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Abstract
Breast cancer holds the highest diagnosis rate among female tumors and is the leading cause of death among women. 
Quantitative analysis of radiological images shows the potential to address several medical challenges, including the early 
detection and classification of breast tumors. In the P.I.N.K study, 66 women were enrolled. Their paired Automated Breast 
Volume Scanner (ABVS) and Digital Breast Tomosynthesis (DBT) images, annotated with cancerous lesions, populated 
the first ABVS+DBT dataset. This enabled not only a radiomic analysis for the malignant vs. benign breast cancer clas-
sification, but also the comparison of the two modalities. For this purpose, the models were trained using a leave-one-out 
nested cross-validation strategy combined with a proper threshold selection approach. This approach provides statistically 
significant results even with medium-sized data sets. Additionally it provides distributional variables of importance, 
thus identifying the most informative radiomic features. The analysis proved the predictive capacity of radiomic models 
even using a reduced number of features. Indeed, from tomography we achieved AUC-ROC 89.9% using 19 features and 
92.1% using 7 of them; while from ABVS we attained an AUC-ROC of 72.3% using 22 features and 85.8% using only 3 
features. Although the predictive power of DBT outperforms ABVS, when comparing the predictions at the patient level, 
only 8.7% of lesions are misclassified by both methods, suggesting a partial complementarity. Notably, promising results 
(AUC-ROC ABVS-DBT 71.8%-74.1% ) were achieved using non-geometric features, thus opening the way to the integra-
tion of virtual biopsy in medical routine.
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Introduction

Breast cancer (BC) is the leading cause of death among 
women, and according to the Global Burden of Disease 
2019, one in every eight new cancer cases was diagnosed 
as BC, making it the world’s top most prevalent type of 
cancer [1]. There are 5 stages of BC, ranging from the 
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non-invasive ductal carcinoma in  situ (stage 0) to the 
more invasive ones (stages I–IV). To date, stages 0 and I 
exhibit an almost 100% 5-year survival rate, in contrast to 
stages II and III which show survival rates of 93% and 72% 
respectively [1]. Hence, the detection and classification of 
early-stage BC has a crucial impact on patients’ prognosis, 
as it may allow for less invasive surgical procedures.

The screening procedure relies on the assessment of 
radiological images, essentially based on mammography 
(MX) [2, 3], breast ultrasound (US) [4, 5], or contrast-
enhanced magnetic resonance imaging (DCE-MRI) [6]. 
Nowadays, the cornerstone technique for BC screening is 
MX, which can reduce the mortality rate by 20–22% [7]. 
However, integrating MX with additional techniques (e.g., 
Digital Breast Tomosynthesis (DBT), US, or Automated 
Breast Volume Scanner (ABVS)) can significantly improve 
detection capability [8, 9]. In particular, DBT by eliminat-
ing the problem of tissue overlap and allowing enhancing 
the identification of parenchymal distortions, increases 
the Cancer Detection Rate (CDR) of breast lesions by 
2.7/1000 compared to MX alone (CDR 5.3/1000) [10]. 
Also, US-based imaging techniques can improve CDR (4.9 
per 100 in a population of women with MX-dense breast) 
at the cost of a higher false positive rate than DBT [11]. 
Among the US-based radiological methods, ABVS is a 
screening technique (for patients with intermediate risk 
and with MX dense breasts) characterized by a greater 
reproducibility compared to traditional US [12–14].

While imaging methods are primarily used for screen-
ing, biopsy is the only existing tool to classify a breast 
lesion as benign or malignant and to characterize the 
malignant ones by receptor expression/phenotype (ER, 
PR, and HER2 receptor). However, the biopsy is an inva-
sive, time-consuming, and expensive procedure that can 
cause anxiety and discomfort to the patient and it’s also 
frequently done needlessly, even for lesions that could 
be benign [15]. To overcome the cost and limitations 
of biopsy, the ultimate goals of modern breast imaging 
encompass the early detection of BC, followed by the 
accurate classification of the lesion and the prediction of 
its clinical course and biological aggressiveness.

Among modern image-based mathematical approaches, 
radiomics is a quantitative approach which uses automated 
methods to extract valuable information from radiologi-
cal images. By selecting the most relevant features and 
embedding them in a Machine Learning (ML) pipeline, 
radiomics enables the development of predictive models 
that support standard radiological techniques [16, 17] 
(e.g., to assess the aggressiveness of cancer lesions). Sev-
eral published studies have highlighted the potential of 
radiomics in addressing medical challenges in BC care, 
such as early detection, classification, cancer sub-type 
determination and molecular profiling, prediction of 

lymph node metastases, and prognostication of treatment 
response [2–6, 18–21].

