in Fig. 3. In the anion layer, each HqSA⁻ molecule is surrounded by six HqSA⁻ molecules through intermolecular hydrogen bonds, essentially forming an sheet. Each HqSA⁻ molecule binds with two HqSA⁻ molecules having the same molecular orientation through intermolecular C-H···O hydrogen bonds [C27-H27···O6ⁱⁱ and C36-H36···O10^{iv}; symmetry codes: (ii) x - 1, y, z; (iv) x + 1, y, z] and also binds with four HqSA⁻ molecules having the different molecular orientation through intermolecular $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds [O6-H6···O8ⁱ, O10-H10···O4, C27-H27···O8ⁱⁱⁱ and C36-H36···O4^{iv}; symmetry codes: (i) x, y - 1, z; (iii) x - 1, y - 1, z]. The C27-H27···O6ⁱⁱ, C36-H36···O10^{iv}, $O6-H6\cdots O8^{i}$, $O10-H10\cdots O4$, $C27-H27\cdots O8^{iii}$ and $C36-H36\cdots O4^{iv}$ angles are 125, 125, 137 (4), 144 (4), 164 and 160°, respectively. The interplanar spacing between adjacent anionic layers (the distance between the closest centroids of the mean planes through N12/C22/C23/C37 within the anionic layers, being across the cationic layer from each other) is 9.562 Å. The interactions between the cationic and anionic layers are attributed to the extended 3D hydrogen-bonding linkages, three C-H··· π interactions [C40-H40···Cg1ⁱ, C49–H49···Cg2^{viii}, C61–H61···Cg2; Cg1 and Cg2 are the centroids of the N11/C25-C29 and N12/C34-C38 rings, respectively; symmetry code: (viii) x - 1, 1 - y, $z + \frac{1}{2}$ and five C-H···O interactions $[C39-H39\cdots O3^{v}, C50-H50\cdots O3^{v},$ $C53-H53\cdots O9^{vi}$, $C54-H54\cdots O10^{vii}$, $C64-H64\cdots O9^{vi}$;

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2024.1.0, update of March 2024; Groom et al., 2016) for compounds containing the 4-aminopyridine skeleton with hydrogen atom bound at the 2, 3, 5, 6-positions of the pyridine ring gave 5687 hits. Among those, a search for the containing DMAP molecule gave 1794 hits and for those of protonated DMAP gave 360 hits. A search for compounds containing a pyridine-protonated pyridine skeleton gave 15 hits. In these compounds, the dihedral angles between two pyridine rings are close to 0° in seven structures, which are essentially coplanar due to unique hydrogen-bonding networks stemming from the substituents on the pyridine rings (BAYBIN; Kobayashi et al., 2003; BECHOG; Glidewell et al., 1982; KIFBIO; Vladiskovic et al., 2023; WAZNET; Lackova et al., 2014; WEVHOX; Zhang et al., 2018; XACFOW; Mautner & Goher, 1998; XOHWAT; Santra et al., 2008). In single crystals of salts of the mellitate anion, which is obtained by deprotonation of mellitic acid (benzene hexacarboxylic acid), with substituted pyridinium derivatives, the triangular hydrogen-

010

H54

09^V

03

H50

H39

Cgl

H4(

Cg2

H49

bonded unit between the anions induces a two-dimensional sheet self-organizing structure (BAYBIN, Kobavashi et al., 2003). On the other hand, ferrocene derivatives substituted with pyridine form cationic dimers via a hydrogen bond between two pyridine rings (WOFGII; Braga et al., 2008). A search for containing both of protonated DMAP and the other neutral DMAP gave 14 hits. There are five hits having the proton between two N-(4-pyridyl)dimethylamine skeletons (2, 3, 5, 6-carbon atoms are bound to hydrogen atoms). In these compounds, the dihedral angles between two pyridine rings are close to 0° in three structures, which are essentially coplanar structures [1.3 (1)° in FETDEO, Aakeroy et al., 2005; 3.47 (7)° in GOFRUQ, Wagler *et al.*, 2014; 3.8 (4)° in ZAPNIN, Biradha et al., 1995]. A fragment search for the 8-hydroxyquinoline-5-sulfonic acid skeleton gave 84 hits, which include two hydrate co-crystals composed of the 8-hydroxyquinoline-5-sulfonicin anion and 4-phenylpyridine (EMEDUY; Ganie et al., 2021), 4,4'-bipyrydine (INEMAP; Baskar Raj et al., 2003) cations and three hydrate co-crystals composed of the 8-hydroxy-7-iodoquinoline-5-sulfonic anion and various pyridine derivative cations (EFAQUZ, Smith et al., 2012; EYIYOA, Smith et al., 2004; ISUTAR, Hemamalini et al., 2004). According to the crystal structures of BAYBIN, EFAQUZ, EYIYOA and ISUTAR, these compounds form layered structures by constructing 2D layers of the cationic and anionic moieties with these layers arranged sterically.

5. Synthesis and crystallization

To a solution of DMAP (611 mg, 5.0 mmol) in H_2O (5 mL) at 353 K, an ethanol (1 mL) solution of H_2qSA (450 mg, 2.0 mmol) was added and then stirred for 30 min. Orange single crystals of the title compound suitable for X-ray diffraction were grown by slow evaporation of the aqueous ethanol solution mentioned above for a week at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The title compound was refined as an inversion twin in *Pc* whose twin component mass ratio refined to 0.522 (18):0.478 (18). The hydroxy H atoms, H6 and H10, were located in a difference-Fourier map and freely refined. The N-bound H atoms, H14 and H18, were located in difference-Fourier maps but were refined with a distance restraint of N-H = 0.86 \pm 0.02 Å. All H atoms bound to carbon were positioned geometrically and refined using a riding model, with C-H = 0.95 or 0.98 Å and $U_{\rm iso}(\rm H) = 1.2$ or $1.5U_{\rm eq}(\rm C)$.

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. JP23 KJ1830 to M. Isobe).

Experimental details.	
Crystal data	
Chemical formula	$C_7H_{11}N_2^+ \cdot C_9H_6NO_4S^- \cdot C_7H_{10}N_2$
M _r	469.55
Crystal system, space group	Monoclinic, Pc
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.00032 (10), 15.14469 (18), 18.9141 (2)
β (°)	100.6050 (12)
$V(Å^3)$	2252.53 (5)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	1.62
Crystal size (mm)	$0.4 \times 0.30 \times 0.11$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2023)
T_{\min}, T_{\max}	0.731, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16358, 6813, 6608
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.632
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.085, 1.04
No. of reflections	6813
No. of parameters	620
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.30, -0.39
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.478 (18)

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 1.5 (Dolomanov et al., 2009).

