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Abstract
Identifying indolent and aggressive prostate cancers is a critical problem for optimal treatment. The existing approaches 
of prostate cancer detection are facing challenges as the techniques rely on ground truth labels with limited accuracy, and 
histological similarity, and do not consider the disease pathology characteristics, and indefinite differences in appearance 
between the cancerous and healthy tissue lead to many false positive and false negative interpretations. Hence, this research 
introduces a comprehensive framework designed to achieve accurate identification and localization of prostate cancers, 
irrespective of their aggressiveness. This is accomplished through the utilization of a sophisticated multilevel bidirectional 
long short-term memory (Bi-LSTM) model. The pre-processed images are subjected to multilevel feature map-based U-Net 
segmentation, bolstered by ResNet-101 and a channel-based attention module that improves the performance. Subsequently, 
segmented images undergo feature extraction, encompassing various feature types, including statistical features, a global 
hybrid-based feature map, and a ResNet-101 feature map that enhances the detection accuracy. The extracted features are fed 
to the multilevel Bi-LSTM model, further optimized through channel and spatial attention mechanisms that offer the effective 
localization and recognition of complex structures of cancer. Further, the framework represents a promising approach for 
enhancing the diagnosis and localization of prostate cancers, encompassing both indolent and aggressive cases. Rigorous 
testing on a distinct dataset demonstrates the model’s effectiveness, with performance evaluated through key metrics which 
are reported as 96.72%, 96.17%, and 96.17% for accuracy, sensitivity, and specificity respectively utilizing the dataset 1. For 
dataset 2, the model achieves the accuracy, sensitivity, and specificity values of 94.41%, 93.10%, and 94.96% respectively. 
These results surpass the efficiency of alternative methods.
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Introduction

Prostate cancer is one of the prevalent malignancies affect-
ing men, marked by the abnormal proliferation of cells. If 
left untreated, these anomalous tissues can undergo uncon-
trolled expansion, with the potential to metastasize to vari-
ous parts of the body [19]. While prostate cancer can exhibit 
rapid growth and spread, it often follows a slow progression 
in most cases. Year by year, an increasing number of men 
receive this diagnosis [10]. Accurately diagnosing pros-
tate cancer can pose challenges due to the risk of incorrect 

results and the discomfort associated with diagnostic pro-
cedures. Given its higher incidence in older men, there is a 
pressing need for a precise classification methodology [4]. 
Prostate cancer ranks as the fourth most common cancer 
globally [16]. An advanced stage of this cancer is metastatic 
castration-resistant prostate cancer, known for its resistance 
to androgen deprivation therapy. In its initial stages, this 
disease frequently presents with no noticeable symptoms, 
underscoring the significance of active surveillance before 
considering treatment options [11]. Despite the complexities 
in diagnosing its various stages, determining the appropriate 
treatment pathway can be a formidable task [8]. Methods 
employed for detecting prostate cancer in its early stages 
include antigen measurement and digital rectal examina-
tions. When test results point toward the presence of prostate 
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cancer, a biopsy is typically recommended for these patients 
[7, 14].

CorrSigNIA is a diagnostic method used in the assess-
ment of prostate cancer, comprising two key modules: fea-
ture learning and detection [23]. Features are initially trained 
and subsequently extracted by passing through convolutional 
and RELU blocks. VGG-16 network is employed for feature 
extraction from MRI images [18]. This approach involves a 
correlation study of feature space and the extracted features. 
Deep learning (DL), a cutting-edge technique in artificial 
intelligence, has gained significant traction across various 
domains [21]. In ANN, computations are performed by 
neurons, serving as the fundamental computational units. 
Neurons are grouped into multiple layers, with data from 
one layer being transmitted to the next layer. This forms a 
layered structure, allowing for complex information process-
ing [4, 17]. The CNN utilizes three MRI images, namely 
T2-weighted diffusion coefficient and diffusion-weighted 
images. Due to the relatively small image size, both down-
sampling and upsampling techniques are employed for pros-
tate cancer detection [5, 6]. The data processing approach 
encompasses signal segmentation, and the power spectral 
analysis is carried out utilizing the Welch method. Addition-
ally, a Hamming window of 2500 sampling points in length 
is applied. An automated learning procedure is integral to 
parameter estimation in the CNN [2]. The learning rate is 
dynamically adjusted after numerous iterations, contributing 
to improved training performance [3]. For sample classifi-
cation, linear analysis is employed, and depending on the 
disease’s progression, these samples can be summarized into 
a single value [13, 20].

During the testing phase, predictive probabilities are 
transformed into discrete classes, assigning a class based on 
the normalized probability value. This approach facilitates 
effective feature extraction and data analysis, catering to the 
unique challenges posed by disease detection and classifica-
tion [15, 22]. The combination of power spectral measure-
ment, windowing techniques, and automated learning aids in 
optimizing the performance of the CNN. It enables accurate 
categorization of samples, particularly in the context of dis-
ease progression. The incorporation of discriminant analysis 
adds to the overall efficiency by reducing the dimensionality 
of wavelength data [1]. This streamlined process enhances 
the accuracy and reliability of predicting disease presence, 
contributing to improved diagnostic capabilities [24] [12]. 
The conventional techniques involve limitations as the detec-
tion depends on ground truth labels with limited accuracy, 
and histological similarity, and neglects the disease pathol-
ogy characteristics found in resected tissue. Further, the sub-
tle differences found in the appearance of the cancerous and 
healthy tissue introduce more false positive and false nega-
tive predictions. Additionally, it is more challenging to local-
ize and distinguish the indolent and aggressive cancer types 

when they co-exist within the mixed lesion which occurs 
generally in 48% of all cancers and 76% of index lesions [6].

