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Abstract
Survival analysis is an integral part of medical statistics that is extensively utilized to establish prognostic indices for mor-
tality or disease recurrence, assess treatment efficacy, and tailor effective treatment plans. The identification of prognostic 
biomarkers capable of predicting patient survival is a primary objective in the field of cancer research. With the recent 
integration of digital histology images into routine clinical practice, a plethora of Artificial Intelligence (AI)-based methods 
for digital pathology has emerged in scholarly literature, facilitating patient survival prediction. These methods have dem-
onstrated remarkable proficiency in analyzing and interpreting whole slide images, yielding results comparable to those of 
expert pathologists. The complexity of AI-driven techniques is magnified by the distinctive characteristics of digital histol-
ogy images, including their gigapixel size and diverse tissue appearances. Consequently, advanced patch-based methods 
are employed to effectively extract features that correlate with patient survival. These computational methods significantly 
enhance survival prediction accuracy and augment prognostic capabilities in cancer patients. The review discusses the 
methodologies employed in the literature, their performance metrics, ongoing challenges, and potential solutions for future 
advancements. This paper explains survival analysis and feature extraction methods for analyzing cancer patients. It also 
compiles essential acronyms related to cancer precision medicine. Furthermore, it is noteworthy that this is the inaugural 
review paper in the field. The target audience for this interdisciplinary review comprises AI practitioners, medical statisti-
cians, and progressive oncologists who are enthusiastic about translating AI-driven solutions into clinical practice. We expect 
this comprehensive review article to guide future research directions in the field of cancer research.

Keywords Digital pathology · Cancer survival analysis · Precision medicine · Cox regression hazard model · Kaplan-Meier 
curve · Literature survey

Introduction

Cancer, a complex disease with no definitive cause, has 
witnessed significant advancements in research in recent 
decades [1]. Diagnosis, prognosis, and treatment play cru-
cial roles in effective cancer management [2]. Prognostic 
information provided during the initial diagnosis holds sig-
nificant importance for guiding treatment decisions and for 

the subsequent monitoring process [3, 4]. Prognosis refers 
to predicting outcomes such as tumor recurrence, metastasis, 
or mortality based on clinical findings [5]. Multiple fac-
tors, known as prognostic factors, influence the prognosis 
of cancer, including grade, metastasis, tumor characteristics, 
lymph node involvement, biomarkers, genetic mutations, 
age, and treatment options [6, 7]. Identifying prognostic bio-
markers, including histopathological, genetic, gene expres-
sion, and protein markers, is a major goal in cancer precision 
medicine [8]. whole slide images (WSIs) have a crucial role 
in the assessment of histopathological biomarkers and are 
widely recognized as the benchmark in this domain [9].

Active research efforts are underway in the field of com-
putational image analysis of whole slide images (WSIs) 
utilizing machine learning and deep learning algorithms 
[10]. The ongoing research domain aimed at improving sur-
vival predictions by learning survival informative features 
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associated with patient outcomes [11]. Deep learning has 
achieved remarkable success in addressing various chal-
lenges in computer vision, such as computational pathology 
[12]. In fact, models achieve performance comparable to 
expert pathologists [13, 14]. However, extracting survival-
related features from gigapixel WSIs poses challenges due 
to their size and diverse tissue appearances [15]. As a result, 
Patch-based techniques have emerged to tackle these obsta-
cles and identify meaningful patches linked to the advance-
ment of cancer in whole slide images (WSIs).

Many computational methods have been developed 
over time for the automated analysis of large whole slide 
images, aiming to establish connections between the 
extracted morphological and histopathological character-
istics and a patient’s survival. These computational meth-
ods can be broadly stratified into two major sections. The 
first group of algorithms leverages intermediate computer 
vision tasks for feature extractions. These methods require 
survival informative ROI annotations. However, manual 
patch-level annotations are labor-intensive and subject to 
pathologist’s interpretation [16]. The second group of algo-
rithms uses direct feature extraction methods without inter-
mediate computer vision tasks. These algorithms have been 
designed to automatically extract features from gigapixel 
WSIs without prior knowledge of tissue regions or appear-
ance characteristics [17]. Various strategies exist in the 
literature for patch selection and aggregation techniques 
to extract informative features related to patient survival 
using learning algorithms [18, 19].

Prognosis assessment in oncology relies on the statis-
tical analysis of data collected over many years from a 
cohort of cancer patients. Predicting the time until cer-
tain events occur, such as cancer recurrence or mortal-
ity, significantly influences decision-making within the 
field of oncology [20]. The field of survival analysis is 

of great importance to patients, clinicians, researchers, 
and policymakers [21, 22]. Different statistical metrics 
can be employed to assess survival duration, encompass-
ing disease-specific, relative, overall, and disease-free 
survival. The extensive body of research encompasses 
various approaches, with examples like Kaplan-Meier 
(KM) plots [23], log-rank tests, and Cox (proportional 
hazards) regression [24], to assess and measure survival 
statistics linked to characteristics extracted from whole 
slide images (WSIs).

The main objective of this survey paper is to offer an 
extensive review and summary of the existing research on 
the application of artificial intelligence for predicting the 
survival of cancer patients by analyzing digital histology 
images. This paper aims to demonstrate how AI-powered 
algorithms, leveraging whole slide imaging (WSI), can be 
used to predict survival outcomes based on whole slide 
images. This paper discusses the methodologies used in 
the literature, evaluates their performance metrics, identi-
fies ongoing challenges, and suggests potential solutions for 
future advancements. This comprehensive review is targeted 
toward individuals in the realms of artificial intelligence, 
and healthcare, encompassing both researchers and prac-
titioners. It also targets medical professionals, oncologists, 
biomedical informatics experts, and computational scientists 
involved in analyzing digital histology images. This survey 
will also provide value to individuals within academia, 
students, healthcare decision-makers, professionals in the 
healthcare technology industry, and researchers engaged in 
related domains like precision medicine and computational 
pathology. Additionally, it is relevant to the general scien-
tific community interested in the intersection of AI, digital 
pathology, and cancer prognosis. We have created Table 1 
that describes frequently utilized terminologies to provide 
help and guidance.

Table 1  Compilation of 
acronyms and abbreviations 
employed in the paper

Acronyms Words Acronyms Words

TIL Tumor-infiltrating lymphocyte TMA Tissue microarray
DFS Disease-specific survival OS Overall survival
OSCC Oral squamous cell carcinoma ccRCC Clear cell renal cell carcinoma
GBM Glioblastoma LUSC Lung squamous cell carcinoma
DCIS Ductal carcinoma in situ KICH Kidney chromophobe
TMB-H Tumor mutational burden-high BCRA Breast invasive carcinoma
BLCA Bladder carcinoma ADC Antibody-drug conjugates
LGG Low-grade glioma LUAD Lung adenocarcinoma
PRAD Prostate adenocarcinoma NLST National Lung Screening Trial
COAD Colon adenocarcinoma STAD Stomach adenocarcinoma
LIHC Liver hepatocellular carcinoma OV Ovarian carcinoma
READ Rectum adenocarcinoma HCC Hepatocellular carcinoma
HNSC Head-neck squamous cell carcinoma ICC Intrahepatic cholangiocarcinoma
KIRP Kidney renal papillary cell carcinoma KIRC Kidney renal clear cell carcinoma
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This review article is organized into seven distinct sec-
tions. In the “ Introduction” section, there is a concise 
exploration of the significance behind enhanced prognos-
tics through survival analysis, alongside the contribution of 
deep learning in advancing survival prediction. Additionally, 
the scope of this review is outlined. The “Survey Method-
ology” section delves into the methodology employed for 
selecting the articles under review, as well as their distribu-
tion across various years, conferences, and journals. Mov-
ing on to the “Features Extraction Techniques” section, the 
fundamental understanding of computational techniques 
for medical professionals is established. The “Cultivating 
the Constructs of Survival Analysis” section demonstrates 
the techniques available in the literature for quantification 
and evaluation of survival statistics. In the “Compendium 
of Computational Methods for Predicting Cancer Patients’ 
Survival” section details about the reviewed techniques are 
categorized based on methods adopted for feature extraction. 
It also describes the performance of these methodologies in 
tabular format. The “Discussion” section highlights limita-
tions in the reviewed articles and discusses the findings and 
future direction. Finally, the “Conclusion” section concludes 
the contribution of this review article, research gaps, find-
ings, and the pathway for future research.

Scope of the Review

The objective of this review is to provide a thorough over-
view of the present research state regarding the application 
of artificial intelligence in predicting the survival of cancer 
patients by analyzing digital histology images Notably, there 
is a dearth of existing review papers addressing this specific 
topic. Our primary objective is to summarize the various 
methods, challenges, and advancements in this field, laying 
the groundwork for future research to improve the accuracy 
of prognosis and the effectiveness of cancer treatment.

To accomplish this objective, we conducted an extensive 
literature search across reputable peer-reviewed journals and 
prominent conferences, utilizing platforms such as PubMed, 
Springer, IEEE Xplore, and Google Scholar. We meticu-
lously curated literature published between 2018 and 2022, 
scrutinizing the methodologies employed in each paper. 
Alongside showcasing innovative techniques discussed in 
these works, we also pinpoint areas requiring further inves-
tigation and potential avenues for future exploration. In addi-
tion to shedding light on prevalent methodologies, we iden-
tify research gaps and propose directions for future inquiries. 
Remarkably, no prior reviews have been found on this exact 
topic, possibly making this paper the inaugural review on 
survival analysis of cancer patients. We anticipate that this 
review will effectively bridge the gap between the computa-
tional community and medical experts, creating a conducive 
environment for subsequent research and development in 

the field of survival analysis of cancer patients using whole 
slide images (WSIs).

Our target audience for this interdisciplinary review 
includes AI practitioners, medical statisticians, and forward-
thinking oncologists interested in integrating AI-powered 
solutions into clinical practice. The ultimate goal is to pro-
vide invaluable insights and guidance, thereby influencing 
the direction of future research in the realm of precision 
medicine for cancer.

Survey Methodology

This section outlines the criteria used to select relevant 
research articles for this review paper. Furthermore, it dem-
onstrates how the reviewed articles are categorized based 
on their publication venues (journals or conferences) and 
publication years.