References

Table 2

- Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107.
- Baskar Raj, S., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). *Acta Cryst.* E**59**, o1980–o1983.
- Biradha, H., Edwards, R. E., Foulds, G. J., Robinson, W. T. & Desiraju, G. R. (1995). *Chem. Commun.* pp. 1705–1707.
- Bolla, G., Sarma, B. & Nangia, A. K. (2022). *Chem. Rev.* **122**, 11514–11603.
- Braga, D., Giaffreda, S. L., Grepioni, F., Palladino, G. & Polito, M. (2008). *New J. Chem.* **32**, 820–828.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Döring, C. & Jones, P. G. (2016). Z. Anorg. Allge Chem. 642, 930–936. Fábry, J. (2017). Acta Cryst. E73, 1344–1347.
- Ganie, A. A., Ismail, T. M., Sajith, P. K. & Dar, A. A. (2021). New J. Chem. 45, 4780–4790.
- Glidewell, C. & Holden, H. D. (1982). Acta Cryst. B38, 667-669.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2004). *Acta Cryst.* C60, o284–o286.
- Kashiwagi, Y., Kubono, K. & Tamai, T. (2020). Acta Cryst. E76, 1271–1274.
- Kobayashi, N., Naito, T. & Inabe, T. (2003). Bull. Chem. Soc. Jpn, 76, 1351–1362.
- Kubono, K., Tanaka, R., Kashiwagi, Y., Tani, K. & Yokoi, K. (2023). *Acta Cryst.* E**79**, 726–729.

research communications

- Lacková, D., Ondrejkovičová, I., Padělková, Z. & Koman, M. (2014). J. Coord. Chem. 67, 1652–1663.
- Mautner, F. A. & Goher, M. A. S. (1998). *Polyhedron*, **18**, 553–559. Rigaku OD (2023). *CrysAlis PRO*. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673– 1676.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Smith, G. (2012). Acta Cryst. E68, 03349.

- Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. C60, 0600–0603.
- Sun, L., Wang, Y., Yang, F., Zhang, X. & Hu, W. (2019). Adv. Mater. **31**, 1902328.
- Vladiskovic, C., Mantegazza, S., Razzetti, G. & Masciocchi, N. (2023). Cryst. Growth Des. 23, 1119–1126.
- Wagler, J. & Kronstein, M. (2014). CSD Communication.
- Wiberley, S. E. & Bassett, L. G. (1949). Anal. Chem. 21, 609-612.
- Zhang, K., Shen, Y., Liu, J., Spingler, B. & Duttwyler, S. (2018). *Chem. Commun.* 54, 1698–1701.

Acta Cryst. (2024). E80, 840-844 [https://doi.org/10.1107/S205698902400642X]

Crystal structure of the 1:1 co-crystal 4-(dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate-*N*,*N*-dimethylpyridin-4-amine

Mami Isobe, Yukiyasu Kashiwagi and Koji Kubono

Computing details

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine

Crystal data

 $C_{7}H_{11}N_{2}^{+}C_{9}H_{6}NO_{4}S^{-}C_{7}H_{10}N_{2}$ $M_{r} = 469.55$ Monoclinic, *Pc* a = 8.00032 (10) Å b = 15.14469 (18) Å c = 18.9141 (2) Å $\beta = 100.6050 (12)^{\circ}$ $V = 2252.53 (5) \text{ Å}^{3}$ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.085$ S = 1.046813 reflections 620 parameters 4 restraints Primary atom site location: dual Hydrogen site location: mixed F(000) = 992 $D_x = 1.385 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 11719 reflections $\theta = 3.8-76.8^{\circ}$ $\mu = 1.62 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.4 \times 0.30 \times 0.11 \text{ mm}$

 $T_{\min} = 0.731, T_{\max} = 1.000$ 16358 measured reflections 6813 independent reflections 6608 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ $\theta_{\text{max}} = 77.2^{\circ}, \theta_{\text{min}} = 3.8^{\circ}$ $h = -10 \rightarrow 9$ $k = -17 \rightarrow 19$ $l = -22 \rightarrow 23$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0463P)^2 + 0.5548P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.478 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

