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Abstract
Radiology narrative reports often describe characteristics of a patient’s disease, including its location, size, and shape. Moti-
vated by the recent success of multimodal learning, we hypothesized that this descriptive text could guide medical image 
analysis algorithms. We proposed a novel vision-language model, ConTEXTual Net, for the task of pneumothorax segmenta-
tion on chest radiographs. ConTEXTual Net extracts language features from physician-generated free-form radiology reports 
using a pre-trained language model. We then introduced cross-attention between the language features and the intermediate 
embeddings of an encoder-decoder convolutional neural network to enable language guidance for image analysis. ConTEX-
Tual Net was trained on the CANDID-PTX dataset consisting of 3196 positive cases of pneumothorax with segmentation 
annotations from 6 different physicians as well as clinical radiology reports. Using cross-validation, ConTEXTual Net 
achieved a Dice score of 0.716±0.016, which was similar to the degree of inter-reader variability (0.712±0.044) computed 
on a subset of the data. It outperformed vision-only models (Swin UNETR: 0.670±0.015, ResNet50 U-Net: 0.677±0.015, 
GLoRIA: 0.686±0.014, and nnUNet 0.694±0.016) and a competing vision-language model (LAVT: 0.706±0.009). Abla-
tion studies confirmed that it was the text information that led to the performance gains. Additionally, we show that certain 
augmentation methods degraded ConTEXTual Net’s segmentation performance by breaking the image-text concordance. 
We also evaluated the effects of using different language models and activation functions in the cross-attention module, 
highlighting the efficacy of our chosen architectural design.
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Introduction

Radiology is a multimodal field. Picture archiving and 
communication systems (PACS) contain medical images 
and accompanying reports generated by radiologists. These 

reports serve as the official record of the reading physicians’ 
interpretations for radiological exams, playing an essential 
role in communicating findings to patients and their health-
care teams. Additionally, such reports offer radiologists 
invaluable context regarding prior imaging results when 
interpreting follow-up exams. For example, in reading a 
current set of images, radiologists often review the patient’s 
prior images and reports to ascertain the location and extent 
of the disease. This allows for monitoring disease evolution 
over time and assessing the effectiveness of treatments. The 
comparative review process is instrumental in identifying 
new developments or subtle changes in a patient’s condition 
that could otherwise go unnoticed without such historical 
reference for comparison. Although reviewing past exams 
can be time-consuming, its value in many diagnostic appli-
cations is undeniable.

A clinical scenario where repeated images are acquired is 
the management of patients diagnosed with pneumothorax. 
Pneumothorax is a condition in which air accumulates in the 
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space between the lung and chest wall. Due to its life-threat-
ening nature, rapid detection and intervention are crucial to 
prevent severe morbidity or mortality. If the pneumothorax 
is large or increasing in size, a chest tube must be inserted 
[1]. Therefore, monitoring its changes is essential. Pneumo-
thorax can be challenging to detect and may not be evident 
on follow-up images. As a result, physicians often consult 
prior images and reports as part of their standard workflow. 
This workflow could be significantly enhanced through the 
use of automatic pneumothorax segmentation tools.

Prior works have explored the application of deep learn-
ing techniques to assist several medical tasks such as dis-
ease classification [2, 3], image retrieval [4, 5], and disease 
detection [6]. Motivated by the recent success of multi-
modal vision-language models [7, 8], we aim to leverage 
information in clinical reports to improve medical image 
analysis. Models like ConVIRT [9] and GLoRIA [10] have 
used image-report pairs and contrastive learning objectives 
to learn vision representations, which have shown prom-
ising results in downstream classification tasks. However, 
these models only utilized text for pre-training, without 
integrating it into the model to guide image analysis. Other 
approaches employed image and text encoders to identify 
instances of pneumonia and placed bounding boxes around 
them [11], but did not provide pixel-level segmentation. 
LAVT [12] produced pixel-wise predictions from image-
text pairs, specifically for referring image segmentation of 
household items rather than for use in medical imaging. 
LVIT [13] is a vision-language model that took chest x-ray 
(CXR) images and text as inputs and generated segmenta-
tion masks for patients diagnosed with coronavirus disease 
2019 (COVID-19). Nevertheless, instead of utilizing real 
free-form radiology reports, the work synthesized the text 
inputs from the ground-truth labels, which casts ambigu-
ity on whether physician-generated text can enhance image 
analysis. Additionally, these existing works do not address 
language model choice, which data augmentations are suit-
able for multimodal vision-language segmentation, and a 
series of other methodological questions that we attempt to 
address in this study.

