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Abstract 
Background:  Genomic fusions are potent oncogenic drivers across cancer types and many are targetable. We demonstrate the clinical perfor-
mance of DNA-based comprehensive genomic profiling (CGP) for detecting targetable fusions.
Materials and Methods:  We analyzed targetable fusion genes in >450 000 tissue specimens profiled using DNA CGP (FoundationOne CDx, 
FoundationOne). Using a de-identified nationwide (US-based) non–small cell lung cancer (NSCLC) clinico-genomic database, we assessed out-
comes in patients with nonsquamous NSCLC (NonSqNSCLC) who received matched therapy based on a fusion identified using DNA CGP. Lastly, 
we modeled the added value of RNA CGP for fusion detection in NonSqNSCLC.
Results:  We observed a broad diversity of fusion partners detected with DNA CGP in conjunction with targetable fusion genes (ALK, BRAF, 
FGFR2, FGFR3, NTRK1/2/3, RET, and ROS1). In NonSqNSCLC with oncogenic ALK, NTRK, RET, and ROS1 fusions detected by DNA CGP, 
patients treated with a matched tyrosine kinase inhibitor had better real-world progression-free survival than those receiving alternative treatment 
regimens and benefit was observed regardless of the results of orthogonal fusion testing. An estimated 1.3% of patients with NonSqNSCLC 
were predicted to have an oncogenic driver fusion identified by RNA, but not DNA CGP, according to a model that accounts for multiple real-
world factors.
Conclusion:  A well-designed DNA CGP assay is capable of robust fusion detection and these fusion calls are reliable for informing clinical 
decision-making. While DNA CGP detects most driver fusions, the clinical impact of fusion detection is substantial for individual patients and 
exhaustive efforts, inclusive of additional RNA-based testing, should be considered when an oncogenic driver is not clearly identified.
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Implications for Practice
When specific design elements and analytics are incorporated, DNA-based next-generation sequencing (NGS) assays are capable of 
detecting clinically important fusions, including novel structures and fusion partners. In certain scenarios, RNA-based NGS may extend or 
complement DNA-based NGS for fusion detection, and may be of substantial benefit when (1) a DNA NGS assay is not optimally designed 
or (2) in tumors where an oncogenic driver alteration has not been detected at the DNA level. Given the increased technical challenges 
inherent to RNA as an analyte, it is important that DNA assays are designed for maximal fusion detection.

Introduction
Two key developments in the clinical management of patients 
with solid tumors include the mainstream availability of com-
prehensive genomic profiling (CGP) and the identification 
of oncogenic drivers amenable to small molecule inhibition 
using targeted therapy.1-4 In no indication has this transfor-
mation been more impactful than in non–small cell lung can-
cer (NSCLC), where the identification of numerous oncogenic 
drivers and a rapidly growing landscape of matched targeted 
therapies has extended overall survival for a high percentage 

of patients.5,6 Even still, it is estimated that approximately 
30% of NSCLC adenocarcinoma lack a well-defined onco-
genic driver alteration.7-10

Historically, CGP has been performed on DNA derived from 
tumor specimens. However, as the importance of oncogenic 
fusions as cancer drivers has been realized,11,12 particularly in 
NSCLC,13 attention has turned to RNA as an important ana-
lyte for the detection of driver fusions that might be missed 
using DNA-based assays.14,15 Given such reports, both the 
National Comprehensive Cancer Network (NCCN) and the 
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American Society of Clinical Oncology (ASCO) recommend 
pursuing RNA-based fusion profiling for driver-negative 
NSCLC as determined by initial DNA-based next-generation 
sequencing (NGS).16,17 Potential advantages of RNA-based 
fusion detection include the ability to determine whether a 
fusion product is expressed at the RNA level and avoidance 
of often complex methodology required to sequence introns 
and over large chromosomal regions. However, major lim-
itations of RNA profiling are the lower stability, quality, 
and quantity of the RNA analyte compared to DNA which 
can result in high sequencing failure rates,18-20 especially for  
formalin-fixed archival material.21 Thus, there are advantages 
and disadvantages to either testing methodology.

The current realities of CGP testing necessitate that many 
patients rely on DNA-based CGP for fusion detection, and it 
is thus critical that DNA-based assays are optimally designed 
to identify these important driver events which can signifi-
cantly influence treatment decisions and patient outcomes. 
Moreover, it is of value to identify the clinical scenarios in 
which patients are most likely to benefit from additional 
RNA-based testing. In this study, we demonstrate that robust 
detection of fusions is possible using carefully designed DNA-
based sequencing methodologies and that fusions detected 
using high-quality DNA CGP assays are associated with clin-
ical benefit from matched targeted agents. We also attempt to 
quantify the potential added value of RNA CGP for fusion 
detection following DNA CGP for patients with nonsqua-
mous NSCLC (NonSqNSCLC).

Materials and Methods
Comprehensive Genomic Profiling
Comprehensive genomic profiling using FoundationOne 
CDx (F1CDx) or FoundationOne (F1) was performed on  
hybridization-captured, adaptor ligation-based librar-
ies using DNA extracted from formalin-fixed paraffin- 
embedded (FFPE) tumor in a Clinical Laboratory Improvement 
Amendments-certified, College of American Pathologists-
accredited, New York State-approved laboratory (Foundation 

Medicine, Inc., Cambridge, MA). Approval for this study, 
including a waiver of informed consent and a HIPAA waiver 
of authorization, was obtained from the Western Institutional 
Review Board (Protocol No. 20152817). Samples were inter-
rogated for alterations in 324 (F1CDx) or 406 (F1) cancer- 
associated genes.22 Alteration types detected by the assay 
include base substitutions, short insertions and deletions, copy 
number amplifications and homozygous deletions, and large 
genomic rearrangements, as well as microsatellite instability 
and tumor mutational burden (TMB). TMB was determined 
on up to 1.24 Mb of sequenced DNA.23 A number of deliber-
ate assay design features (Figure 1; Supplementary Table S1 
with detailed description in Results) support rearrangement 
detection.