Papers Selection

We conducted a comprehensive search for papers on vari-
ous platforms such as PubMed, Springer, IEEE Xplore, and, 
finally, Google Scholar. Our search resulted in a total of 
4160 papers. Of these, 2100 were excluded due to duplica-
tion or their focus on other computational pathology matters 
unrelated to survival analysis. Subsequently, we rigorously 
reviewed the remaining 2060 papers and identified 260 arti-
cles that met the criteria of relevance for this survey. The 
other 2000 papers were found to fall short of legitimacy 
criteria, as some exclusively addressed survival prediction or 
prognosis, unrelated to cancer patients using histopathology 
images. Among the remaining 260 articles, a further assess-
ment was conducted to ensure legitimacy. Consequently, 200 
papers were excluded, either due to their focus on extracting 
features beyond histological attributes (e.g., gene mutation 
and protein biomarkers) or their application of techniques 
outside the realm of deep learning or machine learning, such 
as relying solely on expert pathologists for problem-solving. 
The research articles included in this review are outlined 
using the PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses) framework. The selection 
process of the research articles, as depicted in Fig. 1, is sum-
marized by PRISMA.

Papers Acquisition Method

To gather research articles for this review, we conducted 
searches across multiple platforms including PubMed, 
Springer, IEEE Xplore, and Google Scholar. Our focus was 
on selecting documents from peer-reviewed journals and 
conference proceedings. Employing diverse keywords rel-
evant to this review, we employed logical operators such as 
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’AND’ and ’OR’ to enhance search accuracy and yield more 
precise results. The keywords employed encompassed:

• Whole slide images, whole slide images, WSI, histopa-
thology images, histology images

• Survival analysis, survival prediction, outcome predic-
tion, prognosis

• Artificial intelligence techniques, machine learning, deep 
learning, and convolutional neural networks (CNNs)

We derived the keywords from all the included research 
articles encompassed within our review, and these were 

utilized to construct a word cloud, visually represented in 
Fig. 2. The word cloud visually encapsulates the frequently 
encountered terms within the body of literature concerning 
the prediction of cancer patients’ survival through the utili-
zation of whole slide images. Given our principal objective 
of comprehensively presenting the existing body of literature 
in the domain of survival prediction leveraging whole slide 
images, alongside the extraction of histological attributes 
through the machine and deep learning algorithms, the word 
cloud prominently features interconnected terms including 
histopathology, survival analysis, WSI, tumor analysis, mor-
phological features, and other relevant terms.

Fig. 1  PRISMA—Visualiza-
tion of the process for selecting 
research articles in the review

Records identified
through searching

PubMed: 723

Records identified
through searching

Springer: 537

Records identified
through searching

IEEE Xplor: 900

Records identified
through searching
Google Scholar:

2000

Records after duplicates and irrelevant removal:
(n =2060)

Record screened: (n= 2060) Records excluded based on title and
abstract: (n = 1800)

Full text articles assessment for eligibility
check: (n=260)

Full text articles excluded: 200
Exclusion Reason: Not addressing

survival analysis using
histopathological features

Total articles included for systematic: (n = 60)
Journal Articles: (n = 45)
Conference Articles: (n = 15)

Id
en

tif
ic

at
io

n
Sc

re
en

in
g

El
ig

ib
ili

ty
In

cl
ud

ed

Fig. 2  A graphic showing the 
most frequent keywords from 
articles under review



1732 Journal of Imaging Informatics in Medicine (2024) 37:1728–1751

The initial stage of paper selection involved scrutiny of 
paper titles, with matches against the predefined criteria 
determining selection. In cases where the title did not meet 
these criteria, we proceeded with a more in-depth assess-
ment by reviewing the abstract, conclusion, and model 
diagram to guide our ultimate choice. Details outlining 
the criteria for paper inclusion and exclusion can be found 
in Table 2.

Papers Distribution

This section provides an overview of how published papers 
are distributed across different journals, conferences, and 
years. Its purpose is to offer a summary of the articles fea-
tured in this review, shedding light on the volume of litera-
ture available in peer-reviewed publications and the impact 
of the research.

Figure 3 depicts how the reviewed articles are spread out 
over different years. The graph visually illustrates the pro-
gressive expansion of the literature, on survival prediction 
utilizing whole slide images and artificial intelligence, from 
2018 to 2022. Similarly, the analysis reveals an increasing 
body of work on survival analysis of cancer patients through 
histological features extracted from whole slide images, 
beginning in 2018 and particularly flourishing in 2022, dur-
ing which 20 research articles were published.

Figure 4 illustrates the number of included research arti-
cles about survival prediction using whole slide images 
across various journals and conferences. Each venue is rep-
resented by an arrow in the same color as the corresponding 
segment in the pie chart. The statistics depicted in the graph 
indicate that the majority of papers, a total of 8 articles, were 
sourced from MICCAI. Additionally, 6 papers were sourced 
from Nature Scientific Reports.

Features Extraction Techniques

Effectively identifying and extracting meaningful features 
from whole slide images (WSIs) holds significance in con-
structing survival prediction models for cancer patients. 

These features encompass details about image structure, 
dimensions, morphology, texture, as well as the arrange-
ment of distinct cell categories [25]. There are multiple 
techniques that can be used for feature extraction. These 
feature extraction techniques range from simple handcrafted 
feature extraction methods like thresholding to more com-
plex methods like deep learning-based approaches. Using 
the extracted characteristics, various methods are utilized 
to predict survival outcomes, spanning from traditional sta-
tistical techniques to state-of-the-art machine learning and 
deep learning approaches. The most relevant features corre-
spond to heightened prediction precision, ultimately enhanc-
ing the quality of patient care. This section introduces the 
commonly used techniques in medical computer vision for 
extracting survival informative features from WSIs.

Handcrafted Feature Extraction

Handcrafted feature extraction implies the manual depic-
tion and extraction of features from data. In the context of 

Table 2  Criteria for the inclusion and exclusion of legitimate papers

Inclusion criteria Exclusion criteria

Articles focused on utilizing whole slide images to predict the survival 
outcomes of cancer patients

Articles that primarily deal with predicting survival but do not 
specifically concentrate on cancer patients or the application of 
whole slide images.

Articles that use machine learning and deep learning techniques for 
survival prediction

Articles that are not using features through expert pathologists

Articles that work on whole slide images with or without other data types 
such as gene expression and DNA sequencing

Articles exclusively focusing on data types other than whole slide 
images, such as gene expression and DNA sequencing

Articles from Journals and Conferences mentioned in Fig. 4 Articles that are not peer-reviewed
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Fig. 3  An orderly listing of survival analysis research publications 
using cancer patients’ WSIs
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whole slide images (WSI), this procedure involves identi-
fying relevant features such as dimensions, morphology, 
texture, size, tissue structures, cells, patterns, and the 
arrangement of elements within a WSI [26]. This method 
of feature extraction requires domain knowledge to dis-
cern the most important features. Although handcrafted 
features were extensively utilized in the past, Recent 
developments in convolutional neural networks (CNNs) 
and deep learning have significantly reduced their need. 
However, in some cases, handcrafted features might still 
have value, especially when dealing with limited data or 
when specific domain knowledge is crucial for interpreting 
the results. In modern digital pathology, a combination of 
both handcrafted features and deep learning techniques 
can be applied to leverage the strengths of each approach.

Artificial Neural Networks (ANN)

In the recent era of technological advances, all manual 
tasks are being automated by Machine learning. Artificial 
Neural networks [27] constitute a subset of machine learn-
ing methodologies designed to discern concealed patterns 
and construct representations of the information contained 
within input data. Learning algorithms [28] learn by see-
ing the data, predicting the output, evaluating the output, 
and updating the learned information accordingly, this 
process repeats until it builds the representations present 
in the data.

Convolutional Neural Network (CNN)

CNN, which stands for Convolutional Neural Network 
(CNN) [29], is a specialized neural network architecture 
created for the purpose of analyzing and processing data in 
a grid-like format, such as images and videos. This type of 
network has demonstrated significant effectiveness in core 
computer vision tasks, such as the classification of images, 
detection of objects, segmentation of regions in images, and 
more.

In the CNN, an input image is utilized to learn distinc-
tive features through the assignment of weights. This is 
accomplished by the CNN as it goes through multiple lay-
ers and employs diverse filters, resulting in the extraction 
of discriminative features. CNN arranges convolutional lay-
ers, pooling layers, and fully connected layers in specific 
sequences to create various architectures. In recent years, 
a multitude of CNN architectures, including the likes of 
AlexNet, have been developed and refined [30], VGGNet 
[31], GoogleNet [32], ResNet [33], ResNeXt [34], Squeeze 
& Excitation Net [35], DenseNet [36], and EfficientNet [37].

Attention Mechanism in CNN

In computer vision, attention mechanism refers to the pro-
cess of selecting relevant features from the image, that a 
learning algorithm should focus on. This concept mirrors 
the cognitive attention observed in human perception [38]. 
In the context of CNNs, the deeper layers are confined to 
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perceiving only what has been conveyed by the preceding 
layers. Consequently, they might miss out on the compre-
hensive context of the features. The attention mechanism is 
employed to capture image regions that demand the CNN’s 
focus and subsequently transmit them to the deeper layers

Cultivating the Constructs of Survival 
Analysis

The need for survival analysis arises when studying events 
that occur over time and vary based on changing conditions 
or circumstances. This form of analysis finds applications 
in various realms of data examination, including the field of 
medicine. It involves employing a range of statistical meth-
ods to explore the duration it takes for a particular event of 
significance to occur or become noticeable. The overarch-
ing term used to characterize this phenomenon is “survival 
time,” which is employed in a broad context. It signifies the 
duration a patient being monitored endures without expe-
riencing the event of interest. This event could encompass 
scenarios such as the probability of a patient’s tumor recur-
ring, the likelihood of distant metastasis occurring, or the 
likelihood of mortality. Typically, the event of interest is 
not documented for all individuals by the end of the obser-
vation period, and their time until the event remains unde-
termined. Further survival data contain more early events 
than late events, which makes it hugely imbalanced and 
data is rarely normally distributed rather it is skewed. These 
challenges associated with survival data evoke the need of 
special techniques for survival analysis. In this section, we 
have discussed some terminologies, the statistical inference 
approaches, and concepts associated with these approaches 
that are commonly used for survival analysis.

Splendid Terminologies Enriching the Domain 
of Survival Analysis

There are some terminologies that are commonly used in the 
survival analysis domain, that need to be understood first, 
before diving into the survival analysis.