Despite the large number of published studies, most of 
the proposed strategies extract quantitative parameters from 
databases of unimodal medical images (such as DCE-MRI 
[6, 22], MX [2, 19], and ABVS [14, 23]). Only a minor-
ity obtains acquisition from multiple techniques, including 
DWI + DCE-MRI [18], ABVS + Elastography [24], and 
BM-US + Elastography [25]. However, there is a paucity 
of radiomic studies in the scientific literature using ABVS 
images. Although ABVS and DBT diagnostic performance 
have been previously compared [26], to the best of our 
knowledge there is no multimodal ABVS + DBT compara-
tive radiomic analysis.

Difficulties in obtaining paired data, especially with mod-
ern techniques like ABVS, lead to undersized study data-
bases. This difficulty exacerbates the already known prob-
lems of radiomic studies, in particular, the risk of overfitting 
given the high ratio of radiomic features to sample size 
[27–30], and requires ad hoc techniques to maximize infor-
mation extracted from the database without data leakage.

This work presents a methodological approach for 
studying radiomic databases of moderate sample size. The 
approach involves pre-selecting features through stabil-
ity analysis, designing a validation scheme to maximize 
extracted information (using nested leave-one-out, LOO, 
cross-validation), and generating distributed importance 
scores to define an adaptive augmentation procedure. We 
aimed to differentiate malignant from benign mass lesions 
using the radiomic features extracted from a medium-sized 
multi-modal dataset, including DBT and ABVS breast 
images [31]. To the best of our knowledge, the P.I.N.K 
database is the first to include both ABVS and DBT acqui-
sitions for each patient. The data, collected in an ongoing 
longitudinal multicentre study, allow us for a rigorous and 
significant comparative study of the predictive capabilities 
of ML models trained on the different modalities.

The paper is structured as follows. The “Materials and 
Methods” section discusses the characteristics of the pop-
ulation and the collection protocol. The analysis of trait 
stability and the consequent reduction of independent fea-
tures is included. We then present the nested LOO method, 
adapted to this database, for generating the distributional 
feature importance, exploited to select a minimal model 
using an adaptive procedure. The "Results" section show 
the features most stable to perturbations and the scores of 
the trained models: the one with all (non-collinear) features, 
the model obtained by an adaptive procedure, and the one 
trained on texture features only. The proposed approach and 
the related results enabled to draw medical conclusions. 
Finally, future work may involve the idea of a virtual biopsy, 
which integrates the texture features-based information with 
the patient’s medical history.
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Materials and Methods

Study Population and Acquisition Protocol

The database used in this work, as defined in the P.I.N.K 
study protocol, includes 66 women over 40 years of age who 
have both DBT and ABVS acquisition in concurrent peri-
ods. The women presented spontaneously for routine breast 
examination at 2 diagnostic centers in Italy, both equipped 
with DBT (vendor-independent tomosynthesis — Siemens, 
GE, Hologic) and ABVS (ABVS ACUSON S2000TM — 
Siemens Medical Solutions, Inc, Mountain View, CA) 
devices. The DBT data collect cranio-caudal scans, while the 
ABVS images are mainly anterior-posterior views. Exclusion 
criteria include the presence of breast implants, pregnancy, 
or breastfeeding.

The ground truth used to train the model is binary tumor 
classification (malignant/benign, see Table 1), which is 
obtained from post-intervention histological data (62.3%), 
if available, or pre-intervention histological data (37.7%), 
otherwise. The (66) patients included in our study all have 
mass-forming lesions ( n = 69 ), visible both in the DBT 
images and in the ABVS images.

Lesion Segmentation

Lesion segmentation in ABVS and DBT images was per-
formed by three radiologists (with over 5 years of experi-
ence) in consensus using 3D Slicer [32], a free open-source 
software platform for image analysis and visualization. To 
ensure a rigorous segmentation process, breast radiologists 
followed a strict pipeline, consisting of the following: (i) 
identifying the lesion in each ABVS and DBT image, (ii) 
manually delineating the contour of the lesion using annota-
tion tools such as brush and intensity threshold, (iii) assess-
ing the quality of each 2D mask, considering also the lesion 
volume and shape, (iv) refining and cleaning each segmen-
tation (e.g., holes with an area < 9 pixels have been filled, 
and regions of less than 30 pixels have been removed; when 
necessary, the borders have been smoothed by applying to 
the segmentation mask a binary closing as implemented in 

the Multidimensional image processing1), (v) validating the 
lesion segmentation.