Study Cohorts
Genomic-Only Cohort: Pan-Solid Tumor Fusion Partner 
Diversity Analysis Utilizing Foundation Medicine Genomic 
Database
In the Foundation Medicine (FMI) genomic database, we 
interrogated pan-solid tumor tissue biopsy specimens sub-
mitted for CGP (Foundation Medicine, Inc.) using F1CDx 
or F1 during routine clinical care between August 2014 
and December 2022. For patients with multiple tissue CGP 
results, a single specimen was chosen on the basis of qual-
ity metrics. Patients with predicted gene fusions (in-strand 
and in-frame rearrangements involving distinct target 
and partner genes) were queried and compared to fusions 
reported in the AACR Project Genomics Evidence Neoplasia 
Information Exchange (GENIE)24,25 database (v13.1). AACR 
Project GENIE is an international pan-cancer registry col-
lecting clinical-grade cancer genomic data together with 
clinical outcomes data for >140 000 patients (v13.1 release). 
Only assays/samples with structural variant profiling in 
GENIE were included and data from GENIE institutions 
that utilize FMI testing was excluded. Profiling of hemato-
logical malignancies and profiling with heme-specific panels 
were also excluded. GENIE data used in this study included 

Figure 1. F1CDx assay design enables robust DNA-based rearrangement detection. Design features of F1CDx that support rearrangement 
detection include (1) select intronic coverage (Supplementary Table S1) for N = 34 genes including both common fusion genes (N = 21) and frequent 
fusion partners (N = 13), (2) the use of a hybrid capture-based sequencing approach which only requires that one gene involved in a fusion be baited 
allowing for detection of known as well as rare and novel fusion partners, and (3) the use of a de novo assembly approach in the bioinformatics pipeline 
which facilitates precise breakpoint detection compared to reference-based methods.
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structural variant profiling for 97 592 patients with solid 
tumors using 18 different assays/assay versions submitted 
by 7 academic institutions. This included 96 552 patients 
(98.9%) with DNA-only profiling, 929 (0.9%) with DNA/
RNA profiling, and 111 (0.1%) with RNA-only profiling. 
Note that NTRK genes were profiled in most, but not all, 
patients (97 106/97 592, 99.5%), whereas all other ana-
lyzed genes were covered on all included assays.

Clinico-Genomic Cohort: NSCLC Genomic Driver 
Landscape and Outcomes Analysis on Targeted Therapy 
Utilizing Flatiron Health-Foundation Medicine Clinico-
Genomic Database
To assess the adequacy of DNA-only fusion detection to 
support clinical decision-making, we studied a cohort of 
patients with confirmed diagnosis of NSCLC included in the 
nationwide US-based Flatiron Health (FH)-FMI de-identified 
NSCLC clinico-genomic database (CGDB). All patients under-
went genomic testing using FMI CGP assays. De-identified 
clinical data originated from approximately 280 US cancer 
clinics (approximately 800 sites of care). Retrospective lon-
gitudinal clinical data were derived from electronic health 
records, comprising patient-level structured and unstructured 
data, curated via technology-enabled abstraction of clinical 
notes and radiology/pathology reports, which were linked 
to genomic data derived from FMI testing by de-identified, 
deterministic matching.26 The data were de-identified and 
subject to obligations to prevent re-identification and protect 
patient confidentiality. Clinical data included demographics, 
self-reported smoking status, clinical and laboratory features, 
timing of treatment exposure, and mortality. Institutional 
Review Board approval of the study protocol was obtained 
prior to the study conduct and included a waiver of informed 
consent.

Patient records were included in this study if they received 
an F1CDx or F1 CGP report between August 2014 and 
December 2022 and the histological and genomic character-
istics of their disease (as assessed by chart abstraction and 
the tissue CGP report, respectively) were consistent with 
NonSqNSCLC. Clinical characteristics for the NonSqNSCLC 
cohort (N = 10 761) are presented in Supplementary Table 
S2. A subset of patients received additional non-FMI bio-
marker testing (“orthogonal testing”) as part of routine care 
using a variety of testing methodologies (eg, fluorescence in 
situ hybridization [FISH], immunohistochemistry [IHC], 
polymerase chain reaction [PCR], and NGS). Where orthogo-
nal testing results were available, these have been included in 
the dataset for analysis limited to KRAS, EGFR, BRAF, MET, 
ALK, RET, ROS1, and NTRK1/2/3.

Analysis
Real-World Progression-Free Survival
Real-world progression-free survival (rwPFS) was calcu-
lated from the start of treatment to the first progression date 
>14 days after treatment start or to death. Real-world pro-
gression events were abstracted from patient charts using a  
clinician-anchored approach supported by radiology report 
data, as previously described.27 Mortality information in the 
dataset has been externally validated in comparison to the 
National Death Index.28 Patients were censored at their last 
clinic note date if no progression or death was observed. Median 
rwPFS values were estimated in months with 95% CI.

In these analyses, oncologist-defined, rule-based lines of 
therapy were classified into those including a fusion-specific 
FDA-approved TKI for NSCLC (ie, alectinib, brigatinib, ceri-
tinib, crizotinib, entrectinib, larotrectinib, lorlatinib, selperca-
tinib, and pralsetinib) or not. These rules allow early switches 
from non-TKI-containing into TKI-containing lines of ther-
apy without being considered the start of a new line (eg, after 
receipt of biomarker test results not available at the start of 
therapy). Analysis was limited to the first line of therapy in 
the advanced setting such that a patient who received a non-
TKI in their first line and received a TKI in a later line would 
be considered a non-TKI patient for this analysis.