Survival Function

The survival function calculates the probability of an indi-
vidual or any object of interest surviving until a specific 
time point. This concept is also referred to as the survivor 
function, dependability function, and survival probability. 
In engineering, the phrase dependability function is fre-
quently employed, although the phrase survival function is 
utilized in a wider range of applications, including human 
mortality. The survival function is the lifetime’s comple-
mentary cumulative distribution function. Complementary 

cumulative distribution functions are often referred to as 
generic survival functions.

Hazard Function

The hazard function is a technique to describe the distribu-
tion of data in a survival study. This function is most fre-
quently employed for predicting an individual’s risk of mor-
tality in relation to age. Nonetheless, it can also be applied 
to simulate various other time-dependent events of interest. 
The hazard function provides a more precise simulation of 
whether certain time intervals exhibit the highest or lowest 
probabilities of an event taking place.

Hazard Ratio

The hazard ratio is a quantitative representation that illus-
trates the difference in event occurrence frequencies between 
two groups over time. Hazard ratios are frequently used in 
clinical trials for cancer research to compare the overall sur-
vival of a group of patients who have received one treatment 
to a control group with a different or a placebo. When the 
hazard ratio equals one, there exists no distinction in sur-
vival outcomes between the two groups. A hazard ratio of 
more than one or less than one indicates that one group’s 
chance of surviving was higher than the other.

Censoring

Censoring is a term used to describe situations where a 
study concludes before all enrolled participants experience 
the event of interest, or when a subject exits the study before 
the event takes place. This occurrence represents a form of 
missing data issue. Censoring is commonly encountered in 
survival analysis. The term censoring is frequently used in 
survival analysis.

Quantification of Survival Analysis

Survival techniques are generally of three types, nonpara-
metric, semi-parametric, and parametric techniques. Various 
statistical methods are available in the literature developed 
for approximating survival functions. These include com-
paring survival curves between two groups and employing 
regression methods to model survival data. In general, when 
conducting survival analysis, it is essential for all approaches 
to account for a censoring mechanism in order to draw 
meaningful statistical conclusions.

Kaplan‑Meier (KM) Estimator

The Kaplan-Meier estimator [39] is a nonparametric statisti-
cal method employed to estimate survival probabilities based 
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on observed events, encompassing both censored and uncen-
sored data. It operates without the need to assume an under-
lying probability distribution [40]. To conduct Kaplan-Meier 
analysis, three key variables must be taken into account: 
the chronological time of observation for each subject, their 
status (whether an event occurred or they were censored) at 
the conclusion of their observed time, and the specific study 
group to which they belong.

Log‑Rank Test

The log-rank test, another nonparametric statistical 
approach, is utilized to compare the distribution of time until 
a significant event transpires in distinct groups. This test 
assesses the null hypothesis that there is no difference in the 
probability of an event (such as a death) occurring between 
the populations. However, it might be any other event that 
happens just once in a person. The most frequent occur-
rences of relevance are death or the start of a tumor. Even 
when there is no mortality involved in the event, the event 
time-often referred to as survival time-is the amount of time 
that has passed from the initial treatment or observation.

Cox Regression Hazard Model

The Cox proportional hazards model, as documented in [5], 
serves as a semi-parametric regression method extensively 
employed in medical studies for investigating the connection 
between patient’s survival duration and one or more predic-
tor variables. This approach is frequently employed when the 
primary objective is to investigate the association between 
survival time and various risk factors. The Cox model’s 
adaptability extends to the inclusion of both numerical and 
categorical predictor variables. Furthermore, Cox regression 
allows for a thorough assessment of the influence of multiple 
risk factors on the duration of survival.

(AFT) Model

When there is an assumption or predetermined choice of 
an appropriate distribution for survival data, a parametric 
approach becomes suitable. Within this parametric frame-
work, various methods are accessible, including the acceler-
ated failure time (AFT) model, aligned with the presumed 
survival distributions.

Compendium of Computational Methods 
for Predicting Cancer Patients’ Survival

WSIs contain valuable information regarding cancer disease 
and its clinical outcome. Therefore, these are considered 
the gold standard for histopathological and morphological 

biomarkers. Over the years, numerous computational tech-
niques have emerged for the automated assessment of large 
whole slide images, aiming to establish connections between 
the extracted morphological and histopathological character-
istics and the patient’s survival outcome. These automated 
deep learning and machine learning-based computational 
methods are becoming increasingly complex because of the 
various traits of the whole slide images such as gigapixel 
slides, diverse tissue appearance, high inter-observer vari-
ability, and uncertainty about the region of tissue mostly 
associated with patient’s survival. Different prognostic 
markers are used to extract the features that are informative 
of the patient’s survival.

This section provides a summary of the literature that 
employs computational approaches on whole slide images 
(WSIs) for survival prediction. Broadly, there are two types 
of approaches in the literature aimed at addressing this chal-
lenge. Firstly, some studies utilize Regions of Interest (ROIs) 
that have been annotated by pathologists to predict patient 
survival. These algorithms leverage intermediate com-
puter vision tasks to achieve accurate prognostic analysis 
(“Enhanced Survival Prediction: Leveraging Intermediate 
Computer Vision Tasks for Accurate Prognostic Analy-
sis” section). The second type of algorithm extracts direct 
insights without the need for intermediate computer vision 
tasks (“Seamless Survival Prediction: Direct Insights with-
out Intermediate Computer Vision Tasks” section).

Enhanced Survival Prediction: Leveraging 
Intermediate Computer Vision Tasks for Accurate 
Prognostic Analysis

These kinds of algorithms depend on the pathologist’s 
annotated ROIs and handcrafted features. Pathologists are 
experts at studying diseases, so their annotations can con-
tain valuable information for the model to learn. A survival 
prediction model using annotations from pathologists can 
provide more accurate predictions about how long a person 
might live after a medical diagnosis [41]. However, there are 
challenges too. The model’s accuracy heavily relies on the 
correctness of pathologist’s annotations, which might some-
times be subjective or prone to errors. Moreover, the process 
of manually annotating patches is labor-intensive and sus-
ceptible to variations in interpretation by pathologists. In 
this section, we have summarized all the research articles 
that exploit the potential of utilizing intermediate image 
analysis for survival prediction. We have also illustrated 
their performance in a tabular form. These research articles 
utilize different computer vision techniques as intermediate 
feature extractors including image segmentation, detection, 
nuclei instance segmentation, and image classification for 
enhanced prognostic analysis.
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Features Extraction Using Image Segmentation

In survival prediction, segmentation-based methods are 
used to extract features by outlining different regions or 
segments on whole slide image (WSI) [42]. These regions 
can correspond to different tissue structures or cellular 
components within the image. Applying various methods 
ranging from handcrafted methods to deep learning meth-
ods, features are learned from these regions [43], and these 
features are passed to computational models that predict 
patient survival outcomes.

Bhargava et  al. [44] introduced a methodology that 
utilized convolutional neural network-based techniques to 
extract stroma and nuclei, resulting in a confidence map 
indicating pixel affiliation with either nuclei or stromal 
areas. Each patient’s histological images yielded 242 
quantitative features, derived from the stromal and nuclei 
compartment boundaries. This model exhibited significant 
improvements in performance for two validation sets of 
radical prostatectomy patients, with an AUC of 0.87, HR 
of 4.71 with 95% CI: 1.65–13.4, p = 0.003, and an AUC of 
0.77, HR of 5.7 with 95% CI: 1.48–21.90, p = 0.01. Peng 
et al. [45] developed a model that extracted texture features 
from global and nucleus regions of interest after segmenting 
them. They obtained 224 nucleus features and 56 global 
features and computed a risk score by combining these 
features with corresponding coefficients. This risk score 
was utilized in a univariate Cox proportional hazards model. 
The model’s performance was optimized, achieving a c-index 
of 0.772/0.029 and a time-dependent AUC of 0.785/0.038. 
Wang et al. [46] presented a deep learning framework for 
detecting lymph nodes and tumor regions, calculating the 
tumor area-to-MLN area ratio (T/MLN). Their approach 
involved three key steps: segmentation, classification, and 
T/MLN calculation. The framework’s performance was 
assessed using WSIs of LNs from CH Hospital and JX Cancer 
Hospital, focused on gastric cancer patients, achieving a 
c-index of 0.694. Jiao et al. [47] developed a model that 
segmented the tissue region from whole slide images (WSIs) 
and categorized tissue types using two classification models, 
distinguishing among nine classes. Kaplan-Meier (K-M) 
analyses were conducted for each feature, resulting in a 
hazard ratio of 1.665 (95% CI: 1.110∼2.495, p = 0.014) for 
patients with colon adenocarcinoma sourced from TCGA. 
Wulczyn et  al. [48] developed a deep learning system 
(DLS) for predicting disease-specific survival in colorectal 
cancer patients, achieving 5-year disease-specific survival 
AUC values of 0.70 (95% CI: 0.66–0.73) and 0.69 (95% CI: 
0.64–0.72) for two datasets. Xie et al. [49] devised a system 
for predicting survival in intrahepatic cholangiocarcinoma 
(ICC) patients, with a p-value of 0.0475 and a Hazard 
Ratio (HR) of 2.90 (95% CI: 1.01–8.32) for Disease-Free 
Survival (DFS). Klimov et al. [16] introduced a predictive 

pipeline for recurrence-free survival in ductal carcinoma 
in situ (DCIS) patients, achieving a hazard ratio (HR) of 
11.6 (95% CI: 5.3–25.3), an accuracy (Acc) of 0.87, and a 
sensitivity (Sn) of 0.71, with specificity (Sp) at 0.91. Shaban 
et  al. [50] presented a methodology for calculating the 
Tumor-Infiltrating Lymphocyte Abundance (TILAb) score, 
achieving a c-index of 0.87 with a 95% confidence interval 
(CI) of 7.5–9.9 for the tissue region classifier TRC-1. Tabibu 
et al. [18] introduced a model that classifies patches into 
cancerous and normal categories and further differentiates 
them into three sub-classes of cancer type, yielding a Hazard 
Ratio (HR) of 2.265 (95% CI: 1.5343–3.343) with a p-value 
of 3.87e-5. Yamashita et al. [51] developed HCC-SurvNet, 
a deep learning-based system achieving a c-index of 0.724 
on the internal test cohorts of the hepatocellular carcinoma 
(HCC) dataset. Xu et  al. [52] suggested a pipeline that 
classified CD3 and CD8 stained whole slide images (WSIs), 
segmented these regions, and calculated stroma-immune 
scores. They have achieved a hazard ratio of 55.7% and 
80.8% for high vs. low risk, with a confidence interval [CI] 
of 0.24–0.63, and a significance of P < 0.001. Wang et al. 
[53] presented CGSignature, which employed multiplexed 
immunohistochemistry (mIHC) images and transformed 
these images into Cell-Graphs for analyzing the tumor 
microenvironment (TME). CGSignature achieved an Area 
Under the Receiver Operating Characteristic curve of 0.960 
± 0.0 in binary or ternary classification for gastric cancer 
patient survival prediction.