Features Extraction, Selection, and Stability Analysis

Twenty-five radiomic features, both geometric (e.g., Vol-
ume, Sphericity) and textural (e.g., Total energy, Coarse-
ness) were extracted using Pyradiomics v.3.0.1 [33]. These 
features were computed exclusively from the original images 
and are not analytically correlated (Fig. 3). We decided to 
work with a subset of radiomics features computed on origi-
nal images in order to follow the guidelines of the Image 
Biomarker Standardization Initiative (IBSI, https://​theib​si.​
github.​io/​ibsi2/), which have not been released yet for fil-
tered images [34].

The 25 features were subjected to a Principal Com-
ponent Analysis (PCA) to assess the cardinality of the 
principal components and thus to identify the presence 
of linearly correlated features. To determine a subset of 
features that are non-redundant and stable to small varia-
tions, we used the following procedure: (i) the segmenta-
tion annotated by radiologists (i.e., standard) has been used 
as the reference mask, (ii) each radiomic feature has been 
tested varying both the bin width2 It is defined as follows: 
(max(gray level) − min(gray level))∕#bins . and the mask 
type (reduced, standard, increased), as shown in Fig. 1, (iii) 
for each combination of bin width (bw ∈ {15,20,25,30,35}) 
and mask (m ∈ {reduced, standard, increased}), the instabil-
ity of the ith feature Δi is estimated as follow:

where st ∶= standard , #p the number of patients, and 
fi(m, bw, p) is the ith feature calculated using the mask size 
m, the bin width bw on the patient p, (iv) between two highly 
correlated features, the most unstable is defined as the one 
with the higher value of Δ and therefore is dropped. After 
variable reduction, PCA was repeated to ensure the redun-
dancy of the dropped features.

Nested LOO Cross‑Validation

Tumor classification was performed using three ML 
approaches: Random Decision Forest (RDF, an ensemble 
of nt random trees, with nt ∈ [50, 250] ), polynomial Support 
Vector Machine (SVM, with a polynomial kernel of degree 3 
with a cost of c ∈ [1, 10] ), and Logistic Model (Logit, binary 

(1)

1

15 ⋅ #p

∑

m,bw,p

|fi(m, bw, p) − fi(st, 25, p)|
maxp∗

(
fi(st, 25, p

∗)
)
−minp∗

(
fi(st, 25, p

∗)
)

Table 1   Women’s distribution by age and breast density. Scores reported 
as malignant/(malignant + benign)

Age classes Breast density (Bi-RADS levels) Total

A B C D
< 50 ys - 3/4 8/15 0/6 11/25
50–59 ys 1/1 2/4 4/13 2/3 9/21
60–69 ys 2/2 3/5 2/3 - 7/10
> 70 ys 1/2 4/4 3/4 - 8/10
Total 4/5 12/17 17/35 2/9 35/66

1  https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​ndima​ge.​html
2  Bin width is the width of each bin in the histogram that represents 
the gray level intensities of the image.

https://theibsi.github.io/ibsi2/
https://theibsi.github.io/ibsi2/
https://docs.scipy.org/doc/scipy/reference/ndimage.html


1645Journal of Imaging Informatics in Medicine (2024) 37:1642–1651	

classifier based on a binomial general linear model). These 
methods were trained on both DBT- and ABVS-derived 
radiomic features. However, the high ratio ( ∼ 1∕3 ) between 
the number of independent features and the sample size, as 
well as the high variability of the population under study 
(regarding lesion shape, breast density, extension, branch-
ing, etc.), require the use of a robust ad hoc technique for 
the optimization of the classifier’s hyperparameters (i.e., the 
number of trees for the RDF and the cost for the SVM) and 
the subsequent evaluation of the performance of the models.

