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Abstract
U-Net has demonstrated strong performance in the field of medical image segmentation and has been adapted into various 
variants to cater to a wide range of applications. However, these variants primarily focus on enhancing the model’s feature 
extraction capabilities, often resulting in increased parameters and floating point operations (Flops). In this paper, we propose 
GA-UNet (Ghost and Attention U-Net), a lightweight U-Net for medical image segmentation. GA-UNet consists mainly of 
lightweight GhostV2 bottlenecks that reduce redundant information and Convolutional Block Attention Modules that capture 
key features. We evaluate our model on four datasets, including CVC-ClinicDB, 2018 Data Science Bowl, ISIC-2018, and 
BraTS 2018 low-grade gliomas (LGG). Experimental results show that GA-UNet outperforms other state-of-the-art (SOTA) 
models, achieving an F1-score of 0.934 and a mean Intersection over Union (mIoU) of 0.882 on CVC-ClinicDB, an F1-score 
of 0.922 and a mIoU of 0.860 on the 2018 Data Science Bowl, an F1-score of 0.896 and a mIoU of 0.825 on ISIC-2018, and 
an F1-score of 0.896 and a mIoU of 0.853 on BraTS 2018 LGG. Additionally, GA-UNet has fewer parameters (2.18M) and 
lower Flops (4.45G) than other SOTA models, which further demonstrates the superiority of our model.

Keywords Medical image segmentation · GhostV2 bottleneck · Convolutional Block Attention Module · Computer-aided 
diagnosis

Introduction

Currently, medical image analysis plays a vital role in the 
diagnosis and treatment of diseases [1]. For example, doctors 
using microscopes to analyze images of cells can determine 
the stage and type of disease. These images allow doctors to 
provide valuable insights into disease diagnosis by closely 
observing diseased areas of the cells. Traditional medical 
image analysis is typically performed by doctors, and the 
diagnostic results can be influenced by the subjective judg-
ment of doctors. Furthermore, diagnosing medical images is 
time-consuming and labor-intensive. And working for long 
periods of time can make doctors feel tired, which can affect 
the accuracy of diagnostic results. With the development of 
computers, computer-aided diagnosis (CAD) has received 
widespread attention from pathology researchers [2]. The 
results of the CAD system are more objective. CAD can 

handle a large amount of work in a short time, improving 
doctors’ work efficiency and reducing their burden. Medical 
image segmentation is to separate the target area from the 
original image, determine the location that requires detailed 
analysis, and provide a more targeted medical diagnosis.

Traditional medical image segmentation algorithms 
include edge detection and threshold segmentation, such 
as the Canny operator [3] and the Otsu threshold method 
[4]. However, these traditional algorithms require adjust-
ing parameters for different applications. These parameters 
are highly sensitive to both image quality and noise, which 
makes it challenging to process complex images and chang-
ing tasks [5].

With the advancement of deep learning technology, 
U-Net [6] and its derived models have been widely uti-
lized in medical image segmentation tasks. The success 
of U-Net is mainly attributed to the skip connection strat-
egy of the encoder and decoder framework. This strategy 
combines low-level and high-level semantic information 
from the encoder to form more complex and effective 
features. Attention-UNet [7] improves the skip connec-
tion by incorporating coarse-scale information for gating, 
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aiming to mitigate the noise response caused by the skip 
connection. However, both methods rely on traditional 
convolutional blocks for feature extraction, leading to 
the generation of redundant information. In order to fully 
exploit voxel information in computed tomography (CT) 
and magnetic resonance imaging (MRI), some 3D models 
have been proposed [8, 9]. However, 3D models have many 
parameters. Recently, Vision Transformer (ViT) [10] has 
shown promising potential in medical image segmentation 
tasks. LeViT-UNet [11] integrates a LeViT Transformer 
module [12] into the U-Net architecture, striking a bal-
ance between model accuracy and efficiency. However, 
the Transformer module imposes a significant computa-
tional burden primarily due to self-attention operations, 
resulting in an increase in model size in terms of param-
eters and floating point operations (Flops). The models 
mentioned above require a large amount of training data 
to avoid overfitting. This can be a challenge when work-
ing with medical image datasets, which are often small in 
size. Therefore, a key challenge is to effectively use fewer 
parameters to achieve better performance in medical image 
segmentation.