Feature Extraction Using Nuclei Instance Segmentation

Nuclei instance segmentation can be used as a feature extrac-
tion method [54] for survival prediction by specifically iden-
tifying and segmenting the nuclei within a whole slide image 
(WSI). Nuclei are important indicators of cell proliferation 
and can provide valuable information [55] about patient sur-
vival outcomes. Nuclei instance segmentation provides a 
more precise analysis of the WSI, allowing for the extraction 
of fine-scale features that may be relevant to patient survival. 
By adopting this approach, we can enhance the precision of 
the survival prediction model by supplying additional perti-
nent data to the machine learning-based survival prediction 
algorithm. There exists a substantial body of literature that 
employs nuclei instance segmentation as a means of extract-
ing features for survival prediction.

Chen et  al. [56] introduced the concept of Pathomic 
Fusion. This innovative approach is a multimodal and 
interpretable strategy designed to fuse histopathological 
images with genomic features, aiming to predict patient 
survival outcomes effectively. At the heart of this approach, 
the Kronecker product is harnessed to encapsulate 
interactions between features in various modalities, 
considering them in pairs. Feature extraction from whole 
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slide images involves CNNs and GCNs, with CNNs using 
a pre-trained VGG19 model and GCNs employing a graph-
based approach to capture the tumor microenvironment. 
GCN captures the features in four steps: spatially localizing 
and identifying abnormal cell features using nuclei instance 
segmentation, using K-Nearest Neighbors to find adjacent 
cell connections, and calculating manual and deep learning 
features. The preservation of feature clarity is attained 
by implementing a gating-based attention mechanism. 
This process involves understanding and pinpointing the 
importance of these features. An evaluation conducted on 
glioma and clear cell renal cell carcinoma datasets from 
TCGA demonstrates a notably high c-index of 0.720 in both 
low and high-risk groups. In their work, Tian et al. [57] 
introduced a two-tier Fuhrman grading system based on 
machine learning. They extracted 1855 Regions of Interest 
(ROIs) from 395 whole slide images of clear cell renal cell 
carcinoma (ccRCC) patients from the TCGA dataset. These 
ROIs were partitioned into 2000 by 2000 pixel segments, 
with each segment characterized by 72 histomic features, 
including 48 texture-based features, 15 intensity-based 
features, and 9 morphological features. Employing seven 
different machine learning classifiers, they used these 
histomic features to classify patients into low or high-
grade categories. Remarkably, Lasso regression emerged 
as the best-performing technique, featuring inherent feature 
selection capabilities. To assess the prognostic value of 
the predicted grade, overall survival was predicted using 
both crude and adjusted Cox proportional hazard models, 
resulting in a model that achieved an HR of 1.66 with a 
95% CI ranging from 0.97 to 2.83. Alsubaie et al. [58] 
proposed a model that quantitatively assesses tumor nuclei 
by summarizing the statistics of nuclear pleomorphism. 
Morphometric features of tumor nuclei were utilized to 
characterize the heterogeneity of lung adenocarcinoma 
(LUAD). The Cox proportional hazard model was employed 
to extract the most informative features related to patient 
survival. Heatmap analysis revealed significant correlations 
between global nuclear morphometric features and overall 
survival in LUAD. Through multivariate analysis, the 
proposed model yielded a hazard ratio (HR) of 5.9, a 95% 
CI of 2.43–14.46, and a p-value of 0.0001. Wang et al. 
[59] introduced an advanced deep learning framework 
that utilizes a graph-based hierarchical representation. 
This approach explores multi-scale topological structures 
within whole slide images, examining pathomic features 
at the patch and cellular levels while disregarding their 
spatial connections. When presented with a whole slide 
image (WSI), patches were selected through a tumor 
detection model, forming a patch graph where each node 
corresponds to a cell graph. The model acquires hierarchical 
graph representations of whole slide images (WSIs), from 
patch to nuclei level. The efficacy of the proposed model 

was validated across diverse datasets, including the UCLA 
prostate biopsy dataset, Cedars-Sinai dataset, and the 
TCGA-PRAD dataset, achieving an impressive peak c-index 
of 0.7934. Chen et  al. [60] introduced a computational 
pipeline to create embedded maps for flexible profiling of 
cell populations in whole slide images (WSIs). This included 
dividing whole slide images (WSIs) into blocks, carrying 
out segmentation and classification of nuclei for each block, 
and encoding WSIs using information about the location 
and classification of nuclei. This approach enables the study 
of tumor cells and the microenvironment using manageable 
embedded maps instead of large WSIs. The pipeline was 
applied to analyze texture patterns in the TCGA-LAUD 
dataset. The model achieved an optimal C-index of 0.70 
during testing.

Feature Extraction Using Image Classification

Classification can be used as a feature extraction method 
for survival prediction by assigning each pixel or region in 
a whole slide image (WSI) to a specific class based on cer-
tain characteristics such as color, intensity, or texture [61]. 
The classes can correspond to different tissue structures 
or cellular components within the image [62]. After clas-
sifying the image, attributes like dimensions, morphology, 
texture, and luminance can be derived from each category 
[63]. These attributes can then serve as inputs for a machine 
learning framework dedicated to forecasting patient survival 
results. In this section, we have summarized literature that 
uses image classification for extraction features associated 
with patient’s survival.

Wulczyn et al. [64] approached the task of survival pre-
diction from a different angle by treating it as a classifica-
tion problem, rather than dealing with regression or rank-
ing. Instead of working with continuous event time their 
approach discretizes time into intervals and trains modals to 
predict the specific occurrence of intervals. Their proposed 
deep learning system (DLS) predicts disease-specific sur-
vival across 10 different cancer types sourced from TCGA. 
This DLS mainly consists of multiple CNN modules with 
shared weights, along with an average pooling layer that 
aggregates the computed image features. Each CNN module 
received a randomly selected image patch from the slides as 
input. The patches were processed through the deep learning 
system in a manner that ensured at least one patch among 
multiple patches provided probabilistic information about 
the patient outcome. Cox regression hazard is applied for 
survival prediction and (95% CI 1.0–6.5) is recorded for 
5 of 10 cancer types. Zadeh Shirazi et al. [65] introduced 
a classifier that classified the survival rate into 4 classes. 
These four classes are I for 0–6 months, II for 6–12 months, 
class III for 12–24 months, and class IV for more than 24 
months. For each of these classes 217, 210, 277, and 145 
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ROIs are selected respectively. ROI patches are extracted for 
different sizes and compared to get the most features from 
ROIs. For classification, the most popular 5 DCNNs are 
considered, and after the comparison, the best-performing 
model is selected. DeepSurvNet yielded precision rates of 
0.99 and 0.8 on the TCGA brain cancer dataset. Liao et al. 
[66] established an automated pipeline for extracting quan-
titative image features from HCC histopathological slides, 
enabling the training of machine learning models that accu-
rately distinguished HCC from adjacent normal tissue (AUC 
0.988) and predicted patient survival. Using IF model risk 
scores, patients were stratified into high or low-score groups, 
effectively separating them in the training (p < 0.0001) and 
test sets (p = 0.013), with strong prognostic performance 
in external validation (p = 0.013). Importantly, the study’s 
prognostic model exhibited comparable accuracy to tradi-
tional TNM staging systems. In their study, Kather et al. 
[17] presented a deep learning model designed to calculate 
the deep stroma score, a prognostic marker. This research 
employed four cohorts of colorectal cancer patients with 
HE-stained tissue samples. To achieve this, they trained a 
VGG-19 model that had been pre-trained on Imagenet using 
86 meticulously delineated single-tissue regions from colo-
rectal cancer cases. The model’s objective was to classify 
these regions into nine distinct tissue classes. The model was 
utilized to automate tissue decomposition in multi-tissue HE 
images extracted from 862 slides, encompassing 500 patients 
diagnosed with colorectal cancer in stages I to IV. The deep 
stroma score is computed utilizing the output of CNN. This 
factor is subsequently utilized as a prognostic variable in the 
multivariable Cox proportional hazard model. Remarkably, 
this model yielded significant results, including a hazard 
ratio [HR] of 1.99 with a 95% confidence interval [CI] of 
1.27–3.12 and a p-value of 0.0028. These findings were cor-
roborated using an independent dataset consisting of 409 
colorectal cancer patients at stages I-IV from the Darmkrebs 
cohort. In their work, Zheng et al. [67] introduced two deep 
learning-based weakly supervised models: BlcaMIL for 
diagnosis and MibcMLP for prognostication. The dataset 
comprised 926 whole slide images (WSIs) obtained from 
412 bladder cancer (BLCA) patients, with an additional 250 
WSIs from 150 BLCA patients for external validation. The 
authors employed ResNet-50 for feature extraction across 
all patches, followed by dimensionality reduction through 
an Autoencoder. Subsequently, the resulting features were 
used to classify patches into negative and positive catego-
ries. The BlcaMIL model exhibited an impressive accuracy 
of 98.7% on the external validation set of BLCA. MibcMLP 
assigned risk scores to patches using patch-level features and 
survival data through an iterative learning process, achieving 
OS prediction with C-index values of 0.631 and 0.622 on the 
internal and external validation sets, respectively. Courtiol 
et al. [68] introduced a five-step model architecture called 

MesoNet for predicting patient outcomes. In the feature 
extraction step, the model extracts the foreground area, fol-
lowed by tiling the matter area of the whole slide image into 
10,000 small tiles of size 224x224 in the second step. The 
third step involves feature extraction, where 2048 features 
are extracted using ResNet50. In the fourth stage, a score is 
computed for each tile using positive and negative instances, 
determined through a weighted sum across all 2048 fea-
tures. The final layer consists of a multilayer perceptron 
that translates the calculated scores into predictions. This 
model achieved a c-index of 0.656 for the TCGA Malig-
nant mesothelioma dataset and 0.643 for the MESOBANK 
dataset. Knuutila et al. [69] suggested an architecture that 
first identifies metastatic tumors using clinical annotations. 
Primary tumors with metastasis were categorized into two 
subgroups based on the speed of metastatic progression, 
either occurring rapidly or slowly following the detection 
of the primary tumor. Combining AI predictions with tra-
ditional factors such as Clark’s level and tumor diameter in 
a risk factor model yielded a higher AUROC of 0.917 for 
assessing metastasis risk in primary cutaneous squamous 
cell carcinoma. This indicates that AI can recognize novel 
morphological features, enhancing the clinical evaluation of 
metastasis risk and prognosis.