In this work, we aimed to apply multimodal learning to 
integrate physician reports into the task of pneumothorax 
segmentation on chest radiographs and explore the augmen-
tations, model architecture, and training methodologies for 
use in the medical domain. To this end, we developed an 
algorithm that maps concepts from language space into med-
ical image space so that descriptive text can be used to guide 
image segmentation. Instead of bounding box detection, we 
pursued fine-grained segmentation, as it provides delinea-
tion of boundaries, and allows for morphological analysis 
and quantitative measurements (e.g., volume) of the dis-
ease. Compared to non-medical segmentation tasks, pneu-
mothorax segmentation poses distinct challenges, including 

limited image availability, and the expertise and overall cost 
required for annotation. Our approach of directly incorporat-
ing physician-generated text into the image analysis has the 
benefit of improving segmentation accuracy by allowing the 
model to leverage the physician’s expertise. Moreover, this 
language integration paves the way for real-time, physician-
guided disease assessment.

The paper organizes itself as follows: Section “Methods” 
delves into the methodology of our proposed vision-language 
model, ConTEXTual Net. Section “Experimental Setting” 
details the experimental setup. We present the segmentation 
results of our model and ablation analysis in “Results” section. 
Lastly, we discuss our findings and conclusions.

Methods

Model Architecture

Figure 1 shows the architecture of ConTEXTual Net, and the 
open-source project1 provides the implementation details. 
A U-Net encoding scheme, shown in green, extracts vision 
features from the image, while a pre-trained language model, 
shown in blue, extracts language features. This approach 
leverages the ability of the U-Net to contour disease and 
the ability of transformer-based language models to extract 
semantically rich vectors that can be used to help localize 
the disease. Within the U-Net, each vision encoder layer is 
a stack of two sub-layers, where each sub-layer is a convolu-
tion followed by batch normalization and ReLU activation. 
Each encoder layer feeds its output as a skip connection 
to a cross-attention module, depicted in yellow in Fig. 1, 
and described in the “Language Cross-Attention” section. 
Meanwhile, the encoder output is also downsampled via max 
pooling and fed to the next encoder layer. The output of 
the cross-attention module is subsequently fed to a decoder 
layer, which is also a stack of two convolution sub-layers 
with batch normalization and ReLU (similar to the encoder 
layer) and then upsampled as inputs to the next cross- 
attention module. The last layer of the decoder is a 1 × 1 
convolution, which reduces the channels to a single output 
channel and is used for pixel-level prediction.

To integrate language into the model, a pre-trained lan-
guage model is used to encode the text report into contex-
tualized text embeddings. These embeddings are further 
projected by a linear layer and fed as inputs to the cross-
attention modules. The model is trained using supervised 
learning with a cross-entropy loss on the prediction and 
ground-truth segmentation labels. Unless explicitly stated 
otherwise, we freeze the pre-trained language model during 

1  https://​github.​com/​zhuem​ann/​ConTE​XTual​Segme​ntati​on

https://github.com/zhuemann/ConTEXTualSegmentation
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training, thereby reducing the number of parameters that 
must be learned and reducing GPU memory requirements.