Statistical Analysis and Interpretation
Differences in time-to-event outcomes were assessed with the 
log-rank test and univariable and multivariable Cox propor-
tional hazard models. Multivariable Cox models included 
adjustment for clinical characteristics that could impact prog-
nosis including line number, socioeconomic status, practice 
type, gender, race, stage at diagnosis, self-reported smoking 
history, age, ECOG performance status, opioid prescription 
immediately prior to therapy (a proxy for burden of dis-
ease), and presence of metastases pre-therapy (in bone, cen-
tral nervous system, liver, adrenal, or other). Missing values 
for adjustment covariables were not imputed, causing some 
patients to be excluded from multivariable analyses. R ver-
sion 4.2.2 software was used for all statistical analyses.

RNA CGP Fusion Detection Modeling
We calculated the number of patients with driver fusion- 
positive NonSqNSCLC expected to be uniquely identified 
using RNA CGP following DNA CGP (fusionsRNA.only) as a 
function of several real-world factors (equation 1):

fusionsRNA.only =(prevfusions)× (1− θDNA)× (pDNA)×
(pRNA|DNAs=1)× (selection.biasRNA)(1)

where prevfusions is the estimated prevalence of driver fusions 
in the unselected patient population with NonSqNSCLC, 
θDNA is the probability of detecting an oncogenic driver on 
DNA CGP, pDNA is the probability of DNA assay techni-
cal success, and pRNA|DNAs=1 is the probability of RNA 
assay technical success conditional on DNA assay techni-
cal success. To account for possible selection bias toward 
a higher underlying fusion prevalence in the DNA CGP 
driver-negative patient population, we included a preva-
lence multiplier (selection.biasRNA) in sensitivity analyses. In 
addition to our base case calculation, we conducted both 
one-way deterministic and probabilistic sensitivity analyses 
to assess the influence of our base case assumptions and to 
characterize uncertainty in the estimate of RNA-only iden-
tified fusions. Estimates and justifications for the base case 
parameter assumptions and the deterministic and probabi-
listic sensitivity analyses are summarized in Supplementary 
Table S3. We assumed perfect test characteristics for 
RNA fusion detection as a conservative assumption. Our 
base estimates and sensitivity values for the prevalence of 
ALK,11,29-34 RET,11,33-36 ROS1,11,30,33,34,37 and NTRK11,34,38,39 
fusions in patients with NSCLC were based on the pub-
lished literature. While BRAF, EGFR, FGFR, NRG1, and 
other fusions do occur in NSCLC, these are rare events 
such that the combined prevalence of NCCN fusion drivers 
(ALK + NTRK + RET + ROS1) was expected to produce a 
reasonable estimate of the overall prevalence of oncogenic 
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driver fusions in NSCLC. The probability of detecting a 
driver alteration in NonSqNSCLC using DNA CGP was 
determined using FMI DNA CGP results for patients in 
CGDB based on a select list of NSCLC receptor tyrosine 
kinase (RTK)/mitogen-activated protein kinase (MAPK) 
driver alterations (Supplementary Table S4) as described in 
Results. The probability of DNA/RNA sequencing success 
was based on FoundationOne Heme historical data with 
the upper bound based on real-world experience with DNA 
NGS reflexed to RNA NGS testing in a study by Benayed 
et al.14 The base case calculation assumes no selection bias 
for fusions in the DNA CGP-negative patient population (ie, 
a prevalence multiplier of 1×). The upper bound (1.2× the 
base case fusion prevalence) was derived from the percent-
age of fusion-positive patients identified using DNA CGP 
and RNA CGP in the study by Benayed et al.14 The mini-
mum and maximum values for the parameters in equation 1 
(Supplementary Table S3) were used to generate determinis-
tic one-way sensitivity values where a single parameter was 
modified from its base case value to either the minimum or 
maximum value. The parameter distributions specified in 
Supplementary Table S3 were used to simultaneously draw 

parameter values for all 5 parameters across 10 000 simula-
tions to characterize a joint uncertainty estimate.

Results
FMI DNA CGP Detects Fusions With a Rich Diversity 
of Fusion Partners
We analyzed genomic profiling data from 459 751 patients 
with diverse cancer types to characterize the landscape of 
targetable oncogenic fusions detected in tissue biopsies using 
a DNA CGP assay purposefully designed for rearrangement 
detection (Figure 1). We identified predicted fusions in ALK 
(n = 2089), BRAF (n = 1092), FGFR2 (n = 1283), FGFR3 
(n = 1100), NTRK1/2/3 (n = 244), RET (n = 910), and ROS1 
(n = 378) across all solid tumors (Fig. 2A). We observed a 
rich diversity of fusion partners, both previously reported 
and novel, across target genes (Fig. 2B, 2C; Supplementary 
Fig. S1; Supplementary Table S5). We used the AACR Project 
GENIE database (v13.1)24,25—inclusive of 97 592 patients 
with structural variant profiling using primarily DNA-based 
assays—as a point of reference for our partner diversity anal-
ysis. The most recurrent partners for each target gene were 