To overcome the above limitations, the research presents 
a robust framework that can accurately identify and pin-
point both slow-growing and aggressive prostate cancers 
by employing a multilevel Bi-LSTM model. The technique 
commences with MRI-based image collection from Pros-
tate158—Training data and the Prostate MRI dataset, fol-
lowed by rigorous pre-processing and ROI extraction. These 
pre-processed images are subjected to multilevel feature 
map-based U-Net segmentation, fortified with ResNet-101 
and a channel-based attention module for enhanced per-
formance. Segmented images undergo feature extraction, 
including statistical and hybrid-based features. Extracted 
features are then fed into the multilevel Bi-LSTM model, 
optimized further with channel and spatial attention mecha-
nisms. The contributions are as follows:

Multilevel Bi‑LSTM for prostate cancer detection  The locali-
zation of indolent and aggressive prostate cancer involves 
the multilevel feature map-based U-Net, an encoder-decoder 
segmentation network with skip connections for obtaining 
the precise delineation of structures that provides the effec-
tive segmentation of medical imaging, including prostate 
cancer analysis. By utilizing feature maps at different scales, 
it captures both fine and coarse details, enhancing segmenta-
tion accuracy. The advantages include improved localization 
and recognition of complex structures, such as tumors within 
prostate images. Further, the channel attention and spatial 
attention enabled BiLSTM is utilized in the model to learn 
the bidirectional long-term dependencies that exist in the 
sequential features to provide the effective identification and 
localization of prostate cancer.

The manuscript is structured as follows: In “Literature 
Review” an overview of existing methods for detecting 
prostate cancer and their limitations is presented. “Proposed 
Methodology for Recognizing and Detecting Aggressive and 
Slow-Growing Prostate Tumors” delves into the multilevel 
Bi-LSTM model, providing a detailed explanation of its 
mathematical foundations. The results and insights derived 
from the application of the multilevel Bi-LSTM model are 
outlined in “Results and Discussion”. Lastly, “Conclusion” 
serves as the concluding part of this phase, summarizing the 
key findings and contributions of this study.

Literature Review

The following is an evaluation of prostate cancer detection 
techniques: A DL framework for the identification of pros-
tate tumors in consecutive contrast-enhanced ultrasound 
images was developed by Feng et al. [1]. The technique 
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significantly improved diagnostic accuracy by capturing 
dynamic perfusion information using three-dimensional 
convolution processes. However, the method’s effectiveness 
depends on the availability of contrast agents, which could 
limit its applicability in cases where these agents are inac-
cessible or contraindicated due to patient-specific factors or 
allergies. Iqbal et al. [2] explored a range of deep learning 
techniques (LSTM and ResNet-101) alongside traditional 
hand-crafted features, comparing various classifiers. LSTM 
achieved high sensitivity and accuracy, while ResNet-101 
demonstrated exceptional performance with 100% accuracy. 
These approaches led to enhanced diagnostic accuracy, but 
deep learning methods may demand substantial computa-
tional resources and extensive data. A machine learning 
(ML)–enabled computer-aided diagnostic approach was pre-
sented by Arif et al. [3] and was created especially to detect 
and classify serious prostate tumors in low-risk individuals 
who are actively being monitored. This method contributed 
to improved diagnostic accuracy and assisted in the objec-
tive assessment of MRI images, particularly for low-grade 
tumors. The method achieved commendable sensitivity and 
specificity, facilitating objective MRI image assessment for 
low-grade tumors. While this approach improved diagnostic 
accuracy, potential drawbacks include the need for special-
ized equipment and expertise for implementation. Address-
ing the diagnostic challenges posed by prostate cancer in the 
US, Abbasi et al. [4] employed robust GoogleNet and tra-
ditional ML methods for detection. DL outperformed other 
methods, delivering promising results. Enhanced accuracy 
was a notable advantage, but deep learning techniques might 
require substantial computational resources and extensive 
data. Prostate cancer diagnostic models were introduced by 
Chen et al. [5] using photoacoustic physio-chemical spectra 
collected from both healthy and malignant prostate tissue. 
This innovative approach allowed for non-invasive diagnos-
tic techniques, showing great potential for the early detection 
of prostate cancer. The non-invasive approach held prom-
ise for early cancer detection, yet challenges included data 
quality and the complexity of implementing ML techniques. 
Bhattacharya et  al. [6] presented CorrSigNIA, a fusion 
model that uses pathology and radiology data to identify 
and pinpoint prostate cancer on MRI with precision. This 
method improved diagnostic precision and the ability to dis-
tinguish between indolent and aggressive cancer. Challenges 
included the need for access to both MRI and pathology data 
for training and implementation. de Vente et al. [7] intro-
duced NN capable of simultaneously detecting and grading 
cancer tissue, offering a clinically relevant approach. Their 
model outperformed standard classification and regres-
sion methods, but limitations included the requirement for 
a specific dataset and potential challenges in generalizing 
to broader clinical settings. Broomfield et al. [8] presented 
the use of ISFETs in a point-of-care clinical diagnostics 