Language Cross‑Attention

ConTEXTual Net uses a cross-attention module to integrate 
the embeddings from the language model into the vision-
based segmentation model. We inject the text embeddings 
into the decoding side of a U-Net. Conceptually, the text 
embeddings contain semantic information about the pres-
ence and location of the disease and can be used to guide the 

U-Net segmentation model. The cross-attention between the 
text embeddings and the decoded feature maps produces a 
pixel-wise attention map. This pixel-wise attention map then 
gets fed into a Tanh activation function to normalize values 
between −1 and 1. The normalized pixel-wise attention map 
is then multiplied pixel-wise with the query feature map. 
The pixel-wise attention map, A , is obtained by

(1)A = unflatten
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to extract language representations. The architecture is modular 
such that any language model that creates word-level vector rep-
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U-Net to predict the segmentation masks. The cross-attention module 
(dotted box) is further detailed in Fig 2
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where 𝐐̄ ∈ ℝ
wh×c is the query vectors flattened from the 

upsampled feature map Q ∈ ℝ
w×h×c of size w × h in c chan-

nels, K = V ∈ ℝ
l×dp are the projected text embeddings of 

a report of l words, and WQ ∈ ℝ
c×c , WK ∈ ℝ

c×c , and WV 
∈ ℝ

c×c are the learnable weights that project the query, key 
and value vectors to the same dimensional space. Here, we 
select the projected text dimension dp to match the number of 
channels c at each decoder layer of the U-Net. After matrix 
multiplication this yields a matrix that is wh × c which is 
then unflattened into A with dimensions w × h × c Subse-
quently, the cross-attention module output is calculated as

where ⊙ is the element-wise multiplication of the input fea-
ture map Q and the normalized pixel attention map A , and 
Q∗ is the attention-weighted feature map. Empirically, we 
found that the Tanh activation performs better than other 
activation functions.

Augmentations

Data augmentation is the process of altering training data to 
synthetically increase dataset size so that the model better 
generalizes to new situations. For multimodal models, these 
data augmentations must preserve the concordance between 
the text description and image. For example, if horizontal 
image flips are used, the descriptions of “left” and “right” 
no longer correspond to the image. This can be addressed 
by picking augmentations invariant to the other modality or 
augmenting both modalities to retain concordance. In this 
work, we focused on finding augmentations invariant to the 
other modality.

We considered the following set of image augmentations: 
horizontal flip 50% of the time, 30% of the time choosing 
one from RandomContrast, RandomGamma, and Random-
Brightness, and again 30% of the time choosing from Elas-
ticTransform, GridDistortion, and OpticalDistortion and 
lastly ShiftScaleRotate, all of which have been used previ-
ously for pneumothorax segmentation [14, 15]. Out of those, 
horizontal flipping was the only augmentation that we found 
to break the image-text concordance and was thus left out 
from all experiments unless otherwise stated. All augmen-
tations were implemented using the Albumentations 
library [16].

Text augmentations were experimented with to improve 
the model’s generalizability to different writing styles. Spe-
cifically, two augmentations were used: sentence shuffling 
and synonym replacement. In sentence shuffling, the text 
is split into sentences and randomly rearranged. For radiol-
ogy reports, sentences are generally self-contained with few 
inter-sentence dependencies, and we expect sentence shuf-
fling to have little to no effect on the meaning. For synonym 

(2)Q∗
= tanh(A)⊙Q

replacement, we used RadLex [17], a radiology ontology 
that contains definitions and synonyms for radiology-spe-
cific terms. During train time, each word in the report with 
a RadLex-listed synonym was replaced with that synonym 
15% of the time.

Experimental Setting

CANDID‑PTX Dataset

We developed and evaluated ConTEXTual Net using the 
CANDID-PTX dataset. The CANDID-PTX dataset consists 
of 19,237 chest radiographs with reports and segmentations 
of pneumothoraces, acute rib fractures, and intercostal chest 
tubes. We focused on pneumothorax in this study. There 
are 3196 positive cases of pneumothorax with segmentation 
annotations labeled by six different physicians. A second 
annotator checks each individual physician annotation for 
validity; this checked annotation is treated as ground truth 
for the purposes of our study. It is important to note that the 
physician who dictated the original report was different from 
the physician responsible for labeling.

