Skip to main content
. 2024 Mar 14;37(4):1652–1663. doi: 10.1007/s10278-024-01051-8

Table 2.

Ablation study of ConTEXTual Net

Model type AVG Dice SD
No augmentations
    Baseline U-Net 0.649 0.014
    ConTEXTual Net 0.668 0.010
Vision augmentations
    Baseline U-Net 0.680 0.014
    ConTEXTual Net 0.716 0.016
    ConTEXTual Net with flipping 0.675 0.016
    ConTEXTual Net w/o reports 0.671 0.019
Text augmentations
    No text augmentations 0.716 0.016
    Synonym Replacement 0.705 0.008
    Sentence Shuffle 0.713 0.023
    Synonym + Sentence Shuffle 0.714 0.014
Language models
    ConTEXTual Net (T5) 0.716 0.016
    ConTEXTual Net (RoBERTa-Large) 0.713 0.010
    ConTEXTual Net (RadBERT) 0.716 0.022
    ConTEXTual Net (BERT) 0.713 0.020
Activation functions
    ConTEXTual Net (Tanh) 0.716 0.016
    ConTEXTual Net (ReLU) 0.698 0.027
    ConTEXTual Net (Sigmoid) 0.710 0.010
    ConTEXTual Net (No Activation) 0.704 0.011
Cross-attention integration
    Attention Module L4 0.712 0.019
    Attention Module L3 0.709 0.013
    Attention Module L2 0.685 0.021
    Attention Module L1 0.679 0.011
Unfreezing language model
    Unfreeze at start 0.704 0.011
    Unfreeze at 25th epoch 0.712 0.014
    Unfreeze at 50th epoch 0.716 0.020
    Unfreeze at 75th epoch 0.716 0.010
    Frozen 0.716 0.022

Bold values denote the highest-performing configuration of ConTEXTual Net