platform for detecting prostate cancer-related mRNA mark-
ers with high sensitivity and specificity. This technology 
enabled rapid detection within 30 min, potentially advancing 
early cancer diagnosis. However, practical implementation 
and scalability for widespread clinical use may necessitate 
further validation and optimization. Gavade et al. [29] intro-
duced a DL approach involving the U-Net architecture for 
segmenting ROI and an LSTM model for classifying the 
ROI to detect prostate cancer. The validation reduced the 
bias and enhanced the generalizability that boosts the reli-
ability and fosters clinical adoption of CAD systems. Fur-
thermore, the method can be extended by integrating vision 
transformers (ViTs) and CNNs for cancer grading tasks in 
the future. Alshareef et al. [30] utilized microarray gene 
expression data in which the chaotic invasive weed optimi-
zation (CIWO) was utilized for selecting the optimal subset 
of features. Further, DNN classified the features to detect the 
presence of cancer and eliminated the computational com-
plexity as well as enhanced the detection accuracy. Further-
more, hybrid DL-enabled prediction models integrated with 
metaheuristics optimizers can be included to enhance the 
detection results. Moroianu et al. [18]suggested a extrapro-
static extension (EPE) detection on multiparametric MRI, in 
which the trained DL models were employed that generated 
the cancer probability maps both inside and outside the pros-
tate. Further, the image post-processing pipeline generated 
the predictions for EPE location concerning the probability 
maps. However, the technique generated multiple EPE false 
positives due to the anatomical features outside the pros-
tate. Future work will concentrate on increasing the cohort 
size and validation as well as enhanced strategies for reduc-
ing false positives. Kassem et al. [36] presented a transfer 
learning (TL) model utilizing the explainable AI framework 
with ResNet50 for detecting pelvis fractures, in which the 
GRAD-CAM validated the correct input pelvic segments 
and localized the fracture regions to enhance the accuracy. 
However, the technique utilizing ResNet50 and TL model 
failed to predict three classes, while the technique utiliz-
ing TL and GoogleNet model failed to predict one normal 
and fracture case utilizing the real X-ray images. Eltoukhy 
et al. [37] utilized the Residual DL model that classified the 
complex histopathological images. The model reduced the 
vanishing gradient problem with the RELU unit and offered 
robust computation. Additionally, the technique reduced the 
computation complexity and classified up to eight classes 
of breast cancer types. Naguib et al. [38]introduced the Pre-
Trained Model AlexNet and GoogleNet model for predicting 
cervical spine fractures. The technique utilized the saliency 
map to evaluate the spatial support of a specific class within 
the image. Further, the technique classified 68 unlabeled 
X-ray images and offered low cost for implementation. 
However, some challenges associated with the design and 
selection bias are found that reduced the generalizability of 
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the model. Alsahafi et al. [39] presented the deep residual 
network that utilized multiple filters for multilayer feature 
extraction. The technique overcame the imbalanced data-
set issue by transforming the dataset into image and weight 
vectors. Further employing the various filter sizes protected 
the model from overfitting issues. However, the drawbacks 
such as high running time limited the performance and the 
technique cannot be executed in microdevices with limited 
memory.

Challenges

•	 To enhance the diagnosis of prostate cancer utilizing the 
clinical CESUS data, the development of advanced deep 
learning models is imperative, particularly when dealing 
with larger datasets.

•	 Improving both the accumulation of additional samples 
and the refinement of classification models is vital for 
achieving higher diagnostic accuracy.

•	 It is essential to support radiologists in MRI interpreta-
tion by leveraging the capabilities of CorrSigNIA. Addi-
tionally, exploring the feasibility of applying these mod-
els to external data from multiple scanners is a crucial 
step.

•	 Tasking radiologists with evaluating the utility of Corr-
SigNIA in MRI interpretation is a valuable assignment, 
as it aids in understanding its practical benefits.

•	 While it may be feasible to predict the Grade Group 
(GGG) based on MRI data, it is currently not possible to 
perform a similar grading from pathology images. This 
distinction is worth noting.

The multilevel Bi-LSTM utilizing multilevel feature 
map-based U-Net for prostate cancer detection overcame the 
above limitations of existing techniques. The multilevel Bi-
LSTM technique provides the advantage of capturing spatial 
information and context at the same time. The end-to-end 
pipeline process directly generates the segmentation maps 
and preserves the full context of the MRI images reduc-
ing the computational complexity. Further, the BiLSTM 
effectively predicts the features available to the network 
and improves the information of the cancer localization to 
effectively detect prostate cancer.

Proposed Methodology for Recognizing 
and Detecting Aggressive and Slow‑Growing 
Prostate Tumors

The key intention of this research is to develop a resilient 
framework that enables the accurate identification and locali-
zation of both indolent and aggressive prostate cancers. This 
is achieved through the utilization of a multilevel Bi-LSTM 

model, which enhances the precision of the diagnostic process. 
The research workflow commences with the procurement of 
MRI-based prostate cancer images from the Prostate158—
Training data [9] and the Prostate MRI dataset [10]. This is fol-
lowed by a series of essential steps, including pre-processing 
and ROI extraction. Subsequently, the pre-processed images 
undergo a multilevel feature map-based UNet segmentation 
process. To enhance performance, ResNet-101 and a chan-
nel-based attention module are judiciously integrated into the 
segmentation process. The resulting segmented images are 
then subjected to feature extraction, encompassing a range 
of components such as statistical features, a global hybrid-
based feature map, and the generation of a feature map using 
ResNet-101. Once the features are extracted, they serve as 
inputs to the multilevel Bi-LSTM model. Additional enhance-
ments are introduced via the incorporation of channel attention 
and spatial attention mechanisms. The model’s performance 
is rigorously evaluated by subjecting it to an independent test 
dataset, and its classification output is meticulously analyzed 
using key metrics, including accuracy, sensitivity, and specific-
ity. Figure 1 serves as a visual representation of the developed 
framework, offering a comprehensive overview of the research 
approach. The ultimate objective is to notably enhance the 
precision and dependability of prostate cancer identification 
and localization, encompassing both indolent and aggressive 
variations of the condition.

Input

The dataset utilized in this research is sourced from the Pros-
tate 158—Training data and the Prostate MRI dataset. It serves 
as a valuable resource in the domain of identifying and localiz-
ing both indolent and aggressive prostate cancers, comprising 
a diverse collection of MRI-based prostate cancer images. The 
mathematical representation of this dataset can be expressed 
as follows,

where the Prostate dataset is denoted as C , and Ca denotes 
the Prostate 158—Training data images, which range from 
1 to g ; Cb denotes the Prostate MRI dataset images, which 
varies from 1 to k.