The segmentation performance is evaluated using Dice 
scores given by

which compares two observers’ predictions (i.e., model 
vs annotation or one physician annotator vs another). The 
inter-rater Dice similarity scores between the six physi-
cians ranged from 0.64 to 0.85 on a test set of 73 randomly 
selected images meant to evaluate inter-annotator variability. 
The primary annotator labeled 92.7% of the images in the 
dataset and had a mean Dice similarity score of 0.712 when 
compared to the other five physicians. The dataset was origi-
nally collected with approval from an ethics committee with 
waiver of informed consent and was made available under a 
data use agreement [18].

Model Comparison

To show the efficacy of our architectural design, we com-
pared ConTEXTual Net against methods from previous stud-
ies. Specifically, we trained a U-Net model [19] that shares 
the same architecture with the vision-only component of 
ConTEXTual Net. We also included a baseline model that 
was built on the standard U-Net, with the encoder being 
replaced by Resnet50 [20]. Additionally, we compared 
against a U-Net with the encoder weights initialized from 
the GLoRIA model, which was pre-trained using multimodal 
contrastive learning with approximately 200k image-report 

(3)Dice =
2|A ∩ B|
|A| + |B|
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pairs of chest x-rays [10]. More modern transformer seg-
mentation methods also include Swin UNETR [21], which 
uses a Swin transformer as an encoder in a U-Net fashion. 
We also compare against a top-performing convolutional 
model nnUnet [22]. Lastly, we finetuned LAVT [12], which 
is a state-of-the-art vision-language model, for the task of 
text-guided pneumothorax segmentation. LAVT uses a Swin 
transformer to encode the image information and a BERT 
model to encode the language and fuses these via a pixel-
word attention module.

Language Models

ConTEXTual Net uses language models to extract and 
encode important statements from the reports. In this 
study, we compared T5-Large’s encoder [23], RoBERTa-
Large [24], RadBERT [25] and BERT [26], as the language 
encoders. T5-Large is a larger model with 770M param-
eters, RoBERTa-Large contains 354M parameters, and Rad-
BERT and Bert are considerably smaller at 125M and 110M 
parameters, respectively. All models are transformer-based, 
but their training datasets and tasks differ. T5 is trained on 
the c4 dataset, which contains roughly 300GB of text and 
is intended to be capable of diverse tasks, including text 
classification, question answering, machine translation, and 
abstractive summarization. RoBERTa-Large and Bert are 
trained via masked language modeling, but RoBERta-Large 
was trained on a 161GB text corpus, whereas BERT’s train-
ing corpus was 16GB. RadBERT is initialized from RoB-
ERTa-Base but is trained with roughly 4M additional radiol-
ogy reports from the U.S. Department of Veterans Affairs.

The reports were fed into the language models, and the 
hidden state vectors were used as our report representations. 
The report representation has dimensions of 512 × 1024 
(token length × embedding dimension) for T5-Large and 
RoBERTa-Large and 512 × 768 for RadBERT and BERT. 
This report representation then goes through a projection 
head to lower the embedding dimensionality of the hidden 
state vector to match the number of channels in the encoder 
feature maps. This is a necessary step for the language cross-
attention to work at multiple levels in the U-Net decoder. 
Language models were imported via HuggingFace 
library [27].

Ablation Analysis

We performed ablations studies to determine the additive 
value of augmentations as well as ConTEXTual Net’s com-
ponents. Ablation studies were performed in three settings: 
without any augmentations, with image augmentations only, 
and with both image and text augmentations. We addition-
ally tested ConTEXTual Net with the full language encoder 
and cross-attention modules, but the input text was replaced 

with an empty string to help quantify the effects of the phy-
sician text.