Referring to Fig.  2, a LOO nested cross-validation 
approach was defined as an extension of classical nested 
cross-validation [35]. In order to adapt the implementation 

to the available data, the described procedure was imple-
mented in-house from scratch using R (v4.2.2) and Python 
(v3.9.13). The dataset (of cardinality n) is partitioned into n 
variants (called external LOOs) by a leave-one-out scheme. 
For each external LOO, n − 1 data points are used as train-
ing. One data point is treated as an independent evaluation to 
estimate the generalization ability of the model. The model 
used in each step of the external LOO (i.e., optimized model 
i) is obtained by calibrating the hyperparameters using a grid 
search. The latter is defined as the one that maximizes the 
performance (i.e., the AUC-ROC, Area Under the Receiver 
Operating Characteristic Curve) in the internal LOO cross-
validation. The same internal LOO cross-validation is used 
to estimate the ith optimal classification threshold for the cor-
responding model (i.e., the probability value that discrimi-
nates categories) as the one maximizing the sum of specific-
ity and sensitivity across the n − 1 LOO evaluations. The ith 
external LOO model evaluation then performs a prediction 
estimate based on the optimized ith model (grid search + 
internal LOO cross-validation) with the appropriately cali-
brated ith threshold.

This approach provides a low-bias estimate of the model’s 
generalization capability from the external LOO procedure, 
where the data employed is never used in the optimization 
and training phases and is therefore not affected by data leak-
age. Similarly, to further reduce positively biased results, the 
optimal threshold is calibrated for each model (internal LOO 
model optimization). In addition, unlike the canonical parti-
tioning of the available data into training, validation, and test 
set required for both optimization and external validation, 
the use of nested leave-one-out cross-validation makes the 
most of the information content of this dataset.

A major drawback is that the computational cost of nested 
LOO cross-validation is quadratic in dataset cardinality. 
Indeed, for each choice ( #GridSearch ) of hyperparameters 
to be adjusted, each optimization of the internal LOO model 
requires n − 1 model training sessions. For each external 
LOO model evaluation, this procedure must be performed 
n times. The total number of model training sessions is as 
follows: #GridSearch ⋅ n ⋅ (n − 1).

Fig. 1   The same lesion segmented for both modalities: a DBT and b 
ABVS. The manual segmentation (the standard one) has been slightly 
modified by applying standard morphological operators to produce 

two different annotation masks (i.e., reduced and increased) and 
assess the feature robustness against small variations, as reported in 
the “Features Extraction, Selection, and Stability Analysis” section

Fig. 2   Optimization and validation scheme adapted to the dimension 
(n = 69) of the dataset. The external LOO model evaluation uses a 
leave-one-out approach to provide an estimate of performance for 
each patient, at the cost of increased computational complexity. Each 
model evaluation is performed after an optimization (i.e., internal 
LOO) using an additional LOO strategy combined with a grid search 
for the optimal hyperparameter. To reduce positively biased esti-
mates, every optimized model calibrates its internal threshold
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Distributional Feature Importance  
and Adaptive Selection

The optimization/validation scheme used does not produce 
a single optimal model, but rather a family of models (i.e., 
n = 69 different models generated by the external LOO, one 
for each element in the dataset). Each of these models is 
obtained by nested LOO cross-validation and is the opti-
mized model on the remaining n − 1 (68) training data. The 
relative importance of the features can be calculated in an 
analytical way for each trained model. Features importance 
are as follows: (i) the Mean Decrease Gini/Accuracy for 
RDF, (ii) SVM coefficient multiplied by its support vector 
for SVM, (iii) change in deviance (i.e., reduction of predic-
tion error) for Logit. The external LOO scheme can be used 
to compute the probability distribution of the importance for 
each input feature (obtained from the n = 69 LOO-models) 
which is more informative than a canonical point estimate 
obtained from a single retrained model. Furthermore, the 
resulting distributions can be used to analyze the stability 
of the model. Indeed, low distribution variance corresponds 
to a feature whose relative importance is constant across 
trained models.

The resulting relative importance is used to define an adap-
tive procedure for the selection of a subset of the features.

Algorithm 1   Adaptive feature selection

A 2-clustering algorithm divides the features into 2 
groups (most relevant/less relevant), as reported in Algo-
rithm 1. The most relevant features are added to the model, 
whose performance is evaluated using the nested LOO 
cross-validation procedure previously introduced. The 
performance score used is the LOO-AUCROC obtained 
from the external LOO cycle (summarized by the function 
AUCROC_NestedLOO in the algorithm). The procedure 
adds the features to the model in the order of their relative 
importance (mean decrease accuracy). After adding each 
feature, the performance score is evaluated: if the model 
performs better, the feature is retained; if not, it is dropped. 
This procedure returns the minimal model with the best 
performance by performing a total of 86940 ∗ 19 ∼ 2 ⋅ 106 
simulations ( ∼ 13 h on 1.6 GHz Dual Core Intel i5 CPU). In 
contrast, a brute-force exploration of all the combinations of 
features would have required 86940 ⋅ 219 ∼ 1010 simulations.