In this paper, we propose a lightweight Ghost and Atten-
tion U-Net for medical image segmentation, called GA-
UNet. We use the GhostV2 bottleneck [13] to extract features 
in the encoder and decoder parts, and depthwise separable 
convolution [14] for downsampling to achieve a lightweight 
model. In order to further improve the segmentation capabil-
ity of the lightweight model, we introduce the Convolutional 
Block Attention Module (CBAM) [15]. The main contribu-
tions of this work can be summarized as follows: 

1. A lightweight and efficient model for medical image 
segmentation is proposed, namely GA-UNet. Our pro-
posed model achieves higher accuracy with only 2.18M 
parameters and 4.45G Flops, demonstrating faster con-
vergence speed and stronger generalization performance.

2. To address the issue of feature redundancy caused by tra-
ditional convolution modules, we employ the GhostV2 
bottleneck [13] for feature extraction. This effectively 
reduces model complexity.

3. To further enhance the model’s accuracy, we incorporate 
CBAM [15] in the first three decoders. By combining 
channel and spatial information into attention maps, our 
model better captures the lesion locations.

4. Four datasets are used to evaluate our model, including 
CVC-ClinicDB [16], 2018 Data Science Bowl [17], ISIC-
2018 Task 1 Lesion Boundary Segmentation [18, 19] and 
BraTS 2018 low-grade gliomas (LGG) [20]. Experiments 
show that our GA-UNet performs better than other state-
of-the-art (SOTA) methods in terms of mean Intersection 
over Union (mIoU) and F1-score indicators.

Related Work

Medical Image Segmentation

Deep learning methods have demonstrated remarkable  
efficiency in the field of medical image segmentation. The 
U-Net [6] comprises two components: the encoder, responsible  
for feature extraction and image size compression, and the 
decoder, responsible for image resolution restoration. To 
achieve more accurate segmentation results, skip connections 
are employed between the encoder and decoder. Inspired by 
U-Net, Jha et al. [21] proposed the DoubleU-Net architecture 
which connects two U-Nets and incorporates atrous spatial 
pyramid pooling (ASPP) [22] between each U-Net’s encoder 
and decoder, achieving effective segmentation in various  
tasks such as intestinal polyp segmentation, lesion boundary 
segmentation, and cell nucleus segmentation. Additionally,  
Jha et al. [23] integrated the residual structure [24], ASPP  
[22] and Squeeze-and-Excitation (SE) [25] attention  
mechanism into U-Net to design the ResUNet++ network 
for accurate intestinal polyp segmentation. To fully leverage 
multi-scale features and reduce the false positives in non- 
organ images, Huang et al. [26] presented UNet3+, which 
achieved efficient segmentation on liver and spleen datasets. 
Lama et al. [27] incorporated EfficientNet [28] along with 
SE module into U-Net, achieving satisfactory results on the 
ISIC2017 lesion segmentation dataset. By utilizing LinkNet 
[29] with EfficientNet [28] variants, Singh et al. [30] yielded 
promising results in glomerular detection tasks. The proposal 
of a residual deformable split depthwise separable U-Net 
(RDSDSU-NET) [31] achieved precise liver and liver tumor 
segmentation results. Furthermore, the success of Transformer 
[32] in the field of natural language processing has attracted 
widespread attention from researchers. For example, the Vision  
Transformer structure proposed by Dosovitkiy et al. [10] is 
widely adopted within computer vision research. Xu et al.  
[11] constructed LeViT-UNet to achieve good segmentation  
performance on the Synapse multi-organ segmentation dataset  
and Automatic Cardiac Diagnosis Challenge dataset. Feng 
et al. [33] developed a framework for brain tumor segmentation  
based on a deep convolutional neural network (DCNN). This 
framework incorporates a novel sequence dropout technique, 
exhibiting better robustness and performance than before. To 
extract comprehensive contextual information effectively and 
achieve fast and accurate segmentation of medical images, 
Tang et al. [34] designed CMUNeXt, a fully convolutional 
lightweight medical image segmentation network based on 
U-Net. This approach demonstrated effective results in breast 
cancer and thyroid nodule segmentation tasks. In order to  
mitigate the loss of U-Net encoder header information and 
enhance the network’s ability for expressing multi-scale 
features, Xu et al. [35] devised distinct modules, namely 
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the primary feature conservation module and compact split 
attention module, to achieve efficient segmentation in tasks 
involving intestinal polyps, lesion boundaries, cell nuclei, and 
myeloma plasma cells.