Along with these experiments, we probed using different 
language models, activation functions, integration points, and 
unfreezing schedules. RoBERTa-Large, RadBERT, and Bert 
were swapped with the T5 encoder to examine how sensitive 
ConTEXTual Net is to the language model used. To determine 
the best activation function in the cross-attention module, we 
tested using no activation function, ReLU, Sigmoid, and the 
hyperbolic tangent function. We examined the impact of only 
using a single attention module at the four different levels of 
the network. This is meant to probe whether textual informa-
tion should be inserted early in the image analysis or at later 
stages. We also explored the consequences of unfreezing the 
final two layers of the language model at various stages during 
training. For the unfreezing experiments, RadBERT was used 
as it is a smaller model, meaning we could unfreeze more of 
its layers without running into memory problems. All language 
model, activation function, and attention module integration 
experiments were performed with vision augmentations only.

Model Hyperparameters

All ConTEXTual Net models were trained with the AdamW 
optimizer, a learning rate of 5e-5, and 100 epochs with a 
binary cross-entropy loss. The native image dimensions of 
1024 × 1024 were used. The model which did best on the 
validation set was used on the cross-validation test set. We 
report the average and standard deviation of 5-fold Monte 
Carlo cross-validation with 80% in training, 10% in vali-
dation, and 10% in testing for each fold. All models were 
trained on NVIDIA A100 GPUs.

Results

Table 1 shows a comparison of Dice scores for all mod-
els and the primary physician annotator as compared to the 
other physician annotators. Overall, the best-performing 

Table 1   Model comparisons

The bolding is commonly used to denote the best-performing model 
and is bolded for quick reference

Model type AVG Dice SD

ConTEXTual vision-only U-Net 0.680 0.014
Resnet50 U-Net [20] 0.677 0.015
GLoRIA [10] 0.686 0.014
Swin UNETR [21] 0.670 0.015
nnUNet [22] 0.694 0.016
LAVT [12] 0.706 0.009
ConTEXTual Net 0.716 0.016
Primary Physician Annotator [18] 0.712 0.044
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configuration of ConTEXTual Net (Dice 0.716 ± 0.016) 
outperformed the baseline U-Net (0.680 ± 0.014), the trans-
former-based vision model Swin UNETR (0.670 ± 0.015), 
the best vision-only model nnUnet (0.694 ± 0.016) and 
LAVT (0.706 ± 0.009) and performed similarly to the pri-
mary labeling physician (0.712 ± 0.044). Example images 
with results are shown in Fig. 3.

We report results from ablation analyses in Table 2. Due 
to the joint dependencies of ConTEXTual Net’s components 
and the data augmentations used during training, we report 
results separately based on the types of data augmentations.

Vision Augmentations

We evaluated the added value of ConTEXTual Net’s cross-
attention module with different vision-based augmentation 
methods. Without vision augmentations, ConTEXTual Net 
(0.668 ± 0.010) only slightly outperformed the baseline 
U-Net (0.649 ± 0.014). When the vision augmentations were 
applied, ConTEXTual Net’s (0.716 ± 0.016) relative per-
formance compared to the baseline U-Net (0.680 ± 0.014) 
increases to a 3.6 Dice point improvement. The performance 
of ConTEXTual Net significantly decreases (0.671 ± 0.019) 
when the reports are replaced with padding tokens (i.e., an 
empty string was used as input), which indicates that the 
reports are indeed helping guide the segmentation. When 
horizontal image flipping is applied, ConTEXTual Net’s 
(0.675 ± 0.016) performance decreases by 4.1 Dice points 
and is comparable to using the empty string as input. This 
suggests the model learned to ignore the text when aug-
mentations break the image-text correspondence. All other 
vision augmentations improved the model performance.

Text Augmentations

Although text augmentation represents a promising approach 
to vision-language data augmentations, text augmenta-
tions did not lead to gains in segmentation performance, as 
shown in Table 2. Using RadLex-based synonym replace-
ment (0.705 ± 0.008) resulted in a decrease in performance 
of 1.1 dice points. Sentence shuffle (0.713 ± 0.023) led to 
increased variance across runs. Using both augmentations 
with the T5 encoder (0.714 ± 0.014) had minimal effect on 
the model’s performance.