1. Twinned data refinement Scales: 0.522 (18) 0.478 (18) 2. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 3. Restrained distances H18-N18 0.86 with sigma of 0.02 H14-N14 0.86 with sigma of 0.02 4.a Aromatic/amide H refined with riding coordinates: C35(H35), C23(H23), C27(H27), C26(H26), C49(H49), C31(H31), C28(H28), C61(H61), C54(H54), C36(H36), C60(H60), C50(H50), C22(H22), C40(H40), C53(H53), C37(H37), C42(H42), C47(H47), C64(H64), C63(H63), C46(H46), C43(H43), C39(H39), C32(H32), C56(H56), C57(H57) 4.b Idealised Me refined as rotating group: C52(H52A,H52B,H52C), C44(H44A,H44B,H44C), C58(H58A,H58B,H58C), C66(H66A,H66B, H66C), C51(H51A,H51B,H51C), C45(H45A,H45B,H45C), C65(H65A,H65B,H65C), C59(H59A, H59B,H59C)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.17772 (8)	0.49921 (4)	0.37557 (4)	0.01431 (15)	
S2	0.88938 (8)	0.99725 (4)	0.36763 (4)	0.01686 (16)	
05	0.0868 (3)	0.46728 (13)	0.43037 (11)	0.0198 (4)	
O10	0.3080 (3)	0.75413 (13)	0.36853 (12)	0.0189 (4)	
O4	0.2618 (3)	0.58342 (12)	0.39552 (12)	0.0222 (4)	
O7	1.0147 (3)	0.97468 (16)	0.43079 (12)	0.0274 (5)	
O6	0.7498 (3)	0.25632 (14)	0.35776 (12)	0.0191 (4)	
N11	0.4365 (3)	0.18427 (15)	0.35601 (13)	0.0168 (5)	
O3	0.0728 (3)	0.49865 (13)	0.30454 (12)	0.0251 (5)	
N14	0.0994 (3)	0.57921 (17)	0.61872 (14)	0.0228 (5)	
09	0.9547 (3)	0.98318 (15)	0.30206 (12)	0.0253 (5)	
N18	1.0806 (4)	1.06837 (18)	0.62048 (15)	0.0283 (6)	
N12	0.6186 (3)	0.68257 (14)	0.36322 (13)	0.0153 (5)	
N17	1.3114 (3)	1.31360 (18)	0.63022 (14)	0.0268 (6)	
N13	0.3275 (3)	0.82252 (17)	0.60874 (14)	0.0248 (6)	
C25	0.3141 (4)	0.33136 (18)	0.36637 (15)	0.0132 (5)	
N16	-0.3146 (4)	0.16966 (18)	0.60144 (14)	0.0300 (6)	
N15	-0.0827 (3)	0.41978 (17)	0.61461 (14)	0.0258 (6)	
C30	0.4422 (3)	0.80852 (18)	0.36639 (15)	0.0152 (6)	
N20	0.6851 (4)	0.65381 (18)	0.61189 (15)	0.0297 (6)	
C29	0.4524 (4)	0.27401 (18)	0.36172 (15)	0.0141 (5)	
N19	0.9083 (4)	0.90581 (18)	0.61654 (15)	0.0271 (6)	
C35	0.9054 (4)	0.79031 (19)	0.36300 (15)	0.0157 (5)	
H35	1.003375	0.825760	0.363038	0.019*	
08	0.8170 (3)	1.08342 (14)	0.37345 (18)	0.0427 (7)	
C48	-0.2420 (4)	0.25088 (19)	0.60531 (16)	0.0222 (6)	
C23	0.5063 (4)	0.45581 (18)	0.37350 (16)	0.0165 (6)	
H23	0.525964	0.517580	0.378068	0.020*	
C24	0.3458 (4)	0.42408 (18)	0.37218 (15)	0.0156 (6)	
C27	0.1385 (4)	0.20164 (19)	0.35746 (16)	0.0195 (6)	
H27	0.031056	0.173969	0.355266	0.023*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C26	0.1533 (4)	0.29119 (19)	0.36372 (15)	0.0162 (6)
H26	0.056312	0.326366	0.366290	0.019*
C34	0.7451 (3)	0.82997 (18)	0.36388 (15)	0.0137 (5)
C49	-0.2102(4)	0.29987 (19)	0.66961 (16)	0.0224 (6)
H49	-0.243039	0.277078	0.711817	0.027*
C31	0.4187 (4)	0.89824 (19)	0.36710(17)	0.0192 (6)
H31	0.309000	0.921934	0.367659	0.023*
C38	0 6054 (4)	0 77244 (17)	0.36430(15)	0.0130(5)
C28	0.2840(4)	0.15080(18)	0.35428(16)	0.0197 (6)
H28	0.271473	0.088498	0.350666	0.024*
C33	0.7176 (4)	0.92240(18)	0.36554(15)	0.021
C61	0.7170(4) 0.8018(4)	0.72240(10)	0.50004(10)	0.0132(5)
U61	0.3010 (4)	0.7740(2) 0.744043	0.507303	0.0215 (0)
C54	1 1008 (4)	1,1040(2)	0.507595	0.020
U54	1.1908 (4)	1.1940(2) 1.222705	0.08802 (10)	0.0220 (0)
П34 С26	1.212304	1.223793	0.755507 0.26211(16)	0.020°
0.50	1.022720	0.70039(19)	0.30211(10)	0.0164 (0)
H30	1.022/30	0.072008	0.301413	0.022^{*}
C62	0.7562 (4)	0.7356(2)	0.61344 (17)	0.0237(6)
C60	0.8/63 (4)	0.8566 (2)	0.55657(17)	0.0257(7)
H60	0.907308	0.880142	0.514258	0.031*
C50	-0.1315 (4)	0.3809 (2)	0.67126 (17)	0.0247 (6)
H50	-0.110204	0.411581	0.715822	0.030*
C22	0.6432 (4)	0.39925 (19)	0.36825 (17)	0.0193 (6)
H22	0.753237	0.423009	0.368649	0.023*
C40	0.2142 (4)	0.7096 (2)	0.67653 (16)	0.0209 (6)
H40	0.240263	0.743534	0.719363	0.025*
C53	1.1159 (4)	1.1131 (2)	0.68335 (18)	0.0257 (7)
H53	1.087382	1.087116	0.725275	0.031*
C37	0.7696 (4)	0.64896 (18)	0.36221 (17)	0.0183 (6)
H37	0.780438	0.586507	0.361522	0.022*
C42	0.2165 (4)	0.6872 (2)	0.55097 (16)	0.0229 (6)
H42	0.243782	0.705189	0.506333	0.027*
C41	0.2560 (4)	0.74334 (19)	0.61167 (16)	0.0200 (6)
C21	0.6173 (4)	0.30979 (18)	0.36257 (15)	0.0145 (5)
C47	-0.1930 (4)	0.2920 (2)	0.54526 (16)	0.0237 (6)
H47	-0.212812	0.263269	0.499838	0.028*
C64	0.8639 (4)	0.8686 (2)	0.67528 (18)	0.0296 (7)
H64	0.885457	0.901387	0.718843	0.036*
C55	1.2371 (4)	1.23419 (19)	0.62685 (16)	0.0218 (6)
C52	-0.3516 (5)	0.1263 (2)	0.66566 (19)	0.0318 (7)
H52A	-0.246320	0.120190	0.701170	0.048*
H52B	-0.399916	0.067773	0.652889	0.048*
H52C	-0.433271	0.161935	0.686096	0.048*
C63	0.7900 (4)	0.7873 (2)	0.67674 (17)	0.0282 (7)
H63	0.761539	0.765609	0.720146	0.034*
C44	0.3650 (5)	0.8790 (2)	0.67269 (19)	0.0302 (7)
H44A	0.258673	0.894730	0.688314	0.045*
H44B	0.422323	0.932840	0.661072	0.045*