Lightweight Modules

Convolutional neural networks have significantly enhanced 
the performance of various computer vision tasks. However,  
a large amount of computational cost and parameters are 
required. Howard et al. [14] proposed depthwise separable 
convolution (DSC) as a method to construct MobileNets, a 
lightweight neural network that strikes a balance between 
resource utilization and accuracy. This approach has been 
extensively employed in detection and classification tasks.  
To address the issue of poor performance of DSC in low-
channel features, Sandler et al. [36] introduced convolution  
before DSC and proposed the MobileNetV2 network,  
which maintains lightweight while mitigating performance 
degradation. Han et al. [37] designed GhostNet to reduce the 
computational costs of deep neural networks and achieve a 
better balance between efficiency and accuracy. In order to 
tackle the problem of weak long-distance modeling ability of 
lightweight convolutional networks, Tang et al. [13] stacked 
the Ghost modules in the GhostNetV2 model and introduced 
the decoupled fully connected (DFC) attention module in the 
Ghost module to enhance feature representation capabilities of 
the middle layer, thereby achieving a better trade-off between 
accuracy and inference speed.

Attention Modules

In recent years, attention modules have been widely used in the 
field of deep learning. Hu et al. [25] proposed the SE module, 
which compresses global spatial information and then learns 
features in the channel dimension, assigning different weights 
to channels. Jaderberg et al. [38] proposed a spatial attention 
module to transform various deformation data in space and 
capture effective features. Woo et al. [15] introduced CBAM, 
which generates two independent dimensions of attention 
maps (channel and space), then fuses these attention maps 
with the input features for adaptive feature refinement, which 
can improve the network’s ability to extract effective features.

Method

A Lightweight Model: GA‑UNet

We propose GA-UNet, a lightweight U-shaped Model 
based on the GhostV2 bottleneck [13] and CBAM [15] 
for medical image segmentation, as shown in Fig. 1. Our 
model not only achieves higher segmentation accuracy, but 

also has fewer parameters and Flops. The encoder, consist-
ing mainly of the GhostV2 bottleneck and the DSC down-
sample module, extracts information and downsamples the 
input features. Different from U-Net, our DSC downsam-
ple module uses DSC [14] instead of max pooling. The 
decoder, consisting mainly of the GhostV2 bottleneck, 
upsample module, and CBAM, is used to reconstruct fea-
tures. The encoders and decoders perform features interac-
tion through skip connections.