Feature Extraction Using Image Detection

Histopathological features in whole slide images, analyzed 
through computational methods offer valuable insights into 
prognosis and patient survival outcomes. By detecting and 
analyzing specific structures, cells, or biomarkers, research-
ers aim to uncover meaningful patterns that can contribute to 
the prediction of patient survival outcomes. These detection 
approaches enable the identification and quantification of 
important features within the whole slide images [70], ulti-
mately enhancing our understanding of disease progression 
and prognosis. This section highlights the literature that uses 
image detection techniques for learning features related to 
patient survival.

Xu et  al. [71] presented a computational algorithm 
designed for the automatic prediction of tumor mutational 
burden (TMB) and the identification of TILs or tumor-
infiltrating lymphocytes. The workflow involves two 
primary steps. Firstly, tumor detection is executed, and 
features are extracted by employing a pre-trained Xcep-
tion model on representative tiles. Subsequently, TMB is 
classified using a Support Vector Machine (SVM). Addi-
tionally, TILs within tumor regions of whole slide images 
are identified. The spatial heterogeneity and structure 
of regions on WSIs containing TMB-H tumor cells and 
TILs are investigated for their prognostic significance. 
This computational pathology approach’s efficacy was 
evaluated using the TCGA-BLCA dataset, resulting in an 
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AUROC of 0.752 (95% CI: 0.694–0.810). Lu et al. [72] 
developed a pipeline for lymphocyte detection on whole 
slide images, starting with a color classification-based 
field of view (FOV) outline, followed by a U-Net model 
to identify lymphocytic regions. The model was trained 
in a cascade manner, incorporating feedback from domain 
experts and pathologists to ensure robustness. Initial lym-
phocyte detection used a small dataset, and subsequent 
training incorporated the pathologist’s feedback to gen-
erate a global tumor-infiltrating lymphocyte (TIL) map. 
Spatial features were estimated on the TIL maps, captur-
ing local TIL cluster patterns, and statistical features were 
extracted from these clusters. Survival analysis performed 
on the TCGA-BRCA dataset, using the Cox proportional 
hazard model, yielded significant results with a p-value of 
0.00027 for univariate analysis and a p-value of 0.000369 
for multivariate analysis. Chen et al. [73] proposed a com-
putational model that initially identifies cell nuclei and 
cytoplasm. In the second step, features such as pixel inten-
sity distributions, shapes, sizes, textures, and proximity 
relations of primary and secondary objects are extracted, 
and their means are calculated. Disease-specific survival 
was calculated on the TCGA-ccRCC dataset, achieving a 
hazard ratio of 9.50 and a p-value of 0.0091 for the vali-
dation cohort. Comes et al. [74] designed a model that 
predicts 1-year disease-free survival (DFS) in cutaneous 
melanoma patients. whole slide images from a cohort of 
43 patients were annotated by pathologists and divided 
into sections for training and validation using a 5-fold 
cross-validation approach. Subsequently, the model was 
tested on an independent cohort of 11 patients. The model 
attained a median AUC of 69.5% and a median accuracy of 
72.7% on the public cohort. These findings hold promise 
and lay the foundation for future investigations involving 
larger patient cohorts (see Table 3).

Seamless Survival Prediction: Direct Insights 
without Intermediate Computer Vision Tasks

In the medical image analysis field, seamless survival with-
out intermediate computer vision tasks has opened a promis-
ing direction for accurate, and fastened prediction survival 
prediction. In this section, we have discussed approaches that 
omit the requirement for intermediate image analysis steps 
for feature extraction and offer direct survival prediction 
insights instead. It leverages different approaches and does 
survival prediction in an unsupervised, self-supervised, and 
weakly supervised manner via embodying domain-related 
understanding. These approaches can significantly reduce 
the annotation effort and costs associated with training mod-
els on WSIs while still achieving reasonable performance in 
detecting and analyzing survival-specific information within 

the slides. It aims at a direct prediction process and enables 
accurate and efficient survival forecasts.

Survival Feature Extractions Using Weakly  
Supervised Techniques

Predicting survival in a weakly supervised manner involves 
the challenge of estimating the survival outcome or predict-
ing the time-to-event for individuals within a dataset. This 
task becomes particularly challenging when the available 
supervision is either limited or incomplete. In weakly super-
vised learning, the training data is labeled at a higher level or 
with less granularity compared to fully supervised learning. 
The reason behind this is primarily due to the availability 
of event and time-to-event data at the patient level, which 
provides us with valuable information. However, acquiring 
the same information at the patch level proves to be expen-
sive or time-consuming. By leveraging weak supervision 
and using techniques like multiple instance learning, weakly 
supervised learning for WSIs allows for training models on 
large-scale datasets without requiring precise annotations 
for every patch. In this section, we have summarized all the 
papers that extract the survival informative features in a 
weakly supervised manner.

Bychkov et  al. [75] introduced an image analysis 
workflow that begins with an RGB image of one TMA spot 
per patient, each measuring 35,000 x 35,000 in size. These 
images are initially divided into patches of size 224 x 224. 
Subsequently, a 4096 dimentional feature vector is extracted 
by passing the image patches through a pre-trained VGG-16 
model. Finally, a risk score for five-year disease-specific 
survival is predicted by passing a series of 4096-bin feature 
vectors through a recurrent neural network known as Long 
Short-Term Memory (LSTM). A dataset of 420 colorectal 
cancer patients from the Helsinki University Central 
Hospital is used to model’s performance. The modal 
achieved a 95% confidence interval of 1.79–3.03, and an 
AUC of 0.69 with a hazard ratio of 2.3, surpassing both 
histological grade and the Visual Risk Score. Hao and 
colleagues [76] introduced PAGE-Net, a deep learning 
model that combines histopathological images and genomic 
data to offer a comprehensive biological interpretation. This 
model uses an innovative convolutional neural network to 
merge texture-based patches and capture globally significant 
survival-related features. For the genome-specific layers, 
they employ a sparse deep neural network called Cox-
PASNet based on pathways. The model achieved a c-index 
of 0.702 on the TCGA-GBM dataset. Turkki et al. [77] 
developed a model that utilizes a pre-trained VGG-16 model 
to extract image features for each TMA spot. These features 
are then combined into a single image descriptor using 
improved Fisher vector (IFV) encoding. The model was 
tested on a breast cancer cohort from Helsinki University 
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Table 3  Survival prediction of patients using whole slide images

S# Publication MAG States Organ Datasets Sources Top Performance

1 Bhargava et al. [44] 40x DFS Prostate Hospital of the University of Pennsylvania AUC = 0.87
HR = 4.71
95% CI = 1.65–13.4
P-value = 0.003

New York Presbyterian Weill Cornell 
Medical Center

University Hospitals Cleveland Medical 
Center

AUC = 0.77
HR = 5.7
95% CI = 1.48–21.90
P-value = 0.01

2 Peng et al. [45] 20x, 40x DFS Skin TCGA-SKCM C-index = 0.772
AUC = 0.785

3 Wang et al. [46] ×20 OS Gastric cancer CH Hospital and JX Cancer Hospital C-index = 0.694
4 Jiao et al. [47] 20x OS Colorectal TCGA-COAD HR = 1.665

95%CI = 1.110–2.495
p = 0.014

5 Wulczyn et al. [48] 20x DFS Colorectal Institute of Pathology and the BioBank at 
the Medical University of Graz

 AUC [95% CI] = 0.70 [0.66–0.73]

6 Xie et al. [49] 100x OS Liver Nanjing Drum Tower Hospital AUC = 0.74 ± 0.06
7 Klimov et al. [16] DFS Breast Nottingham City Hospital HR = 11.6

95% (CI) = 5.3–25.3
Accuracy = 0.87
Sensitivity = 0.71
Specificity = 0.91

8 Shaban et al. [50] 40× DFS head & neck Shaukat Khanum Memorial Cancer 
Hospital and Research Centre (SKMCH 
&RC)

C-index = 0.87
95% CI 7.5–9.9

9 Tabibu et al. [18] 20x, 40x OS Kidney TCGA-KIRC
TCGA-KIRP
TCGA-KICH

HR = 2.265
95% CI = 1.5343–3.343
P-value = 3.87e-5

10 Yamashita et al. [51] 40x OS Liver TCGA-HCC HR = 6.52
95% CI = (1.83, 23.2)
P-value = 0.0038

Stanford-HCC HR = 3.72
95% CI = (2.17, 6.37)
P-value = 0.0001

11 Xu et al. [52] 20x
40x

OS Colorectal Guangdong Provincial People’s Hospital HR (95% CI) = 71.5% (66.9–76.5)

Sixth Affiliated Hospital of Sun Yat-sen 
University

HR (95% CI) = 82.0% (74.4–90.4%)

12 Chen et al. [56] 40x OS Brain TCGA-GBMLGG C-index = 0.702
Kidney TCGA-KIRC C-index = 0.702

13 Tian et al. [57] OS Kidney TCGA ccRCC HR = 1.66
95% CI = 0.97–2.83

14 Alsubaie et al. [58] 40x OS Lung TCGA-LUAD HR = 5.9
95% CI = 2.43–14.46
P-value = 0.0001

15 Wang et al. [59] 40x OS Prostate TCGA-PRAD C-index = 0.7934 ± 0.082
16 Wulczyn et al. [64] DSS Bladder TCGA-BLCA HR = 0.75

95% CI = 0.45–1.24
P-value = 0.2636

Breast TCGA-BRCA HR = 2.86
95% CI = 1.42–5.76
P-value = 0.0034

Colon TCGA-COAD HR = 4.03
95% CI = 1.92–8.44
P-value = 0.0002
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Central Hospital, which included 1299 tissue spots (one per 
patient) from two datasets: the FinProg series and the single-
center series. Patients were divided into low and high digital 
risk score groups for disease-specific survival. The survival 
analyses, employing a Cox regression model, revealed a 

hazard ratio of 2.10 (95% CI 1.33–3.32, p = 0.001) for 
univariate analysis and a hazard ratio of 2.04 (95% CI 
1.20–3.44, p = 0.007) for multivariate analysis. Chen et al. 
[78] introduced a model that employs instance-level feature 
extraction to represent WSIs and genomic data. Small image 