Results

Feature Selection, Redundancy Correction, 
and Stability Analysis

Among the starting subset of original features reported in 
Fig. 3, we performed a selection based on the elimination 
of redundant ones. In particular, within pairs of correlated 
variables (Pearson Correlation above 0.95), we decided to 
keep the feature more stable with respect to the stability 
measure (“Features Extraction, Selection, and Stability 
Analysis” section).

The PCA analysis showed that the number of principal 
components (99% of the cumulative variance) does not 
change before and after the redundancy correction (16 com-
ponents for ABVS and 14 for DBT).

For ABVS, redundant features are as follows: the Inten-
sity Histogram Entropy (highly correlated with the Intensity 
Histogram Uniformity), the Median (highly correlated with 
the Root Mean Squared (RMS)) and GLSZM LAE — Large 
Area Emphasis (highly correlated with GLSZM LALGLE 
— Large Area Low Gray Level Emphasis). For DBT, redun-
dant features are as follows: the Total Energy (highly cor-
related with the Volume), the Intensity Histogram Entropy 
(highly correlated with the Intensity Histogram Uniformity), 
the Median (highly correlated with the Root Mean Squared 
(RMS)), GLSZM LGLZE — Low Gray Level Zone Empha-
sis (highly correlated with GLSZM SALGLE — Small Area 
Low Gray Level Emphasis), GLSZM HGLZE — High Gray 
Level Zone Emphasis (highly correlated with GLSZM SAH-
GLE (Small Area High Gray Level Emphasis).

Figure 3 represents the heat maps of the stability of the 
features with respect to the bin width and the perturbation 
(increase/decrease) of the segmentation mask. They show 
that the shape features (in bold) are generally more stable 
compared to the texture ones. Notably, the least variability 
induced by geometrical perturbation of the mask is obtained 
with the default value of Pyradiomics for the bin width (25).

Full Models: ABVS‑DBT Comparison

The performance of the models trained on the same set of 
patients (called respectively RDF-ABVS/SVM-ABVS/
Logit-ABVS Model and RDF-DBT/SVM-DBT/Logit-DBT 
Model) are reported in Table 2.

For the three models, the DBT Models always outper-
form the ABVS ones. Indeed, DBT-based models have 
a higher AUC-ROC compared to ABVS for each of the 
trained ML methods (69.9/73.0/89.9% vs 67.8/66.7/72.3% 
for SVM/Logit/RDF respectively). DBT is also better than 
ABVS at identifying pathological cases for all three models 
(94.7/81.6/84.2% vs 71.0/55.3/68.4% for SVM/Logit/RDF 
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respectively), while the number of false positives is compa-
rable between DBT and ABVS. The comparison between the 
three ML models highlights the strength of ensemble meth-
ods, with RDF proving to be the most accurate in almost all 
performance metrics, particularly for DBT data (AUC-ROC 
89.9% , Accuracy/Specificity/Precision and Recall > 80%). In 
addition, the simplest model (Logit) has very low accuracy, 
precision and recall.

As reported in the “Distributional Feature Importance and 
Adaptive Selection” section, we calculated the Distributional 
Feature Importance for DBT and ABVS (see Fig. 4). In terms 
of the most effective model, it emerges that Sphericity is the 
most important feature and, particularly for DBT acquisitions, 
geometric features play an important role in model classifi-
cation. Among the other features, glszm SAE (Small Area 
Emphasis) and Strength, are relevant for Full ABVS Model. 

The high concordance of Mean Decrease Accuracy and Mean 
Decrease Gini is a good indicator of models stability. Similar 
results are obtained for the SVM, with sphericity being the 
most important feature for ABVS and DBT. Conversely, Logit 
mainly uses non-geometric NGTDM features to make its pre-
diction, but this leads to unreliable predictions and affects 
both model accuracy and specificity.