GhostV2 Bottleneck

To address the issue of redundant features and excessive 
model parameters caused by the convolution module, we 
introduce the GhostV2 bottleneck, as shown in Fig.  2. 
The GhostV2 bottleneck consists of two Ghost modules, 
a DFC attention module and a residual connection. The 

Fig. 1  The architecture of GA-UNet. GA-UNet consists mainly of the 
GhostV2 bottleneck, the DSC downsample module and CBAM
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implementation of each Ghost module is divided into two 
steps: the first step involves a regular convolution with a 
kernel size of 1 × 1 to generate the intermediate feature Y ′ , 
and the second step involves a cheap operation (depthwise 
convolution) to generate additional feature maps, which are 
then concatenated with the intermediate feature Y ′ to form 
the output feature Y. The two steps for the implementation 
of the Ghost module mentioned above are calculated as Eqs. 
(1) and (2):

where X ∈ ℝ
H×W×C is the input features with channel num-

ber C, height H, and width W, ∗ stands for convolution oper-
ation, Conv1×1 is a convolution with a kernel size of 1 × 1 , 
Conv3×3

dp
 is the depthwise convolution with a kernel size of 

3 × 3 , and the output feature is Y ∈ ℝ
H×W×Cout.

To better capture spatial information, the DFC atten-
tion module is merged with the first Ghost module of 
GhostV2 bottleneck. The DFC attention module generates 

(1)Y
�

= X ∗ Conv1×1

(2)Y = Concat([Y
�

, Y
�

∗ Conv3×3
dp

])

a global attention map by stacking both horizontal and 
vertical fully connected layers. This module allows the 
GhostV2 bottleneck to achieve a better balance between 
accuracy and inference speed. The specific calculation 
of the DFC attention module can be written as Eqs. (3) 
and (4):

where ⊙ denotes element-wise multiplication, L is the learnable 
weights in the fully connected layers, X =

{

x11, x12, ...xHW
}

 
is the input feature that can be seen as HW tokens 
xi ∈ ℝ

C , A =
{

a11, a12, ...aHW
}

 is the attention map, and 
h = 1, 2, ...,H,w = 1, 2, ...,W.

Finally, a residual connection is utilized to combine the 
output features of the second Ghost module with the input 
features X to obtain the final output features.

(3)a
�

hw
=

H
∑

h
�
=1

LH
h,h

�
w
⊙ xh�w

(4)ahw =

W
∑

w
�
=1

LW
w,hw

� ⊙ a
�

hw
�

Fig. 2  The diagram of the GhostV2 bottleneck. It includes a residual connection (red box), two Ghost modules (blue boxes), and a DFC attention 
module (green box)
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Convolutional Block Attention Module

The Convolutional Block Attention Module (CBAM) [15] 
combines both channel and spatial attention to generate a 
more comprehensive attention map, as shown in Fig. 3.

The channel attention module (CAM) provides adaptive 
weights to the input features in the channel dimension, as 
shown in Fig. 4. In CAM, the spatial information of input 
features is first compressed using max pooling and average 
pooling, and then two linear layers are applied to extract 
channel information. Finally, the channel attention map 
Mc(F) is generated by element-wise addition and a sig-
moid layer. The channel attention map Mc(F) is calculated 
according to Eq. (5):

where � is the sigmoid activation function.
In Eq. (6), Mc(F) is then multiplied with the input features 

F to generate the channel attention features Fc.

where ⊗ denotes element-wise multiplication.
The spatial attention module (SAM) provides spatially 

adaptive feature weights for input features, as shown in 
Fig. 5. In SAM, the channel attention features Fc first per-
form the global max pooling and average pooling operations, 
respectively. The results are then concatenated and input into 
a convolutional layer with a kernel size of 7 × 7 for feature 

(5)
Mc(F) = �(Linearlayers(Avgpool(F))

+ Linearlayers(Maxpool(F)))

(6)Fc = Mc(F)⊗ F

extraction. Finally, the spatial attention map Ms(Fc) is gen-
erated by sigmoid activation function as shown in Eq. (7):

where � is the sigmoid activation function, and Conv7×7 is a 
convolution layer with a kernel size of 7 × 7.

Ms(Fc) is then multiplied with the channel attention fea-
tures Fc to generate the final output features F′ in Eq. (8):

where ⊗ denotes element-wise multiplication.
We introduce CBAM in the first three decoders. This 

module enhances the ability of GA-UNet to extract effec-
tive information from high-dimensional abstract features, 
thereby improving accuracy without significantly increasing 
computational effort.