Figure 2. FMI DNA CGP detects fusions with a rich diversity of fusion partners. (A) Number of fusions detected involving ALK, BRAF, FGFR2, 
FGFR3, NTRK1/2/3, RET, and ROS1 across solid tumors. (B) Number of partner genes observed with ALK, BRAF, FGFR2, FGFR3, NTRK1/2/3, RET, 
and ROS1 across solid tumors. (C) Distribution of partner genes detected in association with each indicated fusion gene across solid tumors. Recurrent 
partners accounting for ≥10% of detected fusions are indicated in teal.
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common among the data sets: EML4 with ALK; KIAA1549 
with BRAF; BICC1 and TACC2 with FGFR2; TACC3 with 
FGFR3; ETV6, TPR, LMNA, and TPM3 with NTRK1/2/3; 
KIF5B, CCDC6, and NCOA4 with RET; and CD74, EZR, 
SDC4, and GOPC with ROS1 (Supplementary Fig. S1; 
Supplementary Table S5). Due to the relative size of the 
FMI DNA CGP cohort, a plethora of unique partner genes 
(observed as partner genes in the FMI but not the GENIE 
cohort) was detected (ALK n = 104, BRAF n = 232, FGFR2 
n = 295, FGFR3 n = 44, NTRK n = 76, RET n = 71, ROS1 
n = 50; Supplementary Fig. S1; Supplementary Table S5). 
With FMI DNA CGP, 64%-83% of fusion partners detected 
for each gene were observed in only a single sample, highlight-
ing the capability of DNA CGP for the detection of fusions 
involving rare and novel partners (Supplementary Fig. S2A). 
In addition, detection of a subset of NRG1 fusions (n = 67, 
0.02% of the cohort, N = 316 152) is enabled through bait-
ing of common partner genes CD74 and SDC4 on F1CDx 
(Supplementary Fig. S2B).

Targetable Fusions in Patients With NonsqNSCLC 
Detected Using FMI DNA CGP Gain More Benefit 
From Matched Therapy Than Patients With Fusions 
Detected Using Other Testing Methods
We compared the clinical benefit from targeted therapy 
using matched tyrosine kinase inhibitors (TKI) for oncogenic 
fusions detected using tissue-based FMI DNA CGP and/or an 
orthogonal assay (eg, FISH, IHC, PCR, and non-FMI NGS). 
In the total cohort of patients analyzed who received orthog-
onal fusion testing and were assessed for progression after 
starting first-line therapy for advanced disease (N = 3959; 
Table 1; Supplementary Fig. S3), the most common orthogo-
nal testing method used was FISH followed by non-FMI liq-
uid biopsy DNA NGS, with a lesser degree of IHC, PCR, and 
RNA-based NGS testing performed (Fig. 3A). Similar trends 
were observed when limiting to the cohorts in which FMI 
DNA CGP and orthogonal diagnostic assay results were dis-
cordant (Supplementary Fig. S4).

Among 193 patients for whom oncogenic fusions in ALK, 
NTRK1/2/3, RET, or ROS1 were detected on both FMI and 
orthogonal assays and for whom rwPFS data were available, 
those who received a matched TKI in the advanced first line of 
therapy had nominally (nonsignificantly) better rwPFS than 
those who received an alternative treatment regimen (uni-
variable HR 0.81, 95% CI 0.59-1.11, P = .19; Supplementary 
Fig. S5A). After adjustment for known prognostic factors in a 
multivariable Cox model, this difference was statistically sig-
nificant (multivariable HR 0.53, 95% CI 0.35-0.79, P = .002; 
Fig. 3B; Supplementary Fig. S6A).

Among the 148 patients whose ALK, NTRK, RET, and 
ROS1 fusions were detected by FMI DNA CGP but were 
not observed by orthogonal testing, patients treated with a 
matched TKI had better rwPFS than those receiving an alter-
native treatment regimen (univariable HR 0.59, 95% CI 0.39-
0.90, P = .012; Multivariable HR 0.60, 95% CI 0.37-0.99, 
P = .05; Fig. 3B; Supplementary Fig. S5B; Supplementary Fig. 
S6B). However, among the 54 patients for whom FMI DNA 
CGP did not detect an actionable fusion in ALK, NTRK, RET, 
or ROS1 when an orthogonal assay did detect a fusion, patients 
who received a matched TKI had worse rwPFS than those who 
did not (univariable HR 3.48, 95% CI 1.75-6.91, P < .001; 
multivariable HR 4.59, 95% CI 1.29-16.32, P = .019; Fig. 3B; 
Supplementary Fig. S5C; Supplementary Fig. S6C).

Across all patients who received a matched TKI and had at 
least one test which detected an ALK, NTRK, RET, or ROS1 
fusion (FMI DNA CGP and/or orthogonal, n = 185), those 
with fusions detected by FMI DNA CGP had significantly lon-
ger rwPFS than those with fusions not detected by FMI DNA 
CGP, regardless of the result of orthogonal testing (relative to 
FMI DNA CGP−/orthogonal+: FMI DNA CGP+/orthogonal+ 
univariable HR 0.25, 95% CI 0.14-0.45, P < .001; FMI DNA 
CGP+/orthogonal− univariable HR 0.18, 95% CI 0.09-0.35, 
P < .001; Fig. 3C). These results were more pronounced when 
applying a multivariable Cox model adjusting for various 
known prognostic factors (Supplementary Fig. S6D).

Expected Detection of Clinically Actionable Fusions 
Using Complementary RNA CGP in NonSqNSCLC
To quantify the added value of RNA CGP following DNA 
CGP for detecting clinically important driver fusions in 
NonSqNSCLC, we used a mathematical model which takes 
into account several real-world factors. We started with the 
assumption that patients with an oncogenic driver detected 
on DNA CGP are unlikely to have an additional driver iden-
tified on RNA CGP since drivers in NSCLC tend to be mutu-
ally exclusive. To estimate the probability of identifying an 
oncogenic driver on DNA CGP, we analyzed genomic pro-
filing data from 10 761 patients with NonSqNSCLC who 
received tissue-based FMI DNA CGP. We stratified the cohort 
by self-reported smoking status given established genomic 
differences between these 2 NSCLC subpopulations10,40,41 to 
inform our sensitivity analyses (Table 2; Supplementary Fig. 
S3). We explored the prevalence of fusion and nonfusion 
oncogenic driver alterations in RTK genes and the MAPK 
pathway. Notably, this included all patients with action-
able driver alterations as defined in the NCCN guidelines 
for NSCLC16 as well as additional known biological drivers 
(Supplementary Table S4). As defined, an oncogenic driver 
alteration was not detected in 12% of never-smokers and 
33% of ever-smokers with NonSqNSCLC (Supplementary 
Fig. S7). These prevalence estimates were used to inform one 
parameter of the model (θDNA), the probability of detecting an 
oncogenic driver on DNA CGP.