Pre‑processing and ROI Extraction

The pre-processing of prostate cancer images is a vital series 
of steps designed to enhance image quality and facilitate pre-
cise analysis. An integral facet of this process is the removal 
of noise, which serves to eliminate unwanted artifacts or dis-
tortions present in the images. The benefits of pre-processing 
are manifold, including heightened image clarity, improved 

(1)C =

g
∑

a=1

Ca +

k
∑

b=1

Cb
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feature extraction, and enhanced interpretability. These 
improvements, in turn, lead to more accurate detection and 
diagnosis of prostate cancer. Pre-processing techniques, 
particularly noise reduction, play a pivotal role in ensuring 
that medical professionals can make reliable decisions based 
on the images, ultimately elevating the quality of patient 
care and treatment outcomes. Following pre-processing, the 
ROI is meticulously extracted by segmenting the prostate 
region from the surrounding tissues. This is often achieved 
through techniques such as thresholding or contour detec-
tion. The extraction of the ROI is instrumental in isolating 
the prostate gland for thorough analysis, a critical aspect of 
accurate diagnosis and treatment planning. By minimizing 
interference from irrelevant areas, it results in clearer and 

more focused data for analysis. This focused approach not 
only enhances precision but also reduces the computational 
load, expediting the analysis and making it more efficient. 
In mathematical terms, this process can be expressed as,

where C∗ denotes the pre-processed dataset images.

Multilevel Feature Map‑Based U‑Net Segmentation

After pre-processing the images are passed through a mul-
tilevel feature map-based U-Net segmentation process, with 

(2)C∗ =

g
∑

a=1

C∗
a
+

k
∑

b=1

C∗
b

Fig. 1   Block diagram represen-
tation of the proposed method
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performance enhancement achieved through the utilization 
of ResNet-101 and a channel-based attention module. A 
multilevel feature map-based U-Net segmentation is an 
advanced image segmentation technique used in medical 
imaging, including prostate cancer analysis. It employs a 
modified U-Net architecture with multiple levels of feature 
maps, allowing for the precise delineation of structures. The 
advantages include improved localization and recognition of 
complex structures, such as tumors within prostate images. 
By utilizing feature maps at different scales, it captures both 
fine and coarse details, enhancing segmentation accuracy. 
This approach aids in automated diagnosis, treatment plan-
ning, and monitoring, ultimately leading to more effective 
and efficient healthcare, reducing manual effort, and improv-
ing patient outcomes in prostate cancer management.

U‑Net Model

The U-Net model functions as an end-to-end semanti-
cally segmented network and is named for its symmetrical 
U-shaped structure. It comprises essential architectural 
components, including an input layer, convolutional lay-
ers, pooling layers, transposed convolutional layers, activa-
tion functions, and an output layer. Within the convolution 
layer, multiple 3 × 3 convolution kernels are employed with 
a stride of 1, resulting in the creation of a feature map. An 
important feature of this convolution operation is weight 
sharing, where the same set of weights is applied to all 
input data. By drastically lowering the number of trainable 
parameters, this weight-sharing technique improves com-
puting efficiency. Furthermore, convolution introduces the 
advantageous attribute of local perception, enhancing the 
neural network’s ability to capture spatial information. The 
activation function is an essential component in increasing 
the non-linearity of the neural network, enabling it to better 
approximate nonlinear mappings and enhance model expres-
siveness. Activation functions are pivotal in neural network 
architectures, with common choices including sigmoid, 
Tanh, and rectified linear unit (ReLU). Within the U-Net 
model, the ReLU activation function is the preferred choice. 
Mathematically, the ReLU activation function can be defined 
[33] as follows:

The unique feature of the ReLU activation function is its 
ability to suppress negative values by transforming inputs 
greater than zero into positive values and reducing those 
less than zero to zero. This property speeds up the training 
of the network by transforming dense features into sparser 
ones, which improves feature robustness. To improve lin-
ear differentiability, the sparse features are converted into a 

(3)RELU =

{

y

0

y

y

≥ 0

> 0

higher-dimensional space. Fundamentally, transposed con-
volution is about upsampling; it is a series of processes that 
return the feature map to its original dimensions of the image. 
With the introduction of skip connections, the U-Net model 
improves the network’s capacity for effective generalization 
while keeping information at each level. Concatenation is used 
to combine the up-sampled feature channel dimension with the 
downsampled feature channel dimension, integrating contour 
information with detailed image information. Using a 1 × 1 
convolution kernel, this fusion method maps feature vectors to 
the required number of classes. The loss function sometimes 
referred to as the optimization performance metric measures 
how similar predicted values are to the ground truth and uses 
this information to determine how to optimize the neural net-
work’s weights. When it comes to U-Net, its loss function is 
the boundary loss [33], which is described as,

where l(y) is the loss function of softmax and 
l ∶ Ω → {1, 2,… h} is the pixel point’s label value.

Channel‑Based Attention Module

A channel-based attention module is a neural network compo-
nent designed to selectively enhance or suppress feature maps 
(channels) within intermediate layers. Its purpose is to focus 
on relevant information while disregarding noise. When inte-
grated into a multilevel feature map-based U-Net segmentation 
process, the channel-based attention module significantly 
improves feature discrimination and reduces noise. This inte-
gration combines the segmentation capabilities of U-Net with 
feature-focused attention, resulting in a segmentation model 
that is more accurate, robust, and efficient. This enhancement 
strengthens the network’s ability to precisely delineate struc-
tures such as prostate tumors in medical images, contributing 
to more accurate diagnosis and treatment planning. For a more 
efficient feature map generation, the introduction of channel 
attention proves pivotal in adaptively extracting informative 
features before reaching the maximum pooling layer. The 
channel attention mechanism operates through the following 
steps: It generates a feature map denoted as GBD, derived from 
global average pooling ED

avg
(1 × 1 × D) and global maximum 

pooling ED
max

(1 × 1 × D) . These ED
avg

 and ED
max

 values undergo 
processing within a shared network comprising an activation 
layer and two fully connected (FC) layers. After going through 
the shared network, the results of ED

avg
 and ED

max
 are combined 

using the Add function and then run through the sigmoid func-
tion to produce an attention channel map ND ∈ S1×1×D . The 
size of the second FC layer is restored to S1×1×D , while the size 
of the first FC layer is determined as S1×1×D∕r . Figure 2 shows 
a graphic illustration of the channel attention module.