Table 3  (continued)

S# Publication MAG States Organ Datasets Sources Top Performance

Head & Neck TCGA-HNSC HR = 2.32
95% CI = 1.11–4.88
P-value = 0.0257

Kidney TCGA-KIRC HR = 1.88
95% CI = 1.23–2.87
P-value = 0.0035

Liver TCGA-LIHC HR = 2.74
95% CI = 1.54–4.86
P-value = 0.0006

Lung TCGA-LUAD HR = 1.35
95% CI = 0.87–2.08
P-value = 0.1824

TCGA-LUSC HR = 1.97
95% CI = 0.90–4.32
P-value = 0.0894

Ovary TCGA-OV HR = 1.24
95% CI = 0.95–1.63
P-value = 0.1157

Stomach TCGA-STAD HR = 1.50
95% CI = 0.85–2.62
P-value = 0.1602

17 Zadeh et al. [65] 20x OS Brain TCGA-GBM Precision = 0.65
MCC = 0.62
AUC = 0.87

18 Kather et al. [17] OS Colorectal TCGA-COAD
TCGA-READ

HR = 1.99
95% CI = 1.27–3.12
P-value = 0.0028

Darmkrebs: Chancen der Verhütung durch 
Screening (DACHS)

HR = 1.63
95% CI = 1.14–2.33
P-value = 0.008

DFS Colorectal Darmkrebs: Chancen der Verhütung durch 
Screening (DACHS)

HR = 1.92
95% CI = 1.34–2.76
P-value = 0.0004

19 Zheng et al. [67] 20x Bladder RHWU HR = 2.414
95%CI = 0.98
p = 0.001

20 Courtiol et al. [68] 40x OS Mesothelioma TCGA-MM C-index = 0.656
21 Xu et al. [71] 20× OS Bladder TCGA AUROC = 0.752

95% CI = 0.694–0.810
22 Lu et al. [72] 40x Breast TCGA P-value = 0.000369
23 Chen et al. [73] 20x DFS Kidney Shanghai General Hospital HR = 9.50

P-value =.0091
24 Comes et al. [74] 20x DFS Skin CPTAC-CM AUC = 0.695
25 Wang et al. [53] 20x OS Lung TCGA-LUAD AUC = 0.960 ± 0.01
26 Liao et al. [66] 20x OS Liver  HCC obtained cBioPortal for Cancer 

Genomics
p < 0.0001

West China Hospital (WCH) p < 0.0001
27 Knuutila et al. [69] 20x DSS skin  Turku University Hospital AUROC = 0.747
28 Chen et al. [60] 20x OS Liver TCGA-LAUD  C-index = 0.70
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patches from WSIs are processed through ResNet50 to 
extract these features. A Genomic-Guided Co-attention layer 
is introduced to map features from whole slide images (WSI) 
and genomic data by learning densely connected co-attention 
mappings. The GCA layer also reduces the space complexity 
of WSI bags. Survival outcome prediction is performed 
using a set-based transformer. The model’s performance is 
evaluated across five different datasets of lung, breast, brain, 
bladder, and uterine cancers from the TCGA database, with 
the best performance observed in the brain cancer dataset 
(GBMLGG), achieving a c-index of 0.817 ± 0.021. Jiang 
et al. [79] proposed a model that initially divides whole slide 
images (WSI) into k patches. These patches are then 
processed through a pre-trained ResNet-18 model to extract 
relevant features. The features obtained from the k patches 
are subsequently averaged and used to estimate risk via a 
two-layer neural network. The final output of the model 
represents the risk score. The model’s performance is 
assessed using a grade 2 diffuse glioma dataset from TCGA, 
achieving a c-index of 0.715 (95% CI: 0.569, 0.830) for 
prognosis prediction and an AUC of 0.667 (95% CI: 0.532, 
0.784) for predicting IDH mutations. Agarwal et al. [80] 
proposed a novel technique that initially trains a survival 
prediction model by collecting the whole slide feature map 
(WSFM). Features from WSIs are extracted by passing 
image tiles through the Inceptionv3 model, followed by PCA 
to reduce feature dimensions. The WSFM captures features 
from the entire tissue along with adjacency information for 
each tile. A Siamese survival convolutional neural network 
(SSCNN) is developed, predicting the survival score using 
WSFM and multivariable clinical variables. The proposed 
methodology achieved a c-index of 0.6221 for the TCGA 
Glioblastoma multiforme (GBM) dataset. Sandarenu et al. 
[81] introduced a computational framework designed to 
predict the survival outcomes of clinically aggressive triple-
negative breast cancer using hematoxylin and eosin-stained 
tissue microarray images. They employed a multi-instance 
fully convolutional network with attention-based features 
aggregation, sharing weights to estimate the risk of mortality 
in patients with breast cancer. The model achieved an 
average concordance index of 0.616 and displayed 
autonomous prognostic importance in both univariate and 
multivariate analyses. Through qualitative analysis of 
heatmaps generated by the model, the authors associated 
high-risk predictions with specific tissue features, providing 
explainability for their method in triple-negative breast 
cancer. Li et  al. [82] introduced a hierarchical-based 
multimodal transformer framework that learns features from 
whole slide images to predict patient survival. The model 
reduces space complexity by learning co-attention mappings 
between imaging and genomics data. Wetstein et al. [83], 
introduced a deep learning model designed for grading 
breast cancer using whole slide images. The training dataset 

comprised images from 706 patients (below 40 years) 
diagnosed with invasive breast cancer, along with 
corresponding tumor grades. The model’s performance was 
assessed on an independent test set consisting of 686 
patients. Impressively, the model achieved a Cohen’s Kappa 
score of 0.59, indicating 80% accuracy in distinguishing 
between low/intermediate and high tumor grades compared 
to assessments by expert pathologists. Furthermore, the 
model’s predictions for low/intermediate and high-grade 
categories demonstrated significant differences in overall 
survival (OS) and disease/recurrence-free survival (p < 
0.05) in survival analysis, using univariate Cox hazard 
regression analysis. Chen et al. [84], introduced a context-
aware graph convolutional model named patch-GCN, which 
leverages spatially resolved patches to hierarchically 
integrate instance-level features. These extracted features 
play a pivotal role in capturing both local and global 
topological patterns within the tumor microenvironment. 
The patch-GCN model achieved an overall c-index of 0.636 
across multiple cancer types in TCGA datasets, including 
BLCA, BRCA, GBMLGG, and LUAD, highlighting its 
substantial predictive capabilities. Li et al. [85] introduced 
a graph convolutional neural network (graph CNN) that 
models WSI as a graph. The graph CNN incorporates an 
attention mechanism to enhance feature learning by 
optimizing the graph representation. The effectiveness of 
their model was demonstrated on real lung and brain 
carcinoma datasets from TCGA and NLST, achieving the 
highest accuracy of 0.7066 for NLST. Di et  al. [86] 
introduced a method comprising two significant stages. The 
first stage, named the Big-Hypergraph Factorization Neural 
Network, addresses information loss through dense 
sampling. This is followed by Encoding Patches to establish 
an incidence matrix capturing intricate high-order 
correlations among vertices and hyperedges, facilitating 
operations such as feature transfer, information propagation, 
and representation aggregation. This approach generates a 
comprehensive global representation for each input whole 
slide image (WSI) from a collection of WSIs using a big-
hypergraph factorization neural network. In the second 
stage, named Multi-Level Ranking Survival Prediction, 
hazard scores are assigned to individual WSIs. The method 
was evaluated across three datasets: TCGA-LUSC, TCGA-
GBM, and NLST, achieving C-index scores of 0.6734 ± 
0.09, 0.6738 ± 0.012, and 0.6911 ± 0.011, respectively. Xu 
et al. [87] introduced an approach that merges risk and time 
prediction methodologies together using risk prediction 
features as a guide for predicting survival time. Features 
from tumor patches are extracted through a pre-trained 
classifier. They utilized a graph convolutional network for 
aggregating information from these patches. The C-index 
values for risk prediction were 0.834, 0.627, and 0.563 for 
BLCA, BRCA, and GBM, respectively. Lu et  al. [88] 
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presented a method that utilized weakly-supervised attention 
multiple instance learning and differential techniques for 
survival prediction. The authors also stratified patients based 
on whole slide images, demonstrating the efficacy of their 
approach within a federated setting. Federated learning 
demonstrated the ability to generate accurate weakly-
supervised deep learning models through the use of 
distributed data, removing the necessity for direct data 
sharing and its associated complexities. Additionally, the 
approach maintained privacy by incorporating randomized 
noise generation techniques, ensuring the preservation of 
privacy in their methodology. Tu et al. [89] analyzed cancer 
prognosis with whole slide images (WSIs) by suggesting a 
method encompassing two curriculums. The first one is 
named saliency-guided weakly-supervised instance encoding 
with cross tiles where the model has 3 input branches, each 
one with a different magnification. The second one is 
counteractive-enhanced Soft-bag Prognosis Inference. The 
proposed model is tested using three datasets from TCGA, 
i.e., COAD, LIHC, and BLCA achieving a c-index of 0.717, 
0.705, and 0.672 respectively. Xie et al. [90] introduced 
GC-SPLeM, comprising three components: WSI feature 
extraction, modal-fusing network, and a GNN-based 
predictor. A ResNet50 pre-trained on ImageNet is used as a 
feature extractor. A patient-level feature matrix is generated 
by concatenating 1024-dimensional feature vectors from 
WSI patches. Modal fusion network fuses together the 
feature matrix and gene expression data matrix. Modal 
fusion network generates a 64-dimensional vector which is 
utilized by a GNN-based predictor to construct a KNN 
affinity graph. The proposed model achieved a c-index of 
0.622. Mackenzie et al. [91] suggested a model that utilizes 
a graph neural network. The modal uses survival scores to 
perform pairwise ranking of graph representations of WSIs. 
They produce survival scores by translating spatially 
localized deep features along with their spatial context to a 
graph neural network. The proposed model achieved a 
c-index of 0.672 ± 0.058. Benkirane et al. [92] proposed 
HyperAdaC, an adaptive clustering-based hypergraph 
representation designed to capture high-order correlations 
among various regions in whole slide images (WSIs). This 
compact model aims to facilitate the generalization of graph 
neural networks in survival prediction scenarios. The model 
achieved a c-index of 0.667 on BLCA, 0.592 on BRCA, 
0.778 on GBMLLG, LAUD on 0.595 and UCEC on 0.667.