Our modeling estimates that approximately 1.3% of 
patients with NSCLC are expected to have an actionable 
driver fusion uniquely identifiable on RNA CGP (Fig. 4A). 
This estimate assumes (1) an underlying driver fusion prev-
alence of 6.0% in NSCLC based on the reported prevalence 
of ALK, RET, ROS1, and NTRK fusions in NSCLC and (2) 
a 70.8% probability of detecting an oncogenic driver using 
DNA CGP in the unselected patient population with NSCLC. 
(The full set of assumptions, parameter sources, and calcu-
lation approach are available in Methods, Supplementary 
Table S3, and Supplementary Fig. S8.) To determine the most 
influential parameters underlying the base case estimate of 
1.3%, we conducted one-way sensitivity analyses (Fig. 4A). 
The most influential parameters were (1) underlying NSCLC 
fusion prevalence and (2) the probability of a driver alter-
ation being detected on DNA CGP. However, even with an 
increase in the population-level fusion prevalence estimate 
from the base case of 6% to the maximum of 10%, we 
estimate a newly identified fusion will be detected on RNA 
CGP in only 2.2% of patients. Across all minimum and 
maximum potential parameter values for the one-way sen-
sitivity analysis, this estimate ranged from 0.34% to 2.22% 
(Supplementary Table S6). We also conducted a probabilistic 

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data


The Oncologist, 2024, Vol. 29, No. 8 e989

sensitivity analysis which accounts for uncertainty in all 
input parameters simultaneously (Fig. 4B; see distribution 
details in Supplementary Table S3 and individual parameter 

draws in Supplementary Fig. S9). Across 10 000 simulations, 
95% of estimates were at or below 2.2% (minimum 0.1%, 
maximum 5.9%).

Table 1.  Clinical characteristics of patients with NonSqNSCLC stratified by fusion testing results.

Clinical 
characteristics

Orthogonal testing 
performed (N = 3959)

FMI DNA CGP−/
Orthog− (N = 3564)

FMI DNA CGP−/
Orthog+ (N = 54)

FMI DNA CGP+/
Orthog− (N = 148)

FMI DNA CGP+/
Orthog+ (N = 193)

Age at 1L start 
(years), Median (IQR)

65.9 (10.6) 66.7 (10.2) 64.0 (9.99) 61.2 (11.5) 56.1 (12.6)

Sex, n (%)

 � Female 2237 (56.5%) 2017 (56.6%) 29 (53.7%) 88 (59.5%) 103 (53.4%)

 � Male 1722 (43.5%) 1547 (43.4%) 25 (46.3%) 60 (40.5%) 90 (46.6%)

Self-reported race, n (%)

 � Asian 163 (4.1%) 143 (4.0%) 1 (1.9%) 3 (2.0%) 16 (8.3%)

 � Black or African 
American

257 (6.5%) 233 (6.5%) 2 (3.7%) 10 (6.8%) 12 (6.2%)

 � Hispanic or Latino 5 (0.1%) 5 (0.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

 � Other race 583 (14.7%) 525 (14.7%) 4 (7.4%) 24 (16.2%) 30 (15.5%)

 � White 2687 (67.9%) 2414 (67.7%) 43 (79.6%) 100 (67.6%) 130 (67.4%)

 � Unknown/not 
documented

264 (6.7%) 244 (6.9%) 4 (7.4%) 11 (7.4%) 5 (2.6%)

AJCC stage at diagnosis, n (%)

 � I 355 (9.0%) 339 (9.5%) 2 (3.7%) 7 (4.7%) 7 (3.6%)

 � II 238 (6.0%) 225 (6.3%) 4 (7.4%) 3 (2.0%) 6 (3.1%)

 � III 694 (17.5%) 635 (17.8%) 11 (20.4%) 24 (16.2%) 24 (12.4%)

 � IV 2598 (65.6%) 2296 (64.4%) 36 (66.7%) 112 (75.7%) 154 (79.8%)

 � Other/unknown/
not documented

74 (1.9%) 69 (1.9%) 1 (1.9%) 2 (1.4%) 2 (1.0%)

Smoking history, n (%)

 � History of smoking 2958 (74.7%) 2789 (78.3%) 40 (74.1%) 59 (39.9%) 70 (36.3%)

 � No history of 
smoking

998 (25.2%) 772 (21.7%) 14 (25.9%) 89 (60.1%) 123 (63.7%)

 � Unknown/not 
documented

3 (0.1%) 3 (0.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Practice type, n (%)

 � Academic 534 (13.5%) 451 (12.7%) 9 (16.7%) 30 (20.3%) 44 (22.8%)

 � Academic/commu-
nity

372 (9.4%) 326 (9.2%) 10 (18.5%) 13 (8.8%) 23 (11.9%)

 � Community 3053 (77.1%) 2787 (78.2%) 35 (64.8%) 105 (70.9%) 126 (65.3%)

Socioeconomic status (SES), n (%)

 � 1—Lowest SES 472 (11.9%) 433 (12.1%) 10 (18.5%) 13 (8.8%) 16 (8.3%)

 � 2 647 (16.3%) 598 (16.8%) 7 (13.0%) 17 (11.5%) 25 (13.0%)

 � 3 818 (20.7%) 724 (20.3%) 6 (11.1%) 42 (28.4%) 46 (23.8%)

 � 4 886 (22.4%) 805 (22.6%) 16 (29.6%) 24 (16.2%) 41 (21.2%)