Experiments and Results

Datasets

To evaluate the effectiveness of GA-UNet, we test it on four 
public medical datasets: 

1. CVC-ClinicDB [16]: this is the training database for the 
MICCAI 2015 Polyp Detection Challenge, a common 

(7)
Ms(Fc) = �(Conv7×7([Avgpool(Fc);

Maxpool(Fc)])

(8)F
�

= Ms(Fc)⊗ Fc

Fig. 3  The overview of CBAM. CBAM has two sequential sub-modules: CAM and SAM

Fig. 4  The detail of CAM. CAM consists mainly of max pooling, average pooling and two linear layers
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dataset for the polyp segmentation task. This dataset 
includes 612 images with a resolution of 384 × 288 from 
29 colonoscopy sequences.

2. 2018 Data Science Bowl [17]: this dataset was provided 
for the Data Science Bowl competition held in 2018. 
It is used for the nuclei segmentation task, containing 
670 images of cell nuclei at various resolutions. Before 
feeding the images into our model, we resize them to 
256 × 256.

3. ISIC-2018 [18, 19]: this dataset is the Task 1 dataset 
released by the International Skin Imaging Collabora-
tion (ISIC) in 2018. It is used for skin lesion area seg-
mentation task and contains 2594 dermoscopic images 
of various resolutions.

4. BraTS 2018 LGG [20]: this dataset comprises preopera-
tive MRI scans of 75 low-grade gliomas (LGG) from 
the Brain Tumor Segmentation (BraTS) Challenge 
2018. It is used for the entire tumor area segmenta-
tion task. There are four kinds of multimodal scans for 
each patient: T1-weighted, T1-weighted with contrast, 
T2-weighted, and Fluid-Attenuated Inversion Recovery 
(FLAIR). We extract 4845 2D slides from the FLAIR 
MRI scans of LGG.

More details about the data split are shown in Table 1.

Evaluation Metrics

The main evaluation indicators of this paper are as follows: 
Accuracy, Precision, Recall, F1-score, and mIoU. They can 
be calculated by Eqs. (9–13):

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)Precision =
TP

TP + FP

where True Positive (TP) is the number of correctly pre-
dicted positive samples, True Negative (TN) is the number 
of correctly predicted negative samples, False Positive (FP) 
and False Negative (FN) indicate the number of incorrectly 
predicted positive and negative samples. And mIoU refers 
to the mean Intersection over Union between the prediction 
and ground truth.

As shown in Fig. 6, we visualize TP, TN, FP, and FN. 
Figure 6(d) is the comparison between the ground truth and 
the prediction results, which is generated according to the 
following rules: 

1. If a pixel is white in Fig. 6(b) and white in Fig. 6(c), 
then it is white in Fig. 6(d), representing TP, as shown 
in Fig. 6(e).

2. If a pixel is black in Fig. 6(b) and black in Fig. 6(c), 
then it is black in Fig. 6(d), representing TN, as shown 
in Fig. 6(f).

(11)Recall =
TP

TP + FN

(12)F1 − score = 2 ×
Precision × Recall

Precision + Recall

(13)mIoU =
1

k

k
∑

i=1

Prediction ∩ GroundTruth

Prediction ∪ GroundTruth

Fig. 5  The detail of SAM. SAM consists mainly of max pooling, average pooling and a convolutional layer

Table 1  Details of the medical segmentation datasets used in our 
experiments

Datasets Images Input size Train Valid Test

CVC-ClinicDB 612 384 × 288 440 111 61
2018 Data Science Bowl 670 Variable 482 121 67
ISIC-2018 2594 Variable 1868 467 259
BraTS 2018 LGG 4845 240 × 240 3488 872 485
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3. If a pixel is black in Fig. 6(b) and white in Fig. 6(c), then 
it is red in Fig. 6(d), representing FP, as indicated by the 
red region in Fig. 6(g).