Survival Features Extraction Using Unsupervised Techniques

Survival feature extraction using unsupervised techniques 
refers to estimating the survival outcome or time-to-event 
information for individuals or subjects without relying on 
labeled or annotated survival data. In unsupervised learning, 

the objective is to identify patterns or structures within the 
data without possessing any pre-existing patch-level infor-
mation. Major approaches for survival prediction in an 
unsupervised manner include clustering and dimensionality 
reduction techniques including PCA for reducing the dimen-
sionality of the data.

Zhu et al. [93] put forward with the aim of exploiting 
the distinctive patterns inherent in patients’ tumor morphol-
ogy. The model’s efficacy was assessed across three pub-
licly available cancer survival datasets: NLST containing 
1104 slides for 404 patients, TCGA-LUSC encompassing 
485 slides distributed among 121 patients, and TCGA-GBM 
comprising 255 slides spanning 126 patients. This encom-
passed the extraction of multiple patches from each WSI 
through adaptive sampling. These image patches were sub-
sequently allocated to distinct clusters, from which patient-
level predictions were derived using a Deep Convolutional 
Survival (DeepConvSurv) aggregation model. The ensuing 
survival analysis relied on various iterations of Cox regres-
sion methodologies. Notably, the proposed approach estab-
lished its dominance by achieving a c-index of 0.703 for 
NLST via Lasso-Cox, 0.638 for LUSC through Lasso-Cox, 
and 0.645 for GBM using Cox-Log. Yao et al. [94] intro-
duced an attention-driven strategy named DeepAttnMISL 
(Attention-based Multiple Instance Survival Learning) to 
intricately capture features connected to a patient’s survival. 
The effectiveness of this approach is evaluated across expan-
sive datasets encompassing colorectal and lung cancer cases. 
The process initiates by sampling patches from whole slide 
images, which are subsequently organized into 10 distinct 
phenotype groups. This categorization is facilitated by ini-
tially extracting features via a pre-trained model and subse-
quently utilizing k-means clustering. To create patient-level 
representations, the model employs attention-based Multiple 
Instance Learning (MIL) pooling, aggregating features from 
each cluster. Subsequently, the model predicts the patient’s 
hazard risk, achieving a c-index of 0.606 across 6 phenotype 
groups. Shao et al. [14] introduced a weakly supervised deep 
ordinal Cox model (BDOCOX) that encompasses three key 
steps: patch extraction, bag generation, and the design of the 
BDOCOX model. Each whole slide image (WSI) is divided 
into 1000 patches, and a 4096-dimensional feature vector is 
extracted from each patch using a pre-trained ResNet128. 
These patches are then grouped into 5 distinct phenotype 
categories through K-means clustering. The weakly super-
vised deep ordinal Cox model is constructed by replacing the 
linear component of the Cox model with a non-linear, fully 
connected network operating in-depth. N bags are generated 
from WSIs and bag-level representation is obtained by aver-
aging patch-level features in the bag. The model is evaluated 
on three datasets from TCGA and the best performance (CI 
0.726 ± 0.022, AUC 0.751 ± 0.034) is achieved for the lung 
cancer dataset (LUSC). Tang et al. [15] developed a novel 
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capsule network named CapSurv comprised of three sequen-
tial steps introducing a new survival loss function. Initially, 
image patches are selected in a random manner from the 
tissue region of the image, excluding background whites-
pace at 20x magnification. Afterward, utilizing a pre-trained 
VGG16 model, features are extracted from these patches. 
This representation, rich in features, is then employed to 
classify the patches into various clusters. Among these clus-
ters, one that exhibits particularly strong predictive poten-
tial is identified and chosen. Subsequently, the CapSurv 
model, as proposed, is trained to perform survival predic-
tion. Notably, the model achieves a c-index of 0.67 for the 
GBM dataset and 0.673 for the LUSC dataset. Yao et al. 
[19] introduced a deep multiple instances learning approach 
aimed at uncovering all potential hidden patterns within the 
image patches that contain informative data related to patient 
survival. The proposed model ability is evaluated on Lung 
(Lung-ADC) and Brain (GBM) tumors whole slide patho-
logical images datasets to predict the risk score of patients. 
The first step of the methodology divides the extracted 
patches from the images into different phenotype groups. By 
subjecting the image patches to a pre-trained VGG model, 
4096 features are extracted, following which k-means clus-
tering is employed to create distinct phenotype clusters for 
each patient. Then a Multi-Instance Fully Convolutional 
Network (MI-FCN) is used for learning local representation 
from different phenotypes which are eventually aggregated 
for patient-level representation. The aggregated features 
from each phenotype group make a final survival prediction 
as the patient’s survival score. The method demonstrated 
notable results, achieving a c-index of 0.678 for Lung-ADC 
and 0.657 for GBM Muhammad et  al. [95] devised the 
EPIC-survival model, which seamlessly integrates patient 
survival modeling by connecting feature encoding and fea-
ture aggregation. They introduced a stratification-boosting 
approach to enhance the ranking and differentiation of risk 
groups. The model’s performance was assessed using whole 
slide images (WSI) from patients with intrahepatic cholan-
giocarcinoma (ICC) obtained from Memorial Sloan Ket-
tering Cancer Center (MSKCC), Erasmus Medical Center-
Rotterdam (EMC), and the University of Chicago (UC), 
achieving an impressive concordance index of 0.880. Liu 
et al. [96] introduced EOCSA, a framework that randomly 
extracts patches from whole slide images (WSIs) and creates 
multiple clusters using these patches. Following this, they 
created a survival prediction model known as DeepConvAt-
tentionSurv (DCAS), which adeptly extracts features at the 
patch level, removes less discriminative clusters, and pre-
cisely predicts survival in epithelial ovarian cancer (EOC). 
The model incorporates channel, spatial, and neuron atten-
tion mechanisms to enhance feature extraction performance. 
Patient-level features are derived using the proposed weight 
calculation method. They estimated the survival time using 

the LASSO-Cox model. The model achieved an impressive 
C-index of 0.980 on TCGA-EOC. Sun et al. [97] presented 
an unsupervised deep learning network that merges a vari-
ational autoencoder and generative adversarial network. 
This network is designed to generate a signature for whole 
slide images (WSI) to predict disease-free survival (DFS) 
and overall survival (OS) in patients. They developed an 
integrated nomogram to evaluate the supplementary value 
of the deep learning signature (DLS) in conjunction with the 
TNM stage for personalized outcome predictions. The model 
demonstrated a c-index of 0.748 for DFS and 0.794 for OS.

Survival Features Extracting Using Self‑supervised Techniques

In self-supervised learning for survival feature extraction, 
the aim is to predict individuals’ or subjects’ survival out-
comes using self-supervised learning techniques. Traditional 
survival analysis, on the other hand, involves modeling time-
to-event data, such as time until death or failure, using vari-
ous statistical and computational methods. Self-supervised 
learning seeks to learn representations or predictive mod-
els from unlabeled data without explicit guidance. When 
applied to survival prediction, self-supervised learning 
methods harness the inherent structure or patterns in the 
data to acquire representations that capture essential features 
related to survival outcomes.

Chang et al. [98] introduced the Hybrid Aggregation 
Network (HANet), which aggregates multiple whole slide 
images (WSIs) of a patient to obtain patient-level informa-
tion for survival analysis. A self-supervised convolutional 
neural network is employed to extract features from WSIs. 
These features are then fused using two proposed aggrega-
tion modules. To predict patient-level survival risk, region 
representations are obtained from patients’ WSIs using the 
self-aggregation module. The methodology’s effective-
ness is assessed using the lung cancer dataset NLST and 
TCGA-LUSC, resulting in c-indices of 0.734 and 0.668, 
respectively, for both datasets. Fan et al. [99] proposed a 
survival prediction model designed to enhance performance 
by leveraging patient-level heterogeneous features. They pre-
process images through colorization using self-supervised 
techniques and subsequently train a Convolutional Neural 
Network (CNN) for feature extraction. The model predicts 
survival by combining multiple WSIs at the patient level 
with consistency and ranking losses. Model performance is 
evaluated using TCGA-GBM and TCGA-LUSC datasets, 
achieving c-indices of 0.6654 and 0.6772, respectively, for 
both datasets. Fan et al. [100] present a novel survival pre-
diction framework tailored for histopathological whole slide 
images (WSIs). This comprehensive framework includes 
patch sampling, feature extraction, and patient-level sur-
vival prediction. To facilitate WSI feature extraction, self-
supervised learning techniques such as colorization and 
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Table 4  Survival prediction of patients using whole slide images

S# Publication MAG States Organ Datasets Sources Top Performance

1 Bychkov et al. [75] DSS Colon Helsinki University Central Hospital HR = 2.3
95%CI = 1.79–3.03
AUC = 0.69

2 Hao et al. [76] 20x OS Brain TCGA-GBM C-index = 0.702
3 Turkki et al. [77] DSS Breast Helsinki University Central Hospital HR = 2.04

95% CI = 1.20–3.44
P = 0.007

4 Chen et al. [78] 20x OS Bladder TCGA-BLCA C-index = 0.624 ± 0.034
Breast TCGA-BRCA C-index = 0.580 ± 0.069
Brain TCGA-GBMLGG C-index = 0.817 ± 0.021
Lung TCGA-LUAD C-index = 0.620 ± 0.032
Uterine TCGA-UCEC C-index = 0.622 ± 0.019

5 Yao et al. [94] 20x OS Lung NLST C-index = 0.6963
AUC = 0.7143

Colorectal MCO C-index = 0.606
AUC = 0.644

6 Jiang et al. [79] 10x OS Brain TCGA-LGG C-index [95% CI] = 0.784 [0.655, 0.880]
AUC [95% CI] = 0.739 [0.613, 0.856]

7 Agarwal et al. [80] 20x,
5x,
1.25x

OS Brain TCGA-GBM C-index = 0.6221

8 Sandarenu et al. [81] 40x TNBC HR = 2.28
95%CI = 1.24–4.18
p = 0.01

9 Li et al. [82] 20x OS Bladder TCGA-BLCA C-index = 0.660 ± 0.021
Breast TCGA-BRCA C-index = 0.606 ± 0.028
Brain TCGA-GBMLGG C-index = 0.823 ± 0.019
Lung TCGA-LUAD C-index = 0.616 ± 0.016
Uterus TCGA-UCEC C-index = 0.658 ± 0.047