 � 5—Highest SES 850 (21.5%) 750 (21.0%) 12 (22.2%) 36 (24.3%) 52 (26.9%)

 � Unknown 286 (7.2%) 254 (7.1%) 3 (5.6%) 16 (10.8%) 13 (6.7%)

ECOG PS at 1L start, n (%)

 � 0 1265 (32.0%) 1121 (31.5%) 19 (35.2%) 53 (35.8%) 72 (37.3%)

 � 1 1654 (41.8%) 1506 (42.3%) 27 (50.0%) 57 (38.5%) 64 (33.2%)

 � 2 369 (9.3%) 345 (9.7%) 3 (5.6%) 10 (6.8%) 11 (5.7%)

 � 3 84 (2.1%) 78 (2.2%) 0 (0.0%) 2 (1.4%) 4 (2.0%)

 � Unknown 587 (14.8%) 514 (14.4%) 5 (9.3%) 26 (17.6%) 42 (21.8%)

1L therapy class, n (%)

 � No TKI Received 3761 (95.0%) 3551 (99.6%) 40 (74.1%) 101 (68.2%) 69 (35.8%)

 � Received TKI 198 (5.0%) 13 (0.4%) 14 (25.9%) 47 (31.8%) 124 (64.2%)

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
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Discussion
FMI DNA CGP assays employ a multifaceted approach to 
enable robust DNA-based rearrangement detection (Figure 
1). In addition to baiting breakpoint hotspot introns in 
important fusion genes, the platform also baits breakpoint 
hotspot introns in previously reported fusion partner genes. 
Intentional baiting of specific partners allows for the detection 
of fusions involving clinically important oncogenes that are 
difficult to bait directly,14,42 eg, detection of a subset of NRG1 
fusions is achieved through baiting of CD74 and SDC4 and 
detection of a subset of NTRK3 fusions is achieved through 
baiting of ETV6. The platform includes select intronic tar-
geting for 34 genes (Supplementary Table S1). In total, over 
13% of the targeted region is dedicated to intronic coverage 

for the express purpose of rearrangement detection. Another 
feature of the assay that supports rearrangement detection is 
the use of a hybrid capture-based sequencing approach which 
requires that only one gene involved in a fusion be baited for 
detection, whereas its partner can be any gene in the genome 
even if not explicitly targeted by the assay. This allows for 
the detection of fusions involving recurrent or rare known 
partners as well as novel partners. Together with select part-
ner gene baiting, this approach also supports the detection 
of known oncogenes with rare or novel breakpoints out-
side of baited hotspot intronic regions and oncogenes with 
hotspot intronic regions that cannot be efficiently baited 
(eg, NRG1 and NTRK3). The bioinformatics pipeline used 
for fusion calling also contributes to the capabilities of the 

Figure 3. Targetable fusions detected using FMI DNA CGP are associated with improved clinical benefit from matched therapy compared 
to fusions detected using other testing methods. (A) Distribution of orthogonal testing modalities (N = 5879 tests; left axis, gray bars) and results 
(right axis, teal dots) from 3959 patients with NonSqNSCLC who were assessed for progression and underwent both FMI DNA CGP and additional 
fusion testing. Each testing modality is only counted once per patient. However, a single patient could be counted toward multiple modalities if a 
patient underwent multiple types of orthogonal testing such that the sum of all bars may exceed 100%. Ns above bars indicate the number of patients 
who underwent each type of testing. The fusion-positive percentage was calculated based on the total number of tests performed in each category 
(N = 7299 tests across all modalities), even if multiples of the same testing modality were performed for a single patient. (B) Forest plot depicting the 
adjusted rwPFS HR of receiving a matched TKI in the 1L for NonsqNSCLC subcohorts defined by concordance/discordance between FMI DNA CGP 
and orthogonal fusion testing results. (C) Among patients who received 1L-matched TKI, patients who were negative for ALK, NTRK, RET, and ROS1 
fusions on FMI DNA CGP had shorter rwPFS than patients who were positive by FMI DNA CGP. Unadjusted Kaplan-Meier plot is shown. All analyses 
are indexed to the start of 1L therapy. In addition to univariable Cox model HRs, adjusted HRs are presented for a multivariable Cox model that includes 
established prognostic variables (Supplementary Fig. S6). A small number of cases were excluded from multivariable analyses due to missingness of 
covariables. Abbreviations: FMI DNA CGP, Foundation Medicine Tissue DNA comprehensive genomic profiling; HR, hazard ratio; TKI, tyrosine kinase 
inhibitor; rwPFS, real-world progression-free survival; 1L, first advanced line of Tx.

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae028#supplementary-data
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assay for rearrangement detection. Initially, clusters of discor-
dant read pairs are used to identify potential genomic rear-
rangement candidates. These candidates are further refined 
using a de novo local genomic assembly approach.22,43 This 
method facilitates precise breakpoint detection compared 

to reference-based methods because rearrangement break-
points often feature novel sequences introduced by DNA 
repair mechanisms that cannot be accurately mapped. More 
accurate breakpoint detection allows for better predictions 
regarding the functional effect of rearrangement events.

Table 2. Clinico-genomic characteristics of patients with NonSqNSCLC stratified by smoking history.