H44C	0.439097	0.847174	0.711421	0.045*
C46	-0.1165 (4)	0.3737 (2)	0.55256 (17)	0.0250 (6)
H46	-0.085302	0.399369	0.511048	0.030*
C43	0.1398 (4)	0.6079 (2)	0.55592 (17)	0.0238 (6)
H43	0.113795	0.571602	0.514381	0.029*
C39	0.1381 (4)	0.6302 (2)	0.67832 (17)	0.0230 (6)
H39	0.111083	0.609654	0.722336	0.028*
C32	0.5578 (4)	0.95491 (19)	0.36698 (17)	0.0202 (6)
H32	0.541065	1.016967	0.367926	0.024*
C56	1.2007 (4)	1.1840 (2)	0.56237 (17)	0.0252 (6)
H56	1.230849	1.206924	0.519661	0.030*
C58	1.3420 (5)	1.3650 (2)	0.69703 (19)	0.0322 (7)
H58A	1.233475	1.377047	0.712141	0.048*
H58B	1.397149	1.420969	0.688945	0.048*
H58C	1.415965	1.331447	0.734677	0.048*
C57	1.1241 (4)	1.1046 (2)	0.56067 (18)	0.0292 (7)
H57	1.100001	1.073059	0.516531	0.035*
C66	0.6549 (5)	0.6125 (2)	0.6777 (2)	0.0355 (8)
H66A	0.761279	0.610761	0.712932	0.053*
H66B	0.613111	0.552185	0.667276	0.053*
H66C	0.569870	0.646643	0.697307	0.053*
C51	-0.3476 (5)	0.1193 (2)	0.53443 (18)	0.0345 (8)
H51A	-0.429289	0.151412	0.498551	0.052*
H51B	-0.394504	0.061445	0.543216	0.052*
H51C	-0.241090	0.111422	0.516567	0.052*
C45	0.3605 (5)	0.8585 (2)	0.54079 (18)	0.0316 (7)
H45A	0.434078	0.817948	0.520221	0.047*
H45B	0.416725	0.916003	0.549571	0.047*
H45C	0.252586	0.865738	0.507093	0.047*
C65	0.6452 (5)	0.6043 (2)	0.54515 (19)	0.0320 (7)
H65A	0.569908	0.639435	0.509079	0.048*
H65B	0.588361	0.549017	0.553627	0.048*
H65C	0.750475	0.591031	0.527717	0.048*
C59	1.3515 (5)	1.3552 (2)	0.5656 (2)	0.0355 (8)
H59A	1.429459	1.317305	0.545016	0.053*
H59B	1.405242	1.412637	0.578214	0.053*
H59C	1.246532	1.363609	0.530309	0.053*
H14	0.047 (5)	0.5262 (17)	0.616(2)	0.029 (9)*
H10	0.336 (6)	0.697 (3)	0.372 (2)	0.037 (11)*
H18	1.027 (6)	1.016 (2)	0.618 (3)	0.057 (15)*
Н6	0.714 (6)	0.204 (3)	0.357 (2)	0.039 (12)*
		× /	× /	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0135 (3)	0.0121 (3)	0.0179 (3)	0.0021 (2)	0.0043 (2)	0.0012 (2)
S2	0.0140 (3)	0.0113 (3)	0.0270 (4)	-0.0012 (2)	0.0083 (3)	-0.0004 (2)
05	0.0221 (10)	0.0170 (9)	0.0228 (11)	0.0007 (8)	0.0104 (8)	-0.0003 (8)

Acta Cryst. (2024). E80, 840-844

O10	0.0124 (10)	0.0129 (10)	0.0327 (12)	-0.0020 (8)	0.0079 (8)	0.0022 (8)
O4	0.0193 (10)	0.0115 (9)	0.0376 (12)	0.0007 (8)	0.0100 (9)	-0.0005 (8)
O7	0.0270 (12)	0.0331 (11)	0.0216 (11)	-0.0145 (10)	0.0027 (9)	-0.0034 (9)
O6	0.0117 (10)	0.0142 (10)	0.0321 (12)	0.0006 (8)	0.0054 (8)	0.0000 (8)
N11	0.0166 (11)	0.0136 (11)	0.0202 (12)	0.0000 (9)	0.0030 (9)	0.0005 (9)
O3	0.0270 (12)	0.0286 (12)	0.0185 (11)	0.0128 (9)	0.0012 (9)	0.0007 (8)
N14	0.0237 (13)	0.0207 (12)	0.0239 (14)	-0.0030 (10)	0.0041 (10)	-0.0013 (10)
09	0.0251 (11)	0.0316 (11)	0.0205 (11)	-0.0083 (9)	0.0076 (9)	0.0026 (9)
N18	0.0251 (14)	0.0240 (14)	0.0335 (16)	0.0010 (11)	-0.0006 (11)	-0.0050 (11)
N12	0.0142 (11)	0.0127 (11)	0.0188 (12)	-0.0001 (9)	0.0029 (9)	-0.0001 (9)
N17	0.0303 (14)	0.0248 (13)	0.0229 (13)	-0.0001(11)	-0.0010(11)	0.0038 (10)
N13	0.0297 (14)	0.0218(13)	0.0231(14)	-0.0044(10)	0.0052 (11)	0.0012(10)
C25	0.0125(12)	0.0147(13)	0.0128(12)	-0.0001(10)	0.0002(11) 0.0035(10)	0.0009(10)
N16	0.0123(12) 0.0447(17)	0.0249(13)	0.0120(12) 0.0179(13)	-0.0064(12)	-0.0008(12)	-0.0001(10)
N15	0.0263(14)	0.0231(13)	0.0275(14)	-0.0001(11)	0.0000(12)	-0.0002(10)
C30	0.0200(11) 0.0120(13)	0.0231(13) 0.0159(13)	0.0278(14)	-0.0007(11)	0.0029(10)	0.0002(10)
N20	0.0120(15) 0.0382(16)	0.0199(19)	0.0225(14)	-0.0068(12)	0.0023(10)	0.0012(11)
C29	0.0302(10) 0.0135(13)	0.0251(11) 0.0158(13)	0.0223(11) 0.0132(13)	0.0000(12)	0.0001(12) 0.0029(10)	0.0012(10)
N19	0.0133(13) 0.0289(15)	0.0130(13) 0.0246(13)	0.0152(15) 0.0264(14)	-0.0010(11)	0.0029(10) 0.0014(11)	-0.0012(10)
C35	0.0209(13) 0.0134(13)	0.0240(13) 0.0174(13)	0.0204(14) 0.0165(14)	-0.0010(11)	0.0014(11) 0.0035(10)	0.0008(10)
08	0.0134(13) 0.0219(12)	0.0174(10)	0.0105(14) 0.100(2)	-0.0016(9)	0.0055(10) 0.0251(13)	-0.0010(12)
C48	0.0219(12) 0.0210(15)	0.0243(15)	0.100(2)	0.0010(9) 0.0037(12)	-0.0001(12)	0.0010(12)
C23	0.0210(13) 0.0158(12)	0.0249(13)	0.0177(15) 0.0220(14)	-0.0004(11)	0.0001(12) 0.0037(11)	0.0003(12)
C24	0.0150(12) 0.0167(14)	0.0119(13) 0.0138(13)	0.0220(14) 0.0167(14)	0.0004(11)	0.0037(11)	0.0004(10)
C27	0.0107(14) 0.0133(13)	0.0150(13)	0.0107(14) 0.0205(16)	-0.0023(11)	0.0035(11) 0.0045(11)	0.0014(10)
C27	0.0133(13) 0.0157(14)	0.0100(13)	0.0293(10)	0.0032(11)	0.0043(11) 0.0057(11)	-0.0022(11)
C20	0.0137(14) 0.0128(13)	0.0149(13)	0.0190(14)	-0.00052(10)	0.0037(11) 0.0023(10)	-0.0003(10)
C/0	0.0128(13) 0.0241(15)	0.0103(13) 0.0240(15)	0.0119(12) 0.0182(14)	0.0003(11)	0.0023(10) 0.0030(11)	0.0003(10)
C49	0.0241(13)	0.0249(13)	0.0182(14) 0.0308(17)	0.0009(12) 0.0032(11)	0.0039(11) 0.0070(11)	0.0013(11)
C31	0.0110(14) 0.0121(12)	0.0170(13) 0.0120(12)	0.0308(17) 0.0120(12)	-0.0032(11)	0.0070(11) 0.0026(10)	0.0023(11)
C30	0.0131(13) 0.0178(14)	0.0130(12)	0.0129(12)	-0.0002(10)	0.0020(10)	0.0004(10)
C28	0.0178(14)	0.0130(13)	0.0274(10)	-0.0008(10)	0.0017(12)	0.0014(11)
C33	0.0144(13) 0.0227(15)	0.0148(13) 0.0220(15)	0.01/2(14)	-0.0010(11)	0.0048(10)	0.0006(10)
C01	0.0237(13)	0.0239(13)	0.0160(14)	=0.0009(12)	0.0015(11)	-0.0010(11)
C34	0.0199(14)	0.0267(15)	0.0185(14)	0.0022(12)	0.0010(11)	-0.0023(11)
C30	0.0139(14)	0.0109(13)	0.0248(15)	0.0034(11)	0.0050(11)	0.0003(11)
C62	0.0217(15)	0.0281(15)	0.0212(15)	0.0027(12)	0.0039 (12)	0.0021(12)
C60	0.0259 (16)	0.0286 (16)	0.0219 (15)	0.0012 (13)	0.0028 (12)	0.0012 (13)
C50	0.0241 (15)	0.0269 (15)	0.0218 (15)	0.0011 (12)	0.0006 (12)	-0.0047(12)
C22	0.0143 (14)	0.01/9(14)	0.02/2 (16)	-0.0007(11)	0.0075 (12)	-0.0005 (11)
C40	0.0195 (14)	0.0254 (15)	0.01/2 (14)	0.0003 (11)	0.0021 (11)	-0.0011 (11)
C53	0.0211 (15)	0.0280 (16)	0.0270 (17)	0.0036 (12)	0.0019 (12)	0.0001 (12)
C37	0.0158 (13)	0.0102 (12)	0.0295 (16)	0.0012 (10)	0.0054 (11)	0.0003 (11)
C42	0.0231 (15)	0.0290 (16)	0.0176 (14)	0.0013 (12)	0.0064 (11)	0.0005 (12)
C41	0.0191 (14)	0.0202 (14)	0.0206 (15)	0.0024 (11)	0.0030 (11)	0.0029 (11)
C21	0.0129 (13)	0.0157 (13)	0.0154 (13)	0.0024 (11)	0.0038 (10)	0.0006 (11)
C47	0.0239 (15)	0.0266 (15)	0.0198 (15)	0.0037 (12)	0.0020 (11)	-0.0034 (11)
C64	0.0304 (17)	0.0340 (17)	0.0237 (16)	0.0047 (14)	0.0033 (13)	-0.0076 (13)
C55	0.0187 (14)	0.0223 (14)	0.0229 (16)	0.0049 (11)	-0.0001 (12)	-0.0012 (11)