4. If a pixel is white in Fig. 6(b) and black in Fig. 6(c), then 
it is blue in Fig. 6(d), representing FN, as indicated by 
the blue region in Fig. 6(h).

In addition, the indicators parameters and Flops are used 
to evaluate the effectiveness of the model.

Data Augmentation

The sizes of medical image datasets are usually small due to 
the expensive and time-consuming process of obtaining and 

annotating these images. This limitation can result in model 
overfitting. To address this issue, we incorporate data aug-
mentation techniques during the training phase to increase 
sample diversity and enhance the model’s generalization 
ability. Specifically, we apply horizontal flip, cutout, and 
rotation data augmentation methods with a probability of 
0.25 on the training set, as depicted in Fig. 7.

Implementation Details

All experiments are implemented using PyTorch 1.10.0 
framework on a RTX 3090 (24GB) and 12 vCPU Intel (R) 
Xeon (R) Platinum 8255C CPU @ 2.50GHz.

Fig. 6  Visualization of TP, TN, FP, FN

Fig. 7  Examples of data augmentation
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During the training phase, we use the Dice loss func-
tion [39] and the Adam optimizer [40]. The batch size is set 
to 16. The initial learning rate is 1e-3 and then gradually 
reduced to 0 using the cosine annealing scheduler [41] over 
the entire 150 epochs.

Images in all four datasets are resized to 256 × 256 before 
being input into the model. The experiments on the four 
datasets all use the same split method of training sets, vali-
dation sets and test sets as shown in Table 1. Those SOTA 
models used for comparison are trained from scratch with 
the same parameters as our model. The batch size of UNet3+ 
in the training phase is set to 8.

Analysis of Results

In this section, our GA-UNet is compared with seven previous 
SOTA methods on four medical image segmentation datasets.

Comparison on CVC‑ClinicDB Dataset

Early diagnosis and treatment of polyps are crucial for colon 
cancer prevention. We compare the performance of GA-
UNet and other seven SOTA models on the polyp segmen-
tation task (CVC-ClinicDB dataset), as shown in Table 2. 
Our GA-UNet’s F1-score and mIoU index are improved by 
0.9% and 1.6%, respectively, compared to DCSAU-Net, and 
by 3.1% and 4.2%, respectively, compared to DoubleU-Net. 
Meanwhile, compared with DCSAU-Net, our GA-UNet 
reduces parameters and Flops by 16.2% (0.42M) and 35.7% 
(2.47G), respectively. In Fig. 8(a), GA-UNet (red line) 
achieves the highest scores in all five assessment metrics, 
demonstrating the potential of our model for the clinical task 
of intestinal polyp segmentation.

Comparison on 2018 Data Science Bowl

The results and visualization on the 2018 Data Science Bowl 
dataset are shown in Table 3 and Fig. 8(b), our GA-UNet’s 
F1-score and mIoU index of GA-UNet are 0.4% and 0.6% 
higher than those of DCSAU-Net, respectively, 2.0% and 

2.8% higher than those of LeViT-UNet, respectively, and 
0.5% and 0.7% higher than those of DoubleU-Net, respec-
tively. Although GA-UNet shows similar performance in 
evaluation metrics to UNet3+, the advantage of our model 
lies in its significantly fewer parameters and lower Flops 
about 1/40 and 1/10 of UNet3+, respectively.

Comparison on ISIC‑2018

Accurately delineating the area of a lesion is crucial for diag-
nosing dermatologic diseases. We assess the performance of 
GA-UNet and other SOTA models using the ISIC-2018 data-
set, as shown in Table 4 and Fig. 8(c), GA-UNet improves 
the F1-score and mIoU by 1.0% and 1.0%, respectively, com-
pared to DCSAU-Net. And it achieved 0.963, 0.910, and 
0.911 in Accuracy, Precision, and Recall, respectively, which 
are better than other models.