(4)F =
∑

Y∈Ω

�(y)logl(y)y
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Resnet‑101

ResNet-101 is a deep CNN architecture comprising a remark-
able 101 layers, celebrated for its capability to effectively 
train very deep neural networks [34]. When integrated into 
a multilevel feature map-based U-Net segmentation process, 
the inclusion of ResNet-101 significantly amplifies feature 
extraction and representation. This augmentation empowers 
the network to capture intricate patterns within medical images 
with greater precision. The amalgamation of ResNet-101 har-
nesses its robust feature extraction capabilities, resulting in 
the development of more accurate and resilient segmentation 
models. This synergy notably elevates segmentation accuracy, 
enabling the precise identification of structures like prostate 
tumors. Consequently, this contributes to more accurate diag-
nosis and treatment planning while concurrently reducing 
false positives in medical imaging. ResNet-101 boasts a neural 
network architecture that encompasses a series of convolu-
tional layers, denoted as conv1, conv2_y, conv3_y, conv4_y, 
and conv5_y, complemented by pooling, fully connected, and 
softmax layers. Its distinction lies in its profound depth of 
convolutional layers, achieved through the ingenious imple-
mentation of shortcut connections. These shortcuts facilitate 
identity mapping, effectively mitigating the degradation prob-
lem commonly associated with exceedingly deep networks. 
Notably, these connections introduce no additional parameters 
or computational complexity. Another distinctive feature that 
distinguishes the ResNet-101 model is its capability for end-
to-end training facilitated by stochastic gradient descent and 
back-propagation, ultimately leading to superior performance. 
This architecture adeptly addresses challenges related to net-
work depth while maintaining computational efficiency.

Feature Extraction

The resulting segmented images then undergo feature extrac-
tion, encompassing statistical features, a global hybrid-based 
feature map, and a ResNet-101 feature map generation step. 
Feature extraction in prostate cancer image analysis is the 

process of identifying and quantifying relevant visual attrib-
utes within medical images, such as texture, shape, or inten-
sity patterns. This is essential because raw medical images 
can be complex and high-dimensional. Feature extraction 
reduces data dimensionality, simplifies information, and 
enables the detection of subtle cancer-related characteris-
tics that may be challenging to discern directly. The advan-
tages include enhanced diagnostic accuracy, more efficient 
computational processing, and the ability to customize the 
analysis to specific diagnostic or research requirements, ulti-
mately improving early detection and treatment planning in 
prostate cancer, which is vital for patient outcomes and care. 
This research employs a three-pronged approach to feature 
extraction, encompassing statistical features, the creation of 
a global hybrid-based feature map, and a ResNet-101 feature 
map generation step, which is elaborated upon in the follow-
ing section.

Statistical Features

Statistical features in image analysis involve numerical char-
acteristics including the mean, variance, and standard devia-
tion, capturing information about pixel distribution. They 
are essential in medical image processing to quantify tex-
ture and intensity patterns, aiding in distinguishing between 
healthy and cancerous tissue. Their advantage lies in provid-
ing quantitative, objective data for enhanced precision in 
cancer identification and localization, reducing subjectivity 
in diagnosis.

Global Hybrid‑Based Feature Map

A global hybrid-based feature map combines both local 
and global information in image analysis. It integrates local 
details with overall context, aiding in accurate cancer detec-
tion. Its advantage lies in preserving fine-grained local fea-
tures while considering the broader image context, enhancing 
the model’s ability to discern subtle variations and patterns 
crucial for prostate cancer identification and localization.

Fig. 2   Channel attention 
module

Input 

feature E

Maxpool

Avgpool Shared MLP

Channel 

attention 
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ResNet‑101 Feature

ResNet-101 features are deep learning representations 
extracted from a Residual Network with 101 layers. They cap-
ture hierarchical features from images, enabling the model to 
learn complex patterns. The advantage lies in leveraging pre-
trained ResNet-101 features to enhance the accuracy of cancer 
detection, as they contain valuable hierarchical information, 
reducing the requirement for manual feature engineering.

Multilevel Bi‑LSTM Model

After feature extraction, these extracted features are 
employed as inputs to the multilevel Bi-LSTM model, where 
additional enhancements are introduced through the integra-
tion of channel attention and spatial attention mechanisms. 
The LSTM network is a variant of the RNN family. While 
RNNs are effective in handling time series data, they are 
limited in their ability to capture long-term dependencies. 
This limitation stems from their short-term memory, which 
can hinder their performance on signals with persistent time 
information. To address this, LSTM networks were intro-
duced, proving particularly adept at solving regression-
based problems involving data with extended temporal 
information. Conventional LSTM models process data in a 
forward direction, incorporating information from previous 
moments but not considering future moments. This design 
poses limitations in handling complex tasks, prompting the 
development of bidirectional LSTM. Bidirectional LSTM, 
as the name suggests, leverages both past and future features 
within a single time step. It is built from a single LSTM 
cell and functions both forward and backward, allowing for 
bidirectional information transfer. However, it’s crucial to 
emphasize that a bidirectional LSTM’s typical output typi-
cally only contains the final time step of the hidden layers. 
While logical, this output’s instability hinders its effective-
ness in estimating a continuous joint angle sequence.