C52	0.0371 (19)	0.0279 (17)	0.0296 (18)	-0.0070 (14)	0.0044 (14)	0.0041 (13)
C63	0.0316 (17)	0.0341 (17)	0.0196 (16)	0.0034 (14)	0.0070 (13)	-0.0004 (13)
C44	0.0347 (18)	0.0234 (15)	0.0319 (18)	-0.0074 (13)	0.0052 (14)	-0.0007 (13)
C46	0.0219 (15)	0.0311 (16)	0.0218 (15)	0.0003 (13)	0.0034 (12)	0.0040 (12)
C43	0.0228 (15)	0.0260 (15)	0.0222 (15)	-0.0002 (12)	0.0035 (12)	-0.0037 (12)
C39	0.0256 (16)	0.0233 (15)	0.0205 (15)	0.0013 (12)	0.0053 (12)	0.0007 (12)
C32	0.0200 (14)	0.0115 (13)	0.0309 (17)	0.0023 (11)	0.0096 (12)	0.0016 (11)
C56	0.0258 (16)	0.0296 (16)	0.0194 (15)	0.0044 (13)	0.0023 (12)	-0.0015 (12)
C58	0.0369 (19)	0.0261 (16)	0.0303 (18)	-0.0032 (14)	-0.0025 (14)	-0.0027 (13)
C57	0.0275 (16)	0.0318 (17)	0.0254 (16)	0.0057 (13)	-0.0024 (13)	-0.0090 (13)
C66	0.038 (2)	0.0373 (19)	0.0331 (19)	-0.0040 (15)	0.0117 (15)	0.0101 (15)
C51	0.042 (2)	0.0318 (18)	0.0269 (18)	-0.0040 (15)	-0.0022 (15)	-0.0051 (14)
C45	0.0344 (18)	0.0333 (17)	0.0287 (18)	-0.0062 (14)	0.0100 (14)	0.0082 (13)
C65	0.0346 (19)	0.0261 (16)	0.0348 (19)	-0.0073 (13)	0.0054 (15)	-0.0003 (13)
C59	0.0352 (19)	0.0381 (19)	0.0317 (19)	-0.0014 (15)	0.0023 (14)	0.0119 (15)

Geometric parameters (Å, °)