Clinico-genomic characteristics Smoking status 
known (N = 8747)

Former or current 
smoker (N = 7081)

Never-smoker 
(N = 1666)

P

Age at diagnosis (years), median (IQR) 67.0 (60.0;74.0) 68.0 (60.0;74.0) 66.0 
(57.0;74.0)

<.001

Age at diagnosis (categorical), n (%)

 � <45 192 (2.2%) 97 (1.4%) 95 (5.7%) <.001

 � ≥45 8555 (97.8%) 6984 (98.6%) 1571 
(94.3%)

Sex, n (%)

 � Female 4801 (54.9%) 3682 (52.0%) 1119 
(67.2%)

<.001

 � Male 3946 (45.1%) 3399 (48.0%) 547 (32.8%)

Self-reported race, n (%)

 � Asian 301 (3.4%) 126 (1.8%) 175 (10.5%) <.001

 � Black or African American 595 (6.8%) 480 (6.8%) 115 (6.9%)

 � Hispanic or Latino 8 (0.1%) 6 (0.1%) 2 (0.1%)

 � Other race 1207 (13.8%) 978 (13.8%) 229 (13.7%)

 � White 5807 (66.4%) 4819 (68.1%) 988 (59.3%)

 � Unknown/not documented 829 (9.5%) 672 (9.5%) 157 (9.4%)

AJCC stage at diagnosis, n (%)

 � I 1055 (12.1%) 893 (12.6%) 162 (9.7%) <.001

 � II 700 (8.0%) 602 (8.5%) 98 (5.9%)

 � III 1639 (18.7%) 1394 (19.7%) 245 (14.7%)

 � IV 5093 (58.2%) 3984 (56.3%) 1109 
(66.6%)

 � Other/unknown/not documented 260 (3.0%) 208 (2.9%) 52 (3.1%)

Practice type, n (%)

 � Academic 1051 (12.0%) 784 (11.1%) 267 (16.0%) <.001

 � Academic/community 498 (5.7%) 383 (5.4%) 115 (6.9%)

 � Community 7198 (82.3%) 5914 (83.5%) 1284 
(77.1%)

Socioeconomic status, n (%)

 � 1—Lowest SES 1199 (13.7%) 1049 (14.8%)  150 (9.0%) <.001

 � 2 1519 (17.4%) 1298 (18.3%)  221 (13.3%)

 � 3 1755 (20.1%) 1446 (20.4%)  309 (18.5%)

 � 4 1811 (20.7%) 1430 (20.2%)  381 (22.9%)

 � 5—Highest SES 1694 (19.4%) 1238 (17.5%)  456 (27.4%)

 � Unknown 769 (8.8%) 620 (8.8%)  149 (8.9%)

ECOG PS at diagnosis, n (%)

 � 0 1768 (20.2%) 1416 (20.0%)  352 (21.1%) <.001

 � 1 1839 (21.0%) 1545 (21.8%)  294 (17.6%)

 � 2 479 (5.5%) 423 (6.0%)  56 (3.4%)

 � 3+ 121 (1.4%) 106 (1.5%)  15 (0.9%)

 � Unknown 4540 (51.9%) 3591 (50.7%)  949 (57.0%)

Tumor mutational burden (Mut/Mb), n (%)

 � TMB < 10 5690 (65.2%) 4121 (58.3%) 1569 
(94.5%)

<.001

 � TMB (10-20) 2029 (23.2%) 1964 (27.8%) 65 (3.9%)

 � TMB ≥ 20 1011 (11.6%) 985 (13.9%) 26 (1.6%)
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Together, these design features enable robust detection 
of rearrangements and fusions with a DNA-based assay. 
We observed a broad diversity of both common and novel 
fusion partners associated with clinically actionable fusion 
genes including ALK, BRAF, FGFR2/3, NTRK1/2/3, RET, 
and ROS1 using FMI DNA CGP. Moreover, we established 
that ALK, NTRK, RET, and ROS1 fusions detected using 
FMI DNA CGP were highly correlated with favorable out-
comes on matched TKI, whereas fusions solely detected using 

orthogonal methods were not, illustrating that FMI DNA 
CGP is a robust modality for fusion detection compared to 
other methods, consistent with prior reports.44,45

While most highly recurrent fusion partners were common 
to both the FMI and AACR GENIE datasets, one glaring dis-
crepancy was the high frequency of FGFR2-NPM1 fusions 
reported in GENIE. While FGFR2-NPM1 rearrangements 
were detected using FMI DNA CGP, they were consid-
ered variants of uncertain significance. The FGFR2-NPM1 

Figure 4. 1.3% of patients with NonSqNSCLC are expected to have an actionable fusion detected by RNA CGP that is not detected by DNA 
CGP. We conducted (A) one-way sensitivity analyses on key model parameters including the prevalence of oncogenic driver fusions in ALK, NTRK, RET, 
and ROS1 in NSCLC, the probability an oncogenic driver is detected in NSCLC using DNA CGP, the probability of successful DNA and RNA sequencing, 
and the potential selection bias for fusion-positive patients among those that do not have oncogenic driver alterations detected on DNA CGP and (B) a 
probabilistic sensitivity analysis incorporating parameter uncertainty jointly with mean and median estimates across 10 000 simulations indicated.
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rearrangements detected on FMI DNA CGP had breakpoints 
in FGFR2 intron 9 without retention of the kinase domain 
and showed a cancer type distribution distinct from known 
pathogenic FGFR2 fusions, ie, found in NSCLC, colorectal 
(CRC), and other cancers but only infrequently in cholan-
giocarcinoma or other pancreaticobiliary cancers (data not 
shown). Furthermore, there is no published functional charac-
terization of FGFR2-NPM1 fusions to our knowledge. While 
these fusion events have been described in a prior study, the 
breakpoints and domain organization of these fusions were 
not detailed and they likewise were found in cancer types not 
typically associated with FGFR2 fusions (CRC N = 2, large 
cell lung carcinoma N = 1).46 Notably, all FGFR2-NPM1 
fusions reported in GENIE were from a single institution, 
likely reflecting differences in reporting rules between institu-
tions/assays. Information about the intronic breakpoints for 
these fusions was not provided. The bioinformatic pipeline 
used for rearrangement calling/curation and manual review/
interpretation are also key factors affecting assay reliability 
as not all structural variants are potentially pathogenic. Thus, 
the dependability of DNA-based rearrangement detection is 
reliant on both the technical capabilities of the assay as well 
as the reporting rules.