Comparison on BraTS 2018 LGG

Brain tumor segmentation is indispensable in MRI analy-
sis. The performance of our model and other SOTA mod-
els in the BraTS 2018 LGG dataset is shown in Table 5 
and Fig. 8(d). GA-UNet achieves the mIoU of 0.853 and 
the F1-score of 0.896, which are 3% and 2.7% higher than 
DCSAU-Net, respectively. And it outperforms other SOTA 
models in Accuracy, Precision, and Recall metrics, as 
shown in Fig. 8(d). GA-UNet demonstrates strong perfor-
mance, suggesting that it is an efficient model for medical 
image segmentation.

Ablation Study

In this section, we conduct an ablation study on GA-UNet 
to verify the effectiveness of our improvements, as shown 
in Table 6.

In Table 6, E 1 represents baseline model U-Net, E 2 repre-
sents U-Net+GhostV2 bottleneck and DSC downsample, and E 3 
represents U-Net+CBAM. Lastly, E 4 represents our GA-UNet.

Table 2  Results on the CVC-ClinicDB. The best results are in bold

Method Accuracy Precision Recall F1-score mIoU Flops Parameters

U-Net (2015) [6] 0.977 ± 0.031 0.898 ± 0.152 0.874 ± 0.182 0.875 ± 0.158 0.802 ± 0.181 48.33G 28.95M
ResUNet++ (2019) [23] 0.976 ± 0.029 0.878 ± 0.185 0.846 ± 0.202 0.854 ± 0.185 0.776 ± 0.196 70.99G 14.48M
DoubleU-Net (2020) [21] 0.981 ± 0.028 0.923 ± 0.086 0.903 ± 0.146 0.903 ± 0.120 0.840 ± 0.154 44.37G 18.84M
UNet3+ (2020) [26] 0.981 ± 0.027 0.920 ± 0.105 0.909 ± 0.143 0.902 ± 0.110 0.837 ± 0.152 199.74G 26.97M
LeViT-UNet (2021) [11] 0.972 ± 0.031 0.848 ± 0.226 0.817 ± 0.232 0.816 ± 0.224 0.734 ± 0.244 33.21G 52.14M
CMUNeXt (2023) [34] 0.982 ± 0.025 0.931 ± 0.083 0.905 ± 0.109 0.911 ± 0.076 0.846 ± 0.118 7.42G 3.15M
DCSAU-Net (2023) [35] 0.985 ± 0.018 0.935 ± 0.064 0.923 ± 0.087 0.925 ± 0.061 0.866 ± 0.095 6.92G 2.60M
GA-UNet (ours) 0.987 ± 0.019 0.941 ± 0.066 0.933 ± 0.084 0.934 ± 0.062 0.882 ± 0.098 4.45G 2.18M
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Effectiveness of GhostV2 Bottleneck and DSC  
Downsample Module

According to E 1 and E 2 in Table 6, the GhostV2 bottle-
neck and the DSC downsample module (our feature extrac-
tion module) increase the F1-score on the four datasets by 
3.4%, 0.9%, 2.8%, and 2.7%, respectively, and mIoU by 
5.2%, 1.1%, 3.5%, and 2.9%, respectively. The number of 

parameters and Flops decrease from 28.95M and 48.33G of 
U-Net to 2.01M and 4.44G, respectively.

In addition, we also utilize other feature extraction mod-
ules (Residual block [24] and Mobilenetv2 block [36]) to 
compare with our feature extraction module, as illustrated 
in Table 7. The experimental results on the CVC-ClinicDB 
dataset demonstrate that the performance of our feature 
extraction module in terms of mIoU has been improved by 

Fig. 8  Comparison of visualization performance across four datasets. GA-UNet achieves the highest performance in terms of Accuracy, 
F1-score, and mIoU
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4.9% and 1.6%, respectively, compared to the Residual block 
and Mobilenetv2 block. Additionally, our feature extrac-
tion module has significantly reduced the number of model 
parameters. Consequently, the GhostV2 bottleneck and the 
DSC downsample module not only improve performance but 
also reduce the number of parameters and Flops.