S1—05	1.455 (2)	C31—C32	1.406 (4)	
S1—O4	1.459 (2)	C28—H28	0.9500	
S1—O3	1.447 (2)	C33—C32	1.375 (4)	
S1—C24	1.772 (3)	C61—H61	0.9500	
S2—O7	1.452 (2)	C61—C62	1.409 (4)	
S2—O9	1.448 (2)	C61—C60	1.373 (4)	
S2—O8	1.440 (2)	C54—H54	0.9500	
S2—C33	1.776 (3)	C54—C53	1.359 (4)	
O10—C30	1.359 (3)	C54—C55	1.426 (4)	
O10—H10	0.90 (4)	С36—Н36	0.9500	
O6—C21	1.350 (3)	C36—C37	1.410 (4)	
O6—H6	0.84 (4)	C62—C63	1.414 (4)	
N11—C29	1.367 (4)	C60—H60	0.9500	
N11—C28	1.316 (4)	C50—H50	0.9500	
N14—C43	1.358 (4)	C22—H22	0.9500	
N14—C39	1.354 (4)	C22—C21	1.372 (4)	
N14—H14	0.90 (2)	C40—H40	0.9500	
N18—C53	1.353 (4)	C40—C41	1.425 (4)	
N18—C57	1.359 (5)	C40—C39	1.351 (4)	
N18—H18	0.90 (2)	С53—Н53	0.9500	
N12—C38	1.366 (3)	С37—Н37	0.9500	
N12—C37	1.315 (4)	C42—H42	0.9500	
N17—C55	1.338 (4)	C42—C41	1.417 (4)	
N17—C58	1.466 (4)	C42—C43	1.360 (4)	
N17—C59	1.462 (4)	C47—H47	0.9500	
N13—C41	1.334 (4)	C47—C46	1.375 (4)	
N13—C44	1.467 (4)	C64—H64	0.9500	
N13—C45	1.464 (4)	C64—C63	1.369 (5)	
C25—C29	1.422 (4)	C55—C56	1.421 (4)	
C25—C24	1.428 (4)	C52—H52A	0.9800	

C25—C26	1.415 (4)	C52—H52B	0.9800
N16—C48	1.356 (4)	С52—Н52С	0.9800
N16-C52	1 458 (4)	C63—H63	0.9500
N16-C51	1 461 (4)	C44—H44A	0.9800
N15-C50	1.101(1) 1.342(4)	C44—H44B	0.9800
N15-C46	1.342(4) 1.350(4)	C44 - H44C	0.9800
C_{30} C_{31}	1.350(4) 1.372(4)	C46 H46	0.9800
C_{30} C_{38}	1.372(4) 1.423(4)	C_{42} H_{42}	0.9500
N20 C62	1.423(4) 1.362(4)	C30 H30	0.9500
N20 C66	1.302(4)	C32 H32	0.9500
N20	1.455 (4)	C54 U54	0.9500
$N_{20} = C_{03}$	1.432(4)	С56—С57	0.9300
C29—C21	1.424 (4)	C_{50} C	1.548 (5)
N19-C60	1.342 (4)	C58—H58A	0.9800
N19—C64	1.350 (4)	С58—Н58В	0.9800
C35—H35	0.9500	С58—Н58С	0.9800
C35—C34	1.419 (4)	C57—H57	0.9500
C35—C36	1.365 (4)	С66—Н66А	0.9800
C48—C49	1.407 (4)	С66—Н66В	0.9800
C48—C47	1.413 (4)	С66—Н66С	0.9800
C23—H23	0.9500	C51—H51A	0.9800
C23—C24	1.367 (4)	C51—H51B	0.9800
C23—C22	1.408 (4)	C51—H51C	0.9800
C27—H27	0.9500	C45—H45A	0.9800
C27—C26	1.365 (4)	C45—H45B	0.9800
C27—C28	1.407 (4)	C45—H45C	0.9800
C26—H26	0.9500	С65—Н65А	0.9800
C34—C38	1.419 (4)	С65—Н65В	0.9800
C34—C33	1.418 (4)	С65—Н65С	0.9800
C49—H49	0.9500	С59—Н59А	0.9800
C49—C50	1.377 (4)	С59—Н59В	0.9800
C31—H31	0.9500	С59—Н59С	0.9800
N14…H14	0.84		
O5—S1—O4	111.94 (13)	C23—C22—H22	120.1
O5—S1—C24	107.15 (12)	C21—C22—C23	119.9 (3)
O4—S1—C24	104.71 (13)	C21—C22—H22	120.1
O3—S1—O5	112.26 (14)	C41—C40—H40	119.3
O3—S1—O4	113.97 (13)	C39—C40—H40	119.3
O3—S1—C24	106.09 (13)	C39—C40—C41	121.3 (3)
O7—S2—C33	106.42 (13)	N18—C53—C54	122.3 (3)
O9—S2—O7	111.50 (14)	N18—C53—H53	118.9
O9—S2—C33	106.67 (13)	С54—С53—Н53	118.9
O8—S2—O7	112.15 (17)	N12—C37—C36	123.7 (2)
O8—S2—O9	114.36 (16)	N12—C37—H37	118.2
O8—S2—C33	105.04 (14)	С36—С37—Н37	118.2
C30—O10—H10	114 (3)	C41—C42—H42	119.6
С21—О6—Н6	107 (3)	C43—C42—H42	119.6

C28—N11—C29	117.2 (2)	C43—C42—C41	120.7 (3)
C43—N14—H14	115 (2)	N13—C41—C40	121.9 (3)
C39—N14—C43	119.4 (3)	N13—C41—C42	122.6 (3)
C39—N14—H14	125 (2)	C42—C41—C40	115.4 (3)
C53—N18—C57	119.1 (3)	O6—C21—C29	120.6 (2)
C53—N18—H18	121 (3)	O6—C21—C22	119.3 (3)
C57—N18—H18	120 (3)	C22—C21—C29	120.2 (3)
C37—N12—C38	117.4 (2)	C48—C47—H47	120.0
C55—N17—C58	121.4 (3)	C46—C47—C48	120.0 (3)
C55—N17—C59	120.8 (3)	C46—C47—H47	120.0
C59—N17—C58	1176(3)	N19—C64—H64	117.6
C41 - N13 - C44	1209(3)	N19—C64—C63	1249(3)
C41 - N13 - C45	1213(3)	C_{63} — C_{64} —H64	117.6
C45 - N13 - C44	1177(3)	N17-C55-C54	121.7(3)
C_{29} C_{25} C_{24}	117.7(3) 118.4(2)	N17-C55-C56	121.7(3) 122.7(3)
$C_{25} = C_{25} = C_{29}$	116.6 (2)	$C_{56} - C_{55} - C_{54}$	122.7(3) 115.6(3)
$C_{26} = C_{25} = C_{24}$	1250(2)	N16-C52-H52A	109.5
$C_{20} = C_{23} = C_{24}$	120.0(2) 120.0(3)	N16 C52 H52R	109.5
$C_{+8} = 1010 = C_{-8} = 0.000$	120.9(3) 121.8(3)	N16 C52 H52C	109.5
$C_{+0} = N_{10} = C_{51}$	121.0(5) 1171(2)	$H_{52A} = C_{52} = H_{52B}$	109.5
C_{52} N15 C_{46}	117.1(3) 115.2(3)	H52A = C52 = H52C	109.5
C_{30} C_{10} C_{20} C_{21}	110.2(3)	H52R C52 H52C	109.5
010 - 020 - 028	119.3(2) 120.1(2)	$H_{32B} = C_{32} = H_{32C}$	109.5
010 - 0.00 - 0.000	120.1(2)	С62—С63—Н63	120.1
$C_{31} - C_{30} - C_{38}$	120.6(2)	C64 - C63 - C62	119.8 (3)
C62 - N20 - C66	120.6 (3)	C64—C63—H63	120.1
C62—N20—C65	120.8 (3)	N13—C44—H44A	109.5
C65—N20—C66	118.5 (3)	N13—C44—H44B	109.5
N11—C29—C25	123.4 (3)	N13—C44—H44C	109.5
N11—C29—C21	116.8 (2)	H44A—C44—H44B	109.5
C25—C29—C21	119.8 (2)	H44A—C44—H44C	109.5
C60—N19—C64	115.2 (3)	H44B—C44—H44C	109.5
С34—С35—Н35	120.5	N15—C46—C47	124.5 (3)
С36—С35—Н35	120.5	N15—C46—H46	117.7
C36—C35—C34	118.9 (3)	C47—C46—H46	117.7
N16—C48—C49	122.2 (3)	N14—C43—C42	121.7 (3)
N16—C48—C47	122.4 (3)	N14—C43—H43	119.1
C49—C48—C47	115.4 (3)	C42—C43—H43	119.1
С24—С23—Н23	119.2	N14—C39—H39	119.3
C24—C23—C22	121.7 (2)	C40—C39—N14	121.4 (3)
С22—С23—Н23	119.2	С40—С39—Н39	119.3
C25—C24—S1	120.6 (2)	С31—С32—Н32	119.3
C23—C24—S1	119.4 (2)	C33—C32—C31	121.4 (2)
C23—C24—C25	120.0 (2)	С33—С32—Н32	119.3
С26—С27—Н27	120.4	С55—С56—Н56	119.4
C26—C27—C28	119.2 (3)	C57—C56—C55	121.2 (3)
С28—С27—Н27	120.4	С57—С56—Н56	119.4
C25—C26—H26	120.2	N17—C58—H58A	109.5
C27—C26—C25	119.6 (3)	N17—C58—H58B	109.5