Language Models

We evaluated using RoBERTa-Large (0.713 ± 0.010), 
RadBERT (0.716 ± 0.022), and BERT (0.713 ± 0.020) 
instead of T5 as the language encoder while using vision 
augmentations. This had a negligible impact on perfor-
mance, suggesting that ConTEXTual Net is robust to the 
language model used.

Activation Functions

The use of different activation functions was investigated 
using T5 as our language encoder with vision augmenta-
tions and without text augmentations. It was found that the 
hyperbolic tangent activation function (0.716 ± 0.016) per-
formed the best, outperforming the sigmoid function (0.710 
± 0.010). Using ReLU was found to decrease performance 
(0.698 ± 0.027) when compared to not using any activation 
function (0.704 ± 0.018).

Integration of Cross‑attention Modules 
at Different Levels

We found that the lower the attention was integrated, the 
better the model performed. The L4 (i.e., decoder layer 4) 
cross-attention module (0.712 ± 0.019) performed slightly 
better than the L3 cross-attention module (0.709 ± 0.013). 
Moving from the L3 to L2 cross-attention module (0.685 
± 0.021) precipitated the most significant drop in perfor-
mance of 2.4 dice points. Finally, the L1 cross-attention 
module performed slightly worse than the L2 cross-attention 
module.

Unfreezing of the Language Model

Unfreezing the language model too early in the training process 
led to decreased performance. The most significant impact is 
observed when the language model is unfrozen at the beginning 
of training (0.704 ± 0.011), which results in a decrease of 1.2 
dice points. By the 25th epoch, unfreezing the language model 
(0.712 ± 0.014) had a much smaller effect, decreasing the per-
formance by 0.4 dice points. Unfreezing the language model 
had no effect after the 50th epoch, with all models having an 
average dice score of 0.716.

Discussion

In this work, we proposed a method to extract information 
from clinical text reports and integrate it into a medical 
image segmentation algorithm. Our multimodal approach 
led to a 3.6 Dice point improvement over a traditional 
vision-only U-Net and achieved accuracy that matched 
physician performance. Additionally, we demonstrated 
the importance of maintaining image-text concordance 
when performing data augmentation and showed that 
early fusion leads to more accurate predictions for multi-
modal segmentation.

We showed the feasibility of using language from radiol-
ogy reports to guide the output of segmentation algorithms. 
To illustrate how text can guide pixel-level predictions, we 
can change the input text and observe how the segmentation 
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Fig. 3   Predictions from all seven evaluated models, as well as the 
physician labeled target, and a portion of the text is shown. Note how 
ConTEXTual Net is able to use descriptions like “extending from the 
apex to the base” (first column) and avoid false positives (columns 

2–5). The last column demonstrates how multimodal models are able 
to use the text to detect subtle disease described in the report; inter-
estingly, nnUNet also performs well in this case, while all the other 
vision models fail to detect the apical pneumothorax



1659Journal of Imaging Informatics in Medicine (2024) 37:1652–1663	

model reacts. For example, in Fig. 4, we changed the word 
“right” to “left”, “large pneumothorax” to “small pneumo-
thorax”, and the location descriptor from “base” to “apical”, 
and observed corresponding changes in the output segmenta-
tion map. We also showed that flipping an image during data 
augmentation can negatively impact model performance. In 
Fig. 5, we show that changing the text from “left” pneumo-
thorax to “right” pneumothorax alters the attention maps 
from the cross-attention module, resulting in changes in the 
corresponding feature maps and model output.

ConTEXTual Net compared favorably to other vision- 
language models. The GLoRIA model, which only used text 
reports for pre-training, performed similarly to the baseline 

U-Net. This is not unexpected, as the purported advantage of 
GLoRIA is its performance in low-label settings, with lim-
ited advantages when datasets are sufficiently large [10]. Our 
model slightly outperformed LAVT. LAVT was developed for 
segmenting the object(s) described in the text caption. Text cap-
tions were, on average, 1.6 words to 8.4 words long in the LAVT 
study, depending on the dataset. In contrast, our study had a sin-
gle segmentation target, which was pneumothorax, and the phy-
sician-generated text that described the disease was, on average, 
much longer at 63.7 words. Another key difference in methods 
is our use of a CNN as the vision encoder, whereas LAVT used 
a Swin vision transformer. This design choice is driven by the 
lower number of images in medical databases compared to the 
natural image databases LAVT is trained on and the observation 
that CNNs are typically more sample efficient [28]. Experimen-
tally, this can be seen in the poor performance of Swin UNETR 
when compared to the other convolutional-based models.