Each LSTM unit is composed of four main components: 
memory cells, forget gates, output gates, and input gates. These 
gates interact with one another through bias terms and weights, 
resulting in complex calculations. The following model pro-
vides a mathematical expression for the basic memory cell 
structure (5)-(9) [31],

where the input is represented by y , the activation function 
is denoted by � , and the cell state vectors, forget gate, input 
gate, and output gate are denoted by in , fo , op , and b , which 
all have the same lengths as the hidden vector k . The state at 
time t or time t − 1 is indicated by the vector subscripts. The 
weight matrix subscripts represent the weight matrix mag-
nitudes. For example, Gkb

 represents the hidden-cell gate 
matrix and the input and output gate matrix is represented 
by Gyop

 . As seen in Fig. 3, the Bi-LSTM combines each for-
ward and backward path. The Bi-receptive field LSTMs are 
greatly increased by this bidirectional information flow. In 
the forward direction, the cell output at times t − 1, t, t + 1 is 
represented by kf0 , kf1 , kf2 , respectively. Similarly, the cell 
output at the appropriate time steps is represented as 
kb0 , kb1 , kb2 in the reverse way. As a result, rather than 
(kf0 , kf1 , kf2 ) ,  the Bi-LSTM’s outputs  should be 
{⌊kf0 , kb2⌋,⌊kf1 , kb1⌋,⌊kf2 , kb0⌋kb0} [32]. The network’s informa-
tion content is improved by this extension. The outputs of 

(5)int = �(Gyin
yt + Gkin

kt−1 + Gbin
bt−1 + ain

(6)fot = �(Gyfo
yt + Gkfo

kt−1 + Gbfo
bt−1 + afo

(7)bt = fotbt−1 + ittanh(Gyb
yt + Gkb

kt−1 + ab

(8)opt = �(Gyop
yt + Gkop

kt−1 + Gbop
bt−1 + aop

(9)kt = opttanh(bt)kaop

Fig. 3   Bi-LSTM architecture
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this study must have a close relationship because the main 
objective is to determine the ongoing joint angle curve con-
nected to upper limb kinematics. Consequently, every time 
step and output are routed into the same high-level layer and 
normalized, so tightly restricting the outputs.

Spatial Attention Module

The spatial attention module is a neural network component 
designed to selectively emphasize or suppress specific spa-
tial regions within an input feature map. This is particularly 
valuable in computer vision tasks, where focusing on relevant 
image regions enhances model performance. In the context of 
the multilevel Bi-LSTM model, the integration of spatial atten-
tion mechanisms improves the model’s ability to adaptively 
highlight essential spatial features within medical images, such 
as intricate patterns in prostate cancer images. The advantage 
lies in enhanced feature discrimination, contributing to more 
accurate segmentation and diagnosis, while reducing false 
positives, ultimately improving medical imaging outcomes. 
Initially, we process the input features with E ∈ MG×B×W chan-
nels through batch normalization and ReLU layers, or chan-
nel transformation. Here, E ∈ MG×B×W denotes the number 
of channel inputs, while B and W represents the height and 
width of E respectively. Subsequently, we apply two convo-
lution layers with 1 × 3 and 3 × 1 kernels to create two new 
feature maps, P ∈ MG×B×W and L ∈ MG×B×W . These maps are 
designed to capture edge information related to tree-like struc-
tures, distinguishing between horizontal and vertical orienta-
tions. To consolidate these new feature maps, L ∈ MG×B×W 
and L ∈ MG×B×W are reshaped into MG×M where M = B ×W 
signifying the total number of features. A matrix multiplica-
tion is then performed to merge the transposed versions of P 
and L . The application of a softmax layer further allows us to 
derive spatial associations within the same class [35], facilitat-
ing intra-class spatial association,

where Z(x,y) denotes the impact of the Xth position on the yth 
position. The feature map Eundergoes a 1 × 1 convolution 
layer to yield a dimension-reduced feature map denoted as 
N ∈ MG×B×W . The reshaping process converts Z to MG×B×W . 
A matrix multiplication takes place between K  and Z 
resulting in spatial affinities at the pixel level referred to as 
N ∈ MG×B×W . Finally, we conduct a pixel-level summation 
of Z and N . This process effectively combines the original 
impact information with the computed spatial affinities to 
enhance the final output at the pixel level.

(10)Z(x,y) =
exp(Lx ⋅ P

T
y

∑M

x=1
exp(Lx ⋅ P

T
y
)

Results and Discussion

The subsequent sections offer an extensive and meticulous 
examination of the findings and in-depth analysis concern-
ing the developed multilevel Bi-LSTM model’s performance 
in accurately identifying and localizing both indolent and 
aggressive prostate cancers.

Experimental Setup

The performance evaluation of the multilevel Bi-LSTM model, 
as well as the comparative analysis of different approaches, was 
carried out utilizing the Python tool on a Windows 10 operating 
system, with a computer configuration featuring 8 GB of RAM.

Dataset Description

Prostate158—Training Data (Dataset 1)

Prostate158 is an extensive dataset comprising prostate MRIs that 
adhere to PI-RADS v2 technical standards and incorporate expert 
annotations. Alongside a robust baseline algorithm, it serves as an 
invaluable benchmark for the advancement of cutting-edge algo-
rithms in the field of prostate cancer segmentation and detection.

Prostate MRI Dataset (Dataset 2)

The dataset offers meticulously crafted segmentations by uro-
logic radiology experts, subjected to rigorous review proce-
dures to uphold the highest quality standards. This makes it 
a valuable resource for researchers in the field of computer 
vision who may lack direct access to medical data or radiologi-
cal expertise. They can leverage this dataset to pioneer innova-
tive algorithms for the detection of prostate cancer.

Evaluation Metrics

Accuracy

A diagnostic model’s accuracy is a statistic that expresses how 
accurate its predictions are overall. It calculates the proportion 
of accurate identifications to all cases in the dataset, including 
both true negatives and correctly identified cases. Accuracy 
in the context of prostate tumor identification evaluates the 
model’s capacity to accurately categorize cases that are both 
indolent and aggressive.