C27—C26—H26	120.2	N17—C58—H58C	109.5
C35—C34—C38	117.1 (2)	H58A—C58—H58B	109.5
C33—C34—C35	124.2 (2)	H58A—C58—H58C	109.5
C33—C34—C38	118.7 (2)	H58B—C58—H58C	109.5
C48—C49—H49	120.0	N18—C57—H57	119.2
C50—C49—C48	119.9 (3)	C56—C57—N18	121.7 (3)
С50—С49—Н49	120.0	С56—С57—Н57	119.2
С30—С31—Н31	120.2	N20—C66—H66A	109.5
C30—C31—C32	119.7 (3)	N20—C66—H66B	109.5
С32—С31—Н31	120.2	N20—C66—H66C	109.5
N12—C38—C30	117.2 (2)	H66A—C66—H66B	109.5
N12—C38—C34	123.3 (3)	H66A—C66—H66C	109.5
C34—C38—C30	119.5 (2)	H66B—C66—H66C	109.5
N11—C28—C27	124.0 (3)	N16-C51-H51A	109.5
N11—C28—H28	118.0	N16-C51-H51B	109.5
C27—C28—H28	118.0	N16-C51-H51C	109.5
C_{34} C_{33} S_{2}	120.5 (2)	H51A-C51-H51B	109.5
$C_{32} = C_{33} = S_{2}^{2}$	119 3 (2)	H51A - C51 - H51C	109.5
$C_{32} = C_{33} = C_{34}$	1202(3)	H51B-C51-H51C	109.5
C62 - C61 - H61	119.9	N13-C45-H45A	109.5
C60—C61—H61	119.9	N13—C45—H45B	109.5
C60 - C61 - C62	120.1 (3)	N13—C45—H45C	109.5
C53—C54—H54	119.9	H45A—C45—H45B	109.5
C53—C54—C55	120.2 (3)	H45A - C45 - H45C	109.5
С55—С54—Н54	119.9	H45B-C45-H45C	109.5
С35—С36—Н36	120.2	N20—C65—H65A	109.5
C35—C36—C37	119.6 (3)	N20—C65—H65B	109.5
С37—С36—Н36	120.2	N20—C65—H65C	109.5
N20—C62—C61	122.2 (3)	H65A—C65—H65B	109.5
N20—C62—C63	122.4 (3)	H65A—C65—H65C	109.5
C61—C62—C63	115.4 (3)	H65B—C65—H65C	109.5
N19—C60—C61	124.6 (3)	N17—C59—H59A	109.5
N19—C60—H60	117.7	N17—C59—H59B	109.5
С61—С60—Н60	117.7	N17—C59—H59C	109.5
N15—C50—C49	124.9 (3)	Н59А—С59—Н59В	109.5
N15-C50-H50	117.6	Н59А—С59—Н59С	109.5
С49—С50—Н50	117.6	Н59В—С59—Н59С	109.5
S2—C33—C32—C31	-178.5(2)	C38—C30—C31—C32	-1.1(4)
O5—S1—C24—C25	50.1 (3)	C38—C34—C33—S2	178.2 (2)
O5—S1—C24—C23	-131.4 (2)	C38—C34—C33—C32	-0.5(4)
O10—C30—C31—C32	178.2 (3)	C28—N11—C29—C25	0.5 (4)
O10-C30-C38-N12	1.2 (4)	C28—N11—C29—C21	-179.2 (3)
O10—C30—C38—C34	-178.4(2)	C28—C27—C26—C25	0.5 (4)
O4—S1—C24—C25	169.1 (2)	C33—C34—C38—N12	-179.6 (3)
O4—S1—C24—C23	-12.4(3)	C33—C34—C38—C30	0.0 (4)
O7—S2—C33—C34	-57.5 (3)	C61—C62—C63—C64	-0.7(5)
07 - 82 - C33 - C32	121.2 (3)	C54—C55—C56—C57	1.3 (4)
	()		