Both DNA and RNA CGP have advantages and shortcom-
ings for fusion detection. While well-designed DNA CGP 
assays can detect a wide diversity of rearrangements and 
fusions, RNA CGP is better poised to detect certain rear-
rangement events. Whereas DNA CGP is capable of robust 
detection of canonical fusions with recurrent breakpoints 
since established breakpoint hotspots can be intentionally 
baited, RNA CGP can detect atypical fusions with break-
points outside of hotspot regions. RNA CGP can also detect 
emergent fusions in genes not included on established DNA 
panels (eg, NRG1) due to technical limitations associated 
with baiting of certain fusion genes, eg, challenges related to 
long intronic regions which are prohibitive of efficient tiling 
as well as repetitive intronic sequence elements.14,42 Notably, 
detection of fusions involving these genes using a DNA CGP 
assay is still possible through baiting of fusion partners, eg, a 
subset of NRG1 fusions are detected using FMI DNA CGP 
due to baiting of partner genes CD74 and SDC4. RNA CGP 
is also ideal for identifying diagnostic fusions not commonly 
covered on DNA panels (eg, in sarcomas47 and salivary gland 
tumors48-50) as the multitude and cancer type specificity of 
such fusions makes it infeasible to bait intronic regions of 
all involved genes due to panel size restrictions. In addi-
tion, RNA profiling can clarify the functional significance of 
detected rearrangements since expression at the mRNA level 
is confirmed, whereas expression of fusions detected through 
DNA profiling is merely predicted, complicating interpreta-
tion of noncanonical rearrangements.51 However, the techni-
cal difficulty of working with RNA is a significant limitation 
to RNA CGP.18-21 In addition to general issues of stability and 
quality, a low level of mRNA expression in cells can limit the 
detection of alterations resulting in false negatives.20 Notably, 
DNA CGP can also be performed on circulating tumor DNA 
from liquid biopsies when tissue material is not readily  
available,52-54 whereas RNA profiling using liquid biopsies is 
not widely offered.55

It is estimated that approximately 30% of NSCLC adeno-
carcinoma lack a well-defined oncogenic driver alteration.7-10  
Using tissue-based FMI DNA CGP, we observed that approx-
imately 12%-33% of NonSqNSCLC tumors lack a clear 

oncogenic driver with driver alterations enriched in never- 
smokers (88%) compared to ever-smokers (67%), consistent 
with prior studies.10 However, it is important to clarify that 
the absence of a known oncogenic driver on DNA CGP does 
not necessarily equate to a missed driver, eg, a known onco-
genic driver fusion that was not detectable on DNA CGP but 
may be detectable on RNA CGP. We expect such cases to rep-
resent a much smaller percentage of the overall NSCLC pop-
ulation with the remainder of driver-negative cases explained 
by as yet undiscovered biology.9 Accounting for several 
real-world factors associated with DNA/RNA CGP and the 
reported landscape of driver fusions in NSCLC, we estimate 
that approximately 1.3% of patients with NonSqNSCLC 
would be expected to have a driver fusion identified on RNA 
CGP but not on DNA CGP. This estimate is consistent with 
prior studies in which (1) reflex to RNA CGP after driver- 
negative DNA CGP identified an additional 1.1% of patients 
with NSCLC with targetable fusions14 and (2) concurrent 
DNA- and RNA-seq identified 0.3% of additional patients 
with actionable fusions across 20 cancer types.56 While this 
yield may appear relatively low in all-comers, RNA CGP may 
be of greater value in select subpopulations, eg, non-smokers  
with NSCLC10 and driver-negative NSCLC with low TMB.14 
In our study, the estimated increase in fusion detection 
afforded by RNA CGP represents approximately 4.4% of 
cases that would otherwise have been classified as driver- 
negative NonSqNSCLC.

Limitations of this study include the use of CGP results 
from tissue biopsies submitted during routine clinical care 
which introduces certain biases, compounded by comparison 
to an external database consisting of multiple patient cohorts 
each with its own inherent biases. While AACR Project 
GENIE data represent multiple assays from multiple institu-
tions which complicates comparison to results from a single 
assay, the GENIE database is one of the largest repositories 
of publicly available clinically annotated genomic data in the 
world, including data from leading academic medical cen-
ters with established high-quality in-house NGS platforms, 
as well as other commercial assays, and thus represents a 
reasonable point of reference for our analysis. Additionally, 
our mathematical modeling approach was based on a num-
ber of assumptions and our parameter estimates were based 
on data/studies with their own respective sets of limitations. 
A more accurate estimate would require formal analysis of 
samples analyzed with both DNA and RNA CGP which is 
beyond the scope of the current study but of high interest for 
future investigations.

Conclusion
This study shows the robust capability of DNA CGP to 
detect clinically important fusions. There should be high 
confidence in the reliability of fusion calls from a well- 
designed DNA CGP assay to inform treatment decisions. 
However, variation in assay performance is affected by 
differences in design strategies, validation standards, and 
reporting rules among manufacturers and academic labo-
ratories and not all DNA CGP assays are equally reliable. 
While we predicted an additional 1%-2% of patients with 
actionable driver fusions could potentially be detected 
with the addition of RNA CGP to a DNA CGP assay in 
NonSqNSCLC, the actual population prevalence in differ-
ent tumor types and clinical scenarios must be studied in 
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large cohorts in which DNA and RNA are profiled con-
currently and would necessarily be dependent on the capa-
bilities of the included assays. While the expected yield of 
additional fusion detection using RNA CGP may be low in 
the unselected cancer population, the potential clinical ben-
efit of detecting an actionable fusion driver for an individ-
ual patient is significant and every effort should be made to 
identify these drivers. Therefore, reflex to RNA CGP should 
be considered when DNA CGP does not reveal a clear onco-
genic driver.
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