Our cross-attention integration experiments reveal a cru-
cial insight into the integration of language with the vision 
encoder. Notably, we observed that integrating language at 
the lower levels of the U-Net improved model performance. 
This suggests that prioritizing early integration may be a 
strategic design choice. Cross-attention at a single layer may 
be a pragmatic approach to optimize resource utilization.

Additionally, we show that prematurely unfreezing the lan-
guage model can negatively affect the model’s performance. 
We hypothesize that the relatively large losses incurred early on 
in training cause large changes to the language model weights, 
hurting the language model’s ability to extract useful features 
from the text. By waiting until the model produces more accu-
rate predictions with lower losses and then unfreezing the lan-
guage model, the degradation in performance can be avoided. 
Lastly, our experiments show limited to no gains from unfreez-
ing the language model’s parameters, so by keeping them frozen, 
the computational graph created by Pytorch is minimized, sav-
ing memory and speeding up training.

ConTEXTual Net was insensitive to the language model 
used to encode the radiology reports, but it was sensitive to the 
data augmentation methods and the activation function used 
within the cross-attention module. We found that Tanh, by both 
bounding the output of the cross-attention and preserving the 
negative values, performed better than other activation func-
tions in the cross-attention module. LAVT likewise found that 
Tanh was the best activation function [12].

Multimodal medical image segmentation algorithms have 
several potential applications in radiology workflows. A pri-
mary motivation for this work was to address the challenge 
of reviewing follow-up imaging exams. For example, many 
patients who present with pneumothorax get an initial chest 
X-ray and then receive another chest X-ray within 3–6 h to 
monitor the pneumothorax [29]. This means radiologists must 
visually compare the size and extent of the disease on previ-
ous chest X-rays. Multimodal models such as ConTEXTual 

Table 2   Ablation study of ConTEXTual Net

Bold values denote the highest-performing configuration of ConTEX-
Tual Net

Model type AVG Dice SD

No augmentations
    Baseline U-Net 0.649 0.014
    ConTEXTual Net 0.668 0.010

Vision augmentations
    Baseline U-Net 0.680 0.014
    ConTEXTual Net 0.716 0.016
    ConTEXTual Net with flipping 0.675 0.016
    ConTEXTual Net w/o reports 0.671 0.019

Text augmentations
    No text augmentations 0.716 0.016
    Synonym Replacement 0.705 0.008
    Sentence Shuffle 0.713 0.023
    Synonym + Sentence Shuffle 0.714 0.014

Language models
    ConTEXTual Net (T5) 0.716 0.016
    ConTEXTual Net (RoBERTa-Large) 0.713 0.010
    ConTEXTual Net (RadBERT) 0.716 0.022
    ConTEXTual Net (BERT) 0.713 0.020

Activation functions
    ConTEXTual Net (Tanh) 0.716 0.016
    ConTEXTual Net (ReLU) 0.698 0.027
    ConTEXTual Net (Sigmoid) 0.710 0.010
    ConTEXTual Net (No Activation) 0.704 0.011

Cross-attention integration
    Attention Module L4 0.712 0.019
    Attention Module L3 0.709 0.013
    Attention Module L2 0.685 0.021
    Attention Module L1 0.679 0.011

