Table 2.
Model type | AVG Dice | SD |
---|---|---|
No augmentations | ||
Baseline U-Net | 0.649 | 0.014 |
ConTEXTual Net | 0.668 | 0.010 |
Vision augmentations | ||
Baseline U-Net | 0.680 | 0.014 |
ConTEXTual Net | 0.716 | 0.016 |
ConTEXTual Net with flipping | 0.675 | 0.016 |
ConTEXTual Net w/o reports | 0.671 | 0.019 |
Text augmentations | ||
No text augmentations | 0.716 | 0.016 |
Synonym Replacement | 0.705 | 0.008 |
Sentence Shuffle | 0.713 | 0.023 |
Synonym + Sentence Shuffle | 0.714 | 0.014 |
Language models | ||
ConTEXTual Net (T5) | 0.716 | 0.016 |
ConTEXTual Net (RoBERTa-Large) | 0.713 | 0.010 |
ConTEXTual Net (RadBERT) | 0.716 | 0.022 |
ConTEXTual Net (BERT) | 0.713 | 0.020 |
Activation functions | ||
ConTEXTual Net (Tanh) | 0.716 | 0.016 |
ConTEXTual Net (ReLU) | 0.698 | 0.027 |
ConTEXTual Net (Sigmoid) | 0.710 | 0.010 |
ConTEXTual Net (No Activation) | 0.704 | 0.011 |
Cross-attention integration | ||
Attention Module L4 | 0.712 | 0.019 |
Attention Module L3 | 0.709 | 0.013 |
Attention Module L2 | 0.685 | 0.021 |
Attention Module L1 | 0.679 | 0.011 |
Unfreezing language model | ||
Unfreeze at start | 0.704 | 0.011 |
Unfreeze at 25th epoch | 0.712 | 0.014 |
Unfreeze at 50th epoch | 0.716 | 0.020 |
Unfreeze at 75th epoch | 0.716 | 0.010 |
Frozen | 0.716 | 0.022 |
Bold values denote the highest-performing configuration of ConTEXTual Net