N11—C29—C21—O6	0.1 (4)	C36—C35—C34—C38	0.5 (4)
N11—C29—C21—C22	-179.9 (3)	C36—C35—C34—C33	179.4 (3)
O3—S1—C24—C25	-70.0 (3)	C62—C61—C60—N19	-1.2 (5)
O3—S1—C24—C23	108.5 (2)	C60—N19—C64—C63	-0.5 (5)
O9—S2—C33—C34	61.6 (3)	C60—C61—C62—N20	-178.7 (3)
O9—S2—C33—C32	-119.6 (3)	C60—C61—C62—C63	1.1 (5)
N17—C55—C56—C57	-179.3 (3)	C50—N15—C46—C47	-0.9(5)
C25—C29—C21—O6	-179.6 (3)	C22—C23—C24—S1	-177.6 (2)
C25—C29—C21—C22	0.4 (4)	C22—C23—C24—C25	0.9 (4)
N16—C48—C49—C50	178.0 (3)	C53—N18—C57—C56	-0.4(5)
N16—C48—C47—C46	-178.6 (3)	C53—C54—C55—N17	-179.8(3)
C30—C31—C32—C33	0.6 (5)	C53—C54—C55—C56	-0.4 (4)
N20—C62—C63—C64	179.1 (3)	C37—N12—C38—C30	-179.2(3)
C29—N11—C28—C27	0.4 (4)	C37—N12—C38—C34	0.5 (4)
C29—C25—C24—S1	178.2 (2)	C41—C40—C39—N14	0.4 (5)
C29—C25—C24—C23	-0.3 (4)	C41—C42—C43—N14	-0.4(5)
C29—C25—C26—C27	0.4 (4)	C47—C48—C49—C50	-1.9 (4)
N19—C64—C63—C62	0.4 (5)	C64—N19—C60—C61	0.9 (5)
C35—C34—C38—N12	-0.7 (4)	C55—C54—C53—N18	-0.8(5)
C35—C34—C38—C30	179.0 (3)	C55—C56—C57—N18	-0.9(5)
C35—C34—C33—S2	-0.7 (4)	C52—N16—C48—C49	-4.7 (5)
C35—C34—C33—C32	-179.4(3)	C52—N16—C48—C47	175.2 (3)
C35—C36—C37—N12	-0.1 (5)	C44—N13—C41—C40	-0.5(5)
08-82-C33-C34	-176.6(2)	C44—N13—C41—C42	179.4 (3)
08-52-C33-C32	2.1 (3)	C46—N15—C50—C49	0.3 (5)
C48—C49—C50—N15	1.2 (5)	C43—N14—C39—C40	0.8 (5)
C48—C47—C46—N15	0.1 (5)	C43 - C42 - C41 - N13	-178.4(3)
C_{23} C_{22} C_{21} C_{20}	-179.8(3)	C43-C42-C41-C40	1.6 (4)
C_{23} C_{22} C_{21} C_{29}	0.2 (4)	C_{39} N14 C_{43} C42	-0.8(5)
C24—C25—C29—N11	180.0 (3)	C39—C40—C41—N13	178.4 (3)
C_{24} C_{25} C_{29} C_{21}	-0.3(4)	C39—C40—C41—C42	-1.6(4)
C24—C25—C26—C27	179.4 (3)	C58—N17—C55—C54	-2.7(4)
C24—C23—C22—C21	-0.8(4)	C58—N17—C55—C56	177.9 (3)
C26—C25—C29—N11	-0.9(4)	C57—N18—C53—C54	1.2 (5)
C26—C25—C29—C21	178.7 (3)	C66—N20—C62—C61	174.1 (3)
C26—C25—C24—S1	-0.8(4)	C66—N20—C62—C63	-5.7 (5)
C26—C25—C24—C23	-179.3(3)	C51—N16—C48—C49	179.8 (3)
C26—C27—C28—N11	-0.9 (5)	C51—N16—C48—C47	-0.3(5)
C34—C35—C36—C37	-0.1(4)	C45—N13—C41—C40	-176.3(3)
C34—C33—C32—C31	0.2 (5)	C45—N13—C41—C42	3.7 (5)
C49—C48—C47—C46	1.3 (4)	C65 - N20 - C62 - C61	-3.0(5)
C31—C30—C38—N12	-179.6 (3)	C65 - N20 - C62 - C63	177.2 (3)
$C_{31} - C_{30} - C_{38} - C_{34}$	0.8 (4)	C59 - N17 - C55 - C54	-177.4(3)
C_{38} N12 $-C_{37}$ $-C_{36}$	-0.1(4)	C59 - N17 - C55 - C56	3.2 (5)
000 1112 007 000	~~ ()		2.2 (2)

Hydrogen-bond geometry (Å, °)

C_{91} Co ₂ are the centroids of	the N11/C25-C29	and N12/C34-C38 ring	s respectively

D—H···A	<i>D</i> —Н	H…A	D····A	D—H··· A
06—H6…O8 ⁱ	0.84 (5)	2.00 (5)	2.679 (3)	137 (4)
O6—H6…N11	0.84 (5)	2.24 (5)	2.728 (3)	117 (4)
O10—H10…O4	0.89 (5)	1.90 (5)	2.674 (3)	144 (4)
O10—H10…N12	0.89 (5)	2.31 (5)	2.730 (3)	109 (4)
N14—H14…N15	0.90 (3)	1.91 (3)	2.814 (4)	174 (3)
N18—H18…N19	0.90 (3)	1.92 (4)	2.816 (4)	177 (7)
C27—H27…O6 ⁱⁱ	0.95	2.58	3.219 (4)	125
C27—H27…O8 ⁱⁱⁱ	0.95	2.27	3.194 (4)	164
C36—H36…O4 ^{iv}	0.95	2.33	3.244 (4)	160
C36—H36…O10 ^{iv}	0.95	2.58	3.216 (4)	125
С39—Н39…ОЗ ^v	0.95	2.32	3.200 (4)	154
C43—H43…O5	0.95	2.22	3.160 (4)	169
C46—H46…O5	0.95	2.46	3.373 (4)	161
С50—Н50…ОЗ ^v	0.95	2.43	3.292 (4)	151
С53—Н53…О9 ^{vi}	0.95	2.22	3.146 (4)	164
C54—H54…O10 ^{vii}	0.95	2.55	3.450 (4)	158
С57—Н57…О7	0.95	2.22	3.143 (4)	165
С60—Н60…О7	0.95	2.40	3.325 (4)	163
C64—H64…O9 ^{vi}	0.95	2.35	3.267 (4)	162
C40—H40…Cg1 ^v	0.95	2.63	3.498 (3)	153
C49—H49…Cg2 ^{viii}	0.95	2.87	3.754 (3)	156
C61—H61····Cg2	0.95	2.70	3.571 (3)	152

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*-1, *y*, *z*; (iii) *x*-1, *y*-1, *z*; (iv) *x*+1, *y*, *z*; (v) *x*, -*y*+1, *z*+1/2; (vi) *x*, -*y*+2, *z*+1/2; (vii) *x*+1, -*y*+2, *z*+1/2; (viii) *x*-1, -*y*+1, *z*+1/2.