Unfreezing language model
    Unfreeze at start 0.704 0.011
    Unfreeze at 25th epoch 0.712 0.014
    Unfreeze at 50th epoch 0.716 0.020
    Unfreeze at 75th epoch 0.716 0.010
    Frozen 0.716 0.022
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Fig. 4   The same input image with different text is fed into the mul-
timodal model. In the top row, an incorrect report describing an api-
cal pneumothorax is used as input with an image, demonstrating that 
location descriptors like “apical” and “base” carry relevant informa-
tion for segmentation. In the middle row, we show an example of an 

image and text with the term “right” changed to “left”. This illus-
trates the model’s sensitivity at the word level. In the bottom row, we 
changed the term “large” to “small”, which resulted in a reduction of 
segmented pixels by 10%. Note that “left” and “right” correspond to 
the patient’s “left” and “right”
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Net could help with tasks involving longitudinal assessment. 
Vision-language segmentation models may also enable seg-
mentation based on physician dictation, which could enable 
voice-guided disease quantification. While a practical limita-
tion of ConTEXTual Net is that it requires language as input, 
which precludes its use on exams that a physician has not yet 
reviewed, it does provide a mechanism by which physicians 
can work together with AI to produce better outputs. These 
types of models can help to address patient and clinician con-
cerns about the use of autonomous AI in medicine.

In this study, we only analyzed positive cases of pneumo-
thorax. Prior studies on pneumothorax segmentation included 
both positive and negative cases. For example, in the SIIM-
ACR Pneumothorax Segmentation challenge, models that 

erroneously placed regions of interest in cases that were 
negative for pneumothorax were assigned a Dice score of 0. 
Models that correctly refused to place regions of interest in 
negative cases were assigned a Dice score of 1 [15]. Since the 
SIIM-ACR dataset had mostly negative cases, simply predict-
ing negative on all cases resulted in a Dice score of around 
0.79. We did not include negative cases because the input text 
to our multimodal model explicitly states whether the case is 
negative or positive. A language model could easily classify 
the cases as positive or negative based on the report [18]. 
Therefore, it is not appropriate to compare our multimodal 
model, which has access to the report text, to other vision 
models that do not have a way to use the text. Consequently, 
it is not easy to directly compare the results of our multimodal 

Fig. 5   The same image is fed to the model with only a single word 
changed in the text report: “left” was switched to “right”. Feature 
maps of a selected channel at different layers of the U-Net are shown 
when two different text inputs are used. Shown are the input feature 
maps to the language cross-attention module, the attention output by 
the cross-attention module after the Tanh activation, and the feature 
maps after the pixel-wise multiplication. In this case, it can be seen 

how the language changes the attention maps and guides the feature 
maps to reflect this change in the language. In the original text, the 
attention maps suppress the pixels in the right lung and portions of 
the left lower zone. In contrast, the attention maps in the case of the 
altered text suppress the pixels in the left lung but fail to suppress this 
signal completely, and the result is a prediction of both a right and a 
small left pneumothorax



1662	 Journal of Imaging Informatics in Medicine (2024) 37:1652–1663

study to other vision-only studies on pneumothorax segmenta-
tion. Instead, we compared ConTEXTual Net’s performance to 
the degree of inter-physician variability on the same dataset. 
We found that ConTEXTual Net’s segmentation accuracy was 
comparable to the variability between physician contours.

There are several limitations of this proof-of-concept 
study. First, the study was trained and evaluated using a 
single dataset. This limits our ability to know how gen-
eralizable the ConTEXTual Net architecture is to other 
related tasks. Despite the availability of large medical 
imaging datasets that have images and radiology reports 
(e.g., MIMIC-CXR [30]) or that have images and segmen-
tation labels (e.g., SIIM Kaggle [31]), there is a scarcity of 
large datasets containing all three elements. An additional 
limitation is that most of the samples in the CANDID-PTX 
dataset were labeled by a single physician. While the origi-
nal CANDID-PTX study did analyze inter-observer vari-
ability, our model’s pneumothorax segmentations likely 
reflect the tendencies of the primary annotator.

In conclusion, we demonstrated the feasibility of using 
vision-language models to enhance medical image seg-
mentation and showed that descriptive language can guide 
medical image analysis algorithms.
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