The uniqueness of the P.I.N.K dataset (consisting of a 
dual DBT+ABVS acquisitions) allows for a comparison 
of the most effective models (RDF) at the patient level. 
It can be verified that 26.1% of the lesions (4 malignant 
cases and 8 benign cases correctly predicted only by DBT 
and 3 malignant cases and 3 benign cases correctly pre-
dicted only by ABVS) are correctly identified by only one 
of the two models. Conversely, only 8.7% (3 malignant 
and 3 benign cases) are misclassified by both models. 

Fig. 3   The score defined in Eq.  1 has been computed to assess the 
radiomic feature stability for ABVS (panel a) and DBT (panel b). 
Each row corresponds to a different extraction: reduced/standard/
increased represents which mask was used in the computation, while 

the numbers [15–35] are bin width used to extract the features. Geo-
metric features are shown in bold. Features dropped after the redun-
dancy correction are marked with a pink box

Table 2   Full RDF-, SVM-, and 
Logit-ABVS and DBT Models. 
The best full model (RDF) is 
also retrained on the texture 
feature only (RDF-ABVS tx. 
and RDF-DBT tx.) and using 
the adaptive feature selection 
strategy. The performance 
metrics are computed by 
selecting the threshold using the 
inner nested LOO evaluation

AUC-ROC Accuracy Specificity Precision Recall

SVM-ABVS 67.8% 68.1% 64.5% 71.0% 71.0%
SVM-DBT 69.9% 72.5% 58.0% 67.9% 94.7%
Logit-ABVS 66.7% 58.0% 61.3% 63.6% 55.3%
Logit-DBT 73.0% 73.9% 64.5% 73.8% 81.6%
RDF-ABVS 72.3% 68.1% 67.7% 72.2% 68.4%
RDF-DBT 89.9% 80.7% 80.7% 84.2% 84.2%
RDF-ABVS tx. 71.8% 71.1% 77.1% 70.3% 62.1%
RDF-DBT tx. 74.1% 74.4% 82.9% 75.0% 65.5%
RDF-ABVS Reduced 85.8% 76.8% 71.0% 77.5% 81.6%
RDF-DBT Reduced 92.1% 85.5% 87.1% 88.9% 84.2%
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Consequently, even considering the better performance of 
the Full RDF-DBT Model compared to the RDF-ABVS 
one, this suggests that the two modalities are partially 
complementary.

Reduced Models: Adaptive Features Selection

An optimal set of the non-collinear features (Fig. 4) was 
identified by applying the Adaptive Selection Algo-
rithm 1 to the most effective full model (i.e., ABVS/DBT 
RDF). The corresponding models trained on these subsets 
are the RDF-ABVS Reduced Model and the RDF-DBT 
Reduced Model.

Starting from Sphericity for DBT and Sphericity, glszm 
SAE, and Strength for ABVS, the procedure iteratively 
adds only features with positive AUC-ROC contribution. 
The reduced ABVS model has an AUC-ROC of 85.8% 
using only the following 3 starting features: Sphericity, 
SAE (Small Area Emphasis), and Strength. On the 
other hand, the reduced DBT model uses 7 features to 
obtain an even higher AUC-ROC of 92.1%: Sphericity, 
LALGLE (Large Area Low Gray Level Emphasis), ZP 
(Zone Percentage), ZE (Zone Entropy), Coarseness, SAE 
(Small Area Emphasis), and RMS (Root Mean Squared). 
Notably, the selected features include a mixture among 
geometric (Sphericity), neighboring gray tone difference 

Fig. 4   Distributional Feature Importance of RDF-ABVS analysis 
(panels a, b) and RDF-DBT (panels c, d). The scores are reported as 
mean value and IQR (3° and 4° quantiles), calculated from the nested 

LOO external procedure. Dashed boxes indicate features that are sig-
nificantly more relevant features (Sphericity, SAE, and Strength for 
ABVS, while Sphericity for DBT)
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(Coarseness), and texture features (both on small and large 
areas) comprehensively covering the different radiomic 
characteristics of the lesion. Both reduced models perform 
better than the full models because the excluded features 
degrade the classification (Fig. 5).