10 Wetstein et al. [83] 20x OS Breast YBC HR = 1.84
95% CI = 1.24–2.72
P-value = 0.025

11 Shao et al. [14] 20x OS Kidney TCGA-KIRC C-index = 0.699 ± 0.027
AUC = 0.714 ± 0.031

Liver TCGA-LIHC C-index = 0.701 ± 0.041
AUC = 0.727 ± 0.039

Lung TCGA-LUSC C-index = 0.726 ± 0.022
AUC = 0.751 ± 0.034

12 Chen et al. [84] 20x OS Bladder TCGA-BLCA C-index = 0.560 ± 0.034
Breast TCGA-BRCA C-index = 0.580 ± 0.025
Brain TCGA-GBMLGG C-index = 0.824 ± 0.024
Lung TCGA-LUAD C-index = 0.585 ± 0.012
Uterine TCGA-UCEC C-index = 0.629 ± 0.052

13 Li et al. [85] OS Lung TCGA-LUSC C-index = 0.6606
TCGA-NLST C-index = 0.7066

Brain TCGA-GBM C-index = 0.6215
MESOBANK C-index = 0.643

14 Di et al. [86] 20x OS Lung TCGA-LUSC C-index = 0.6734 ± 0.09
TCGA-NLST C-index = 0.6911 ± 0.011

Brain TCGA-GBM C-index = 0.6738 ± 0.012
15 Xu et al. [87] 20x OS Bladder TCGA-BLCA C-index = 0.834

Breast TCGA-BRCA C-index = 0.627
Brain TCGA-GBM C-index = 0.563
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cross-channel tasks are employed as pretext tasks to train 
convolutional-based models. Patient-level survival predic-
tion is carried out by harmonizing features from multiple 
WSIs using consistency and contrastive losses. Experimen-
tal analyses conducted on TCGA-GBM, TCGA-LUSC, and 
NLST datasets demonstrate the framework’s outstanding 
performance, evident through concordance indices of 0.670, 
0.679, and 0.711, respectively. Vale-Silva and Rohr [101] 
introduced an architectural framework consisting of three 

fundamental modules: a feature representation module, a 
multimodal data fusion layer, and an output sub-model. In 
the feature representation module, individual sub-models 
dedicated to distinct data modalities generate fixed-size hid-
den data representations. The subsequent multimodal data 
fusion layer combines these modality-specific sub-models 
to yield a unified representation. Finally, the output sub-
model translates the fused representation into discrete-time 
conditional survival probability predictions. Performance 

Table 4  (continued)

S# Publication MAG States Organ Datasets Sources Top Performance

16 Zhu et al. [93] Lung NLST C-index = 0.703
20x OS  TCGA-LUSC C-index = 0.638

Brain  TCGA-GBM C-index = 0.645
17 Tang et al. [15] 20x OS Lung TCGA-LUSC C-index = 0.673

Brain TCGA-GBM C-index = 0.67
18 Yao et al. [19] 5x OS Lung Lung-ADC (NLST) C-index = 0.678

Brain TCGA-GBM C-index = 0.657
19 Muhammad et al. [95] 20x OS Bile duct (ICC) patients’ WSI from Memo-

rial Sloan Kettering Cancer Center 
(MSKCC), Erasmus Medical Center-
Rotterdam (EMC), and the University 
of Chicago (UC)

C-index = 0.880

20 Chang et al. [98] 10x OS Lung TCGA-LUSC C-index = 0.668
NLST C-index = 0.734

21 Fan et al. [100] 20x OS Lung TCGA-LUSC C-index = 0.679 ± 0.015
TCGA-NLST C-index = 0.6711 ± 0.015

Brain TCGA-GBM C-index = 0.02
22 Vale-Silva and Rohr [101] 40x OS - Pan Cancer (All 33 cancer types of 

TCGA)
C-index= 0.822

23 Fan et al. [99] OS Brain TCGA-GBM C-index = 0.6654
Lung TCGA-LUSC C-index = 0.6772

24 Shen et al. [102] 20x Lung NLST C-index = 0.730
CHCAMS C-index = 0.707

25  Di et al. [103] 20x OS Lung TCGA-LUSC C-index = 0.66 ± 0.011
TCGA-NLST C-index = 0.7011 ± 0.015

Brain TCGA-GBM C-index = 0.05
26 Lu et al. [88] 20x OS Breast TCGA-BRCA  0.842±0.022

Renal cell CCRCC C-index = 0.985±0.004
27 Tu et al. [89] 20x, OS Colon TCGA-COAD C-index = 0.717

10x, Liver TCGA-LIHC C-index = 0.705
5x Bladder TCGA-BLCA C-index = 0.672

28 Xie et al. [90] 20x OS Liver TCGA-LAUD C-index = 0.622
29 Mackenzie et al. [91] 20x DSS Liver TCGA-BRCA  C-index = 0.672 ± 0.058
30 Benkirane et al. [92] 20x OS Bladder TCGA-BLCA  C-index = 0.564 ± 0.034

Breast TCGA-BRCA C-index = 0.592 ± 0.025
Brain TCGA-GBMLGG C-index = 0.778 ± 0.024
Lung TCGA-LUAD C-index = 0.595 ± 0.012
Uterine TCGA-UCEC C-index = 0.667 ± 0.022

31 Liu et al. [96] 20x OS Liver TCGA-BRCA  C-index = 0.672 ± 0.058
32 Sun et al. [97] 20x OS Colorectal TCGA-CRC  C-index = 0.794
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evaluation across 33 cancer types results in a remarkable 
peak c-index score of 0.822. Shen et al. [102] proposed a 
novel survival analysis model that utilizes a Vision Trans-
former (ViT) backbone coupled with convolution operations, 
ensuring effective feature extraction from whole slide images 
(WSIs) related to cancer diagnosis. This model maximizes 
the utilization of comprehensive WSI information, elimi-
nating the need to exclude crucial morphological insights. 
The authors also introduce a post hoc explainable technique 
aimed at identifying significant patches and distinctive mor-
phological attributes, significantly enhancing the model’s 
interpretability. Evaluations conducted on two extensive can-
cer datasets, NLST and small cell lung cancer (CHCAMS), 
validate the remarkable efficacy of this approach, resulting 
in C-index scores of 0.730 and 0.707, respectively. These 
outcomes robustly underscore the model’s potential not 
only in survival prediction but also in aiding critical cancer 
treatment decisions. Di et al. [103] presented RankSurv, a 
survival prediction method for whole slide images (WSIs) 
that incorporates ranking information into the learning pro-
cess. The proposed approach involves two steps. Firstly, a 
hypergraph representation is introduced to predict hazards 
for each WSI, capturing the higher-order correlation between 
patches within the WSI. Subsequently, a prediction process 
based on rankings is conducted using pairwise survival 
data. The effectiveness of RankSurv is evaluated through 
experiments on three publicly available carcinoma datasets, 
namely LUSC, GBM, and NLST (see Table 4).

Discussion

The articles surveyed in this review paper emphasize the 
potential of employing computational techniques with 
whole slide images (WSIs) for predicting the survival of 
cancer patients. Analyzing WSIs to identify histopathologi-
cal biomarkers for survival prediction and enhancing prog-
nostic insights is an active and rapidly evolving research 
area. whole slide images (WSIs) possess unique attributes, 
such as their considerable size, high resolution, and diverse 
tissue appearances. The critical task of selecting survival-
representative features from these WSIs that correlate with 
patient outcomes is essential when developing survival 
prediction models. Over time, a number of computational 
techniques have emerged to improve prognostic capabilities 
using WSIs. These computational methods generally fall into 
two categories. Direct feature extraction methods that do 
not require intermediate computer vision tasks. Techniques 
such as self-supervised, weekly-supervised, and unsuper-
vised learning, multiple instance learning, clustering, and 
graph convolutional neural networks are utilized for learn-
ing features directly from WSIs. Other approaches that 
leverage intermediate computer vision tasks such as image 

segmentation, nuclei instance segmentation, image classifi-
cation, and handcrafted features are utilized for extracting 
the potential features for survival prediction. Each of these 
methods offers distinctive perspectives on the factors influ-
encing patient outcomes, underscoring the need for further 
research to enhance and broaden the utilization of WSIs in 
predicting survival and improving patient care.

The reviewed methodologies have shown promising 
advancements in improving patient outcomes and advancing 
the understanding of cancer morphology. While there has 
been advancement in the field, there is still no universally 
accepted optimal approach for analyzing cancer morphol-
ogy and predicting patient survival. Furthermore, the grow-
ing complexity of these computational methods demands 
substantial resources for the effective training of survival 
prediction models. As a result, there is a need for further 
investigation into the efficient utilization of deep learn-
ing techniques in the context of survival prediction. The 
reviewed research papers demonstrate the potential of using 
whole slide images to predict cancer patient survival. These 
papers have introduced intricate algorithms and a variety 
of methodologies to extract survival-relevant features from 
WSIs. Nevertheless, the examined articles indicate a clear 
trend toward further research to achieve survival prediction 
with resource efficiency in this endeavor. Ongoing research 
and innovation will continue to play a pivotal role in under-
standing of cancer morphology, advancing personalized 
medicine, and raising the standards of patient care as the 
search for the optimal approach continues to evolve.

Conclusion

Survival analysis finds extensive application in develop-
ing prognostic indices for mortality or disease recurrence, 
assessing treatment effectiveness, and tailoring effective 
treatment plans. One of the key goals of precision medi-
cine in cancer is to discover prognostic biomarkers that can 
reliably forecast patient survival. whole slide images are 
regarded as the definitive method for identifying histopatho-
logical biomarkers that provide information about survival 
outcomes. This review article targets the latest approaches 
proposed in the last 5 years for survival analysis, explores 
the approaches utilized in existing research, performance 
metrics, and existing obstacles, and points toward prospec-
tive solutions for future research. The reviewed paper com-
piles different techniques researchers have adopted to extract 
features associated with patient survival from WSIs, includ-
ing handcrafted features, transfer learning, image segmenta-
tion, nuclei instance segmentation, and image classification. 
The selection of the most impactful WSI features can lead 
to the most accurate patient outcomes and improved patient 
care. However, there is no agreed-upon best method yet, 
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and each technique offers a distinct understanding of factors 
impacting patient survival. The field is constantly expand-
ing, and there is still much untapped potential in the realm 
of deep learning techniques for predicting the survival of 
cancer patients.
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