(11)acc =
Jtn + Jtp

Jtn + Jtp + Jfn + Jfp
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Sensitivity

The evaluation of the true positive rate gauges how well a 
diagnostic model can detect instances of a particular ailment 
such as aggressive prostate cancer is known as sensitivity. It 
measures how well the model identifies cases of aggressive 
cancer by dividing the total number of real positive cases by 
the ratio of true positives,

Specificity

The capacity of a model to accurately rule out situations 
without the relevant condition is measured by its specificity. 
Regarding prostate cancer, it evaluates how well the model 
classifies patients as indolent when they do not show signs 
of aggressive cancer. The ratio of genuine negatives to all 
actual negative situations is used to compute specificity.

Experimental Results

The experimental results of identifying and localizing 
aggressive and indolent prostate tumors using the multilevel 
Bi-LSTM model are illustrated in Fig. 4, which comprises 
the input image, the pre-processed image, the ROI image, 

(12)sen =
Jtp

Jtp + Jfn

(13)spec =
Jtn

Jtn + Jfp

and the segmented image. These images are presented to 
facilitate a comprehensive analysis, enabling an in-depth 
assessment of the detection and localization process.

Performance Evaluation

To showcase the effectiveness of the multilevel Bi-LSTM 
model, performance evaluations are carried out at various 
epochs, including 100, 200, 300, 400, and 500. These assess-
ments involve the measurement of TP, allowing us to track 
the performance of the model and its evolution across dif-
ferent time points.

Performance with TP for Dataset 1

The multilevel Bi-LSTM model, intended for the diagno-
sis and localization of both benign and malignant prostate 
tumors, shows its accuracy results for dataset 1 in Fig. 5. 
When assessing accuracy for TP at the 90% threshold, the 
multilevel Bi-LSTM model achieves the following values: 
91.57%, 94.33%, 95.08%, 96.11%, and 96.72%. Similarly, 
when evaluating sensitivity for TP at the 90% threshold, 
the model attained the following values: 91.66%, 94.21%, 
94.35%, 94.68%, and 96.17%. Additionally, in measuring 
specificity for the training dataset at the 90% threshold, the 
proposed multilevel Bi-LSTM achieves the following val-
ues: 93.95%, 95.29%, 95.76%, 95.96%, and 96.17%. These 
results demonstrate the model’s consistent improvement in 
accuracy, sensitivity, and specificity.

Fig. 4   Experimental results of 
the developed multilevel Bi-
LSTM model

Input image Pre-processed ROI Segmented
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Performance with TP for Dataset 2

The multilevel Bi-LSTM model, intended for the diagno-
sis and localization of both benign and malignant prostate 
tumors, shows its accuracy results for dataset 2 in Fig. 6. The 
multilevel Bi-LSTM model achieves the accuracy values of 
91.28%, 92.97%, 93.69%, 93.82%, and 94.41% for TP at 
the 90% threshold. Similarly, when assessing sensitivity at 
the 90% threshold, the model attained the following values: 
92.61%, 92.98%, 92.85%, 92.80%, and 93.10%. Further-
more, when measuring specificity for the training dataset at 
the 90% threshold, the multilevel Bi-LSTM model achieves 
the following values: 91.66%, 92.54%, 93.98%, 94.27%, 
and 94.96%. These results illustrate the model’s consistent 
enhancement in terms of metrics.

Comparative Techniques

The developed multilevel Bi-LSTM model is compared with 
conventional techniques such as CorrSigNIA [6], Machine 
Learning [25], Hierarchical Attention NN [26], LSTM [27], 
and DCNN [28] to evaluate the efficacy of the model.

Comparative Evaluation with TP for Dataset 1

Figure 7 presents a comparative analysis of performance 
metrics concerning the diagnosis and localization of both 
benign and malignant prostate tumors, with a focus on data-
set 1. While assessing the accuracy, the multilevel Bi-LSTM 
model exhibits a remarkable increase of 27.61% compared 

Fig. 5   Performance with TP for dataset 1
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to DCNN for the training dataset at the 90% threshold. The 
evaluation of sensitivity for the training dataset at the 90% 
threshold, the multilevel Bi-LSTM model demonstrates 
a substantial gain of 13.77% when compared to DCNN. 
Additionally, the specificity of the multilevel Bi-LSTM in 
the training dataset at the 90% threshold surpasses DCNN, 
achieving a notable improvement of 5.52%. The analysis 
reveals the significant efficacy of the multilevel Bi-LSTM 
model in terms of metrics when contrasted with DCNN.

Comparative Evaluation with TP for Dataset 2

Figure 8 provides a comparative evaluation of performance 
metrics related to the diagnosis and localization of both 
benign and malignant prostate tumors, with a specific focus 
on dataset 2. While concerning the accuracy, the multilevel 
Bi-LSTM model demonstrates a remarkable improvement 

of 32.29% compared to DCNN for the training dataset at the 
90% threshold. Additionally, when considering sensitivity 
for the training dataset at the 90% threshold, the multilevel 
Bi-LSTM model showcases a substantial boost of 24.59% 
than the DCNN model. Moreover, in the assessment of 
specificity for the training dataset at the 90% threshold, 
the multilevel Bi-LSTM model surpasses DCNN with an 
impressive gain of 30.02%. These findings highlight the 
multilevel Bi-LSTM model’s notable performance advan-
tages over DCNN, especially when compared in terms of 
performance metrics.