Texture Models: Towards a Virtual Biopsy

Currently, biopsy is the standard technique for lesion clas-
sification and characterization, focusing on local and visual 
features of the sampled tissue. Hence, to simulate the biopsy, 
it would be sufficient to consider only the texture features 
of the segmented lesion. To investigate and compare the 
informative content of the texture and geometric features 
(e.g., Volume, Sphericity), the RDF-ABVS Texture Model 
and RDF-DBT Texture Model were introduced. These 
are the most effective models (i.e., RDF) that have been 
retrained to use only texture features to make their predic-
tions. The Texture Models, even neglecting the significant 
contribution of geometric features, prove to train adequate 
classifiers (Fig. 5). Indeed, the AUC-ROC of the RDF-DBT 
Texture Model is 74.1% (compared to 89.9% of the RDF-
DBT Model). Similarly, the AUC-ROC of the RDF-ABVS 
Texture Model is 71.8% (compared to 72.3% of the RDF-
ABVS Model). Note that the ABVS/DBT performance gap 
is reduced when the geometric features are neglected.

Discussion

In this work, we compared ABVS/DBT capability to classify 
benign/malignant breast tumors in a population of 66 women 
(69 lesions) using radiomic features. Three Machine Learning 
method were employed: Random Decision Forests, Support 
Vector Machines and Logistic Regression. They were trained 
and validated on a novel dataset of paired ABVS/DBT 

acquisitions using an ad hoc nested LOO cross-validation 
procedure. This approach allows us to avoid data leakage 
among training and validation sets and, consequently, to 
obtain a low-biased estimate of generalization capability 
of the model even with a small sample size. Furthermore, 
an adaptive selection strategy was successfully applied 
to obtain a minimal highly informative subset of features, 
so that derived models were computationally lighter and 
less affected by overfitting. The first major finding of this 
study is to highlight the greater effectiveness of ensemble 
methodology (RDF) to provide efficient prediction of 
tumor classification using radiomic features compared to 
single-prediction methods (Logit, SVM). RDF radiomic-
based models for both ABVS and DTB acquisition prove 
to efficiently discriminate malignant/benign lesions 
(AUC-ROC: RDF-ABVS 72.3%, RDF-DBT 89.9%, using 
respectively 22/19 features). Nevertheless, even this reduced 
set of features is likely to contain redundant information. In 
fact, the adaptive selection strategy leads to a minimal subset 
of features with even greater classification power compared 
to the full set (AUC-ROC: ABVS 85.8% with 3 features, DBT 
92.1% with 7 features). The latter suggests the importance 
of complementing classical radiomic analyses (based on 
hundreds or even thousands of features) with appropriate 
selection strategies to reduce the presence of confounding 
variables, especially in small/medium size datasets. As 
detailed in the “Results” section, independently of the set 
(or subset) of features used to train the classification model, 
using DBT data resulted in higher classification performances 
with respect to ABVS data, almost surely due to the image 
resolution. However, some kind of complementarity cannot 
be excluded: when comparing the predictions at a patient 
level, only 8.7% of lesions are misclassified by both the Full 
RDF Models. Finally, the removal of the (highly influential) 
geometric information from the model results in less accurate 
but still valid predictions (AUC-ROC: RDF-ABVS tx. 71.8%, 
RDF-DBT tx. 74.1%). This confirms radiomics as a tool 

Fig. 5   Receiver Operating 
Characteristic (ROC) curves for 
RDF-ABVS (panel a) and RDF-
DBT (panel b). These curves 
represent the performance on 
the LOO external validation for 
the Full RDF model (trained 
on the whole set of radiomic 
features), the Reduced RDF 
model (features obtained from 
the adaptive procedure), and the 
RDF Texture one (without geo-
metrical/shape features)



1650	 Journal of Imaging Informatics in Medicine (2024) 37:1642–1651

capable of extracting information beyond the human eye. A 
limitation of this work is the size of the dataset (66 subjects, 
69 lesions) deeply influenced by the difficulty of collecting 
reliable annotated images from DBT and ABVS covering 
the same lesions and by the time-consuming and demanding 
clinician-guided image segmentation process. Consequently, 
we focused on a binary classification task instead of a more 
complex tumor stage stratification. Such a limitation has been 
mitigated by LOO cross-validation and the use of the adaptive 
selection algorithm; of course, a larger study population will 
increase the statistical power of the results. In this respect, 
the ongoing activities of the P.I.N.K project will help, by 
collecting multimodal data from additional centers.

Future directions of research aim at the development 
of a mixed model of ABVS and/or DBT that includes 
also patient clinical history. In this perspective, a larger 
dataset is crucial also to tackle the more difficult task 
of a multi-class analysis, to enable both phenotype and 
tumor stage characterization. The results described and 
discussed above indicate that for BC the virtual biopsy, 
i.e., a radiomic-based ML, which uses only image data to 
characterize the lesion, is not so far.
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