Comparative Discussion

Most of the conventional techniques exhibit specific chal-
lenges in prostate cancer detection and the CorrSigNIA 
method [6], in which exploring the feasibility of applying 

Fig. 6   Performance evaluation with TP for dataset 2
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these models to external data is a crucial step that limits 
the performance. The LSTM model [27] required integrat-
ing vision transformers (ViTs) and CNNs for cancer grad-
ing which formed the limitation of the model. Addition-
ally, the DCNN model [28] in which training images and 
epochs are utilized requires other hyperparameters to be 
included in the model. Further, the ML model failed to 
capture the informative features that limited the perfor-
mance [25]. However, the multilevel Bi-LSTM overcame 
the above limitations and utilized the multilevel feature 
map-based U-Net segmentation, fortified with ResNet-101 
and a channel-based attention module for enhanced perfor-
mance. The extracted features containing information such 
as texture, shape, or intensity patterns are fed to the multi-
level Bi-LSTM model for effective classification. Further, 
the multilevel BiLSTM model optimized through channel 

and spatial attention mechanisms provided the effective 
localization of cancer tissues. The generated segmentation 
maps preserved the full context of the MRI images and 
eliminated the complexity of detection. Finally, the multi-
level BiLSTM utilizing the long-term dependency predic-
tion improves the information of the cancer localization 
to effectively detect prostate cancer with high accuracy. 
However, the developed model sometimes found complex-
ity in calculating the negative and positive values due to 
the high prevalence of the complex patterns formed with 
the selection of patient samples.

This section discusses a comparative analysis of diverse 
methodologies, thoughtfully organizing the data into struc-
tured tables for the assessment of TP. The multilevel Bi-
LSTM approach emerges as a standout performer, demon-
strating exceptional outcomes through precise calibration of 

Fig. 7   Comparative evaluation with TP for dataset 1
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weights and bias of the classifier. As elucidated in Table 1, 
we undertake a comparative study, pitting the proposed 
multilevel Bi-LSTM against contemporary techniques. This 
assessment is conducted under a consistent 90% TP for equi-
table evaluation.

Confusion Matrix

The confusion matrix of the multilevel Bi-LSTM model for 
dataset 1 is depicted in Fig. 9, which shows that the model 
predicted precisely. In Fig. 9a, the true labels and predicted 

Fig. 8   Comparative evaluation with TP for dataset 2

Table 1   Comparison discussion 
for datasets 1 and 2

Methods/metrics Training percentage (TP) 90

Dataset 1 Dataset 2

Acc (%) Sen (%) Speci (%) Acc (%) Sen (%) Speci (%)

CorrSigNIA 86.48 62.80 88.91 68.91 89.08 74.33
Machine Learning 94.90 88.13 66.86 90.54 63.26 85.13
Hierarchical Attention NN 71.36 77.89 66.15 88.93 74.28 64.68
LSTM 96.38 66.28 87.57 81.07 62.12 64.36
DCNN 70.02 82.93 90.86 63.92 70.21 66.46
Proposed 96.72 96.17 96.17 94.41 93.10 94.96
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labels are compared in which prostate cancer categories 
of 298 true positives (TP) and 45 true negatives (TN) are 
detected correctly which is highlighted in green shades and 
predicted less number of false positives (FP) and false nega-
tives (FN) and reported as 9 and 4 respectively. Figure 9b 
in which the model predicted the tumor categories of 56 

TP and 57 TN are detected correctly which is highlighted 
in green shades and predicted less number of FP and FN as 
4 for dataset 2. Hence, the confusion matrix shows that the 
multilevel Bi-LSTM model is highly efficient in identifying 
and localizing prostate cancer.

a) dataset 1 b) dataset 2

Fig. 9   Confusion matrix

a) dataset 1 b) dataset 2

Fig. 10   ROC plot
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ROC Plot

ROC illustrates the performance of the classifier model at 
varying threshold values. Figure 10a represents the ROC 
curve of dataset 1, in which the multilevel Bi-LSTM model 
predicted the false positive rate (FPR) and the corresponding 
true positive rates( TPR) for the training percentage to be 
varied from 10 to 90% and the proposed method obtained 
the ROC values of 0.87 at 0.1 FPR and TPR, ROC of 0.89 at 
0.2 FPR and TPR, and the ROC values of 0.90, 0.91, 0.91, 
0.93, 0.94, 0.94, 0.96, and 1 at FPR and TPR values of 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 respectively that proves 
the efficiency of the multilevel Bi-LSTM model with other 
techniques.

Conclusion

This study introduces an exhaustive framework designed for 
the accurate detection and localization of prostate cancers, 
spanning across the spectrum of aggressiveness, employing 
an intricate multilevel Bi-LSTM model. The workflow com-
mences with the acquisition of MRI-based prostate cancer 
images from two prominent datasets, Prostate158—Train-
ing data and the Prostate MRI dataset, followed by meticu-
lous pre-processing and ROI extraction. The pre-processed 
images undergo a multilevel feature map-based U-Net seg-
mentation, bolstered by ResNet-101 and a channel-based 
attention module for improved performance. Subsequently, 
segmented images undergo feature extraction, encompassing 
various feature types, including statistical features, a global 
hybrid-based feature map, and a ResNet-101 feature map. 
These extracted features are then fed into the multilevel Bi-
LSTM model and further optimized through channel and 
spatial attention mechanisms. Rigorous testing on a distinct 
dataset demonstrates the model’s effectiveness, with per-
formance evaluated through key metrics. This framework 
represents a promising approach for enhancing the diag-
nosis and localization of prostate cancers, encompassing 
both indolent and aggressive cases. The performance of the 
developed multilevel Bi-LSTM model showcases remark-
able results, achieving accuracy, sensitivity, and specificity 
values of 96.72%, 96.17%, and 96.17% for dataset 1, and 
94.41%, 93.10%, and 94.96% for dataset 2. These results 
substantiate the superior efficiency of this model compared 
to alternative methods. Furthermore, the other hybrid opti-
mization techniques can be integrated into the multilevel Bi-
LSTM technique to boost the localization of prostate cancer 
in the future.
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