Effectiveness of CBAM

According to E 1 and E 3 in Table 6, CBAM improves the 
F1-score on the first three datasets by 4.4%, 0.5%, and 2.0%, 
respectively, and mIoU by 5.5%, 0.6%, and 2.3%, respectively. 
On the fourth dataset, E 1 and E 3 have similar performance. 
Overall, introducing CBAM in the first three decoders can 
improve the model’s performance.

At the same time, by comparing the results of E 2 and E 4 as 
well as E 3 and E 4 in Table 6, it can be observed that our GA-
UNet (E4 ) can further improve the F1-score by 0.2–2.9% and 
mIoU by 0.4–3.3% compared to either E2 or E3. Additionally, 
the parameters and Flops of GA-UNet model are only 2.18M and 
4.45G, respectively, which are much lower than those of U-Net.

Discussion

In order to evaluate GA-UNet more comprehensively, we 
conduct a statistical analysis. For the sake of discussion, 
we divide the seven SOTA models into two categories 

according to the number of parameters in the models: the 
non-lightweight models (U-Net, ResUNet++, DoubleU-
Net, UNet3+ and LeViT-UNet) and the lightweight models 
(CMUNeXt and DCSAU-Net). We choose the best per-
forming model based on the results presented in Tables 2, 
3, 4, and 5 from each category, specifically UNet3+ from 
the non-lightweight models and DCSAU-Net from the 
lightweight models. Subsequently, pair t-tests are con-
ducted to compare each selected model and GA-UNet. As 
shown in Table 8, most of the p-values are less than 0.05, 
which means the performance improvement of GA-UNet 
is statistically significant.

We also assess the convergence speed of our model and 
the other seven SOTA models within the first 20 epochs, as 
illustrated in Fig. 9. The experimental results indicate that 
GA-UNet exhibits faster convergence speed compared to the 
other SOTA models during the early stage. It suggests that 
GA-UNet has the potential to achieve superior performance 
with fewer epochs.

To further demonstrate the superiority of GA-UNet, we 
visualize segmentation results of challenging images from 
four datasets in Fig. 10. Qualitative analysis reveals that GA-
UNet effectively captures information and produces smoother 
edges with reduced burrs, even in low-quality images. These 
edges are more consistent with the shape of lesions (indicated 
by red, blue, and green circles). In contrast to SOTA models, 
GA-UNet can better segment diseased cells instead of treating 
them as a whole entity (indicated by yellow circles). Moreover, 

Table 3  Results on the 2018 Data Science Bowl Dataset. The best results are in bold

Method Accuracy Precision Recall F1-score mIoU Flops Parameters

U-Net (2015) [6] 0.957 ± 0.041 0.921 ± 0.094 0.913 ± 0.084 0.911 ± 0.081 0.845 ± 0.110 48.33G 28.95M
ResUNet++ (2019) [23] 0.957 ± 0.041 0.921 ± 0.091 0.915 ± 0.0781 0.913 ± 0.077 0.847 ± 0.106 70.99G 14.48M
DoubleU-Net (2020) [21] 0.959 ± 0.040 0.923 ± 0.081 0.917 ± 0.083 0.917 ± 0.071 0.853 ± 0.103 44.37G 18.84M
UNet3+ (2020) [26] 0.960 ± 0.039 0.927 ± 0.073 0.921 ± 0.070 0.922 ± 0.059 0.859 ± 0.089 199.74G 26.97M
LeViT-UNet (2021) [11] 0.954 ± 0.046 0.912 ± 0.111 0.909 ± 0.080 0.902 ± 0.097 0.832 ± 0.118 33.21G 52.14M
CMUNeXt (2023) [34] 0.960 ± 0.039 0.929 ± 0.056 0.917 ± 0.067 0.921 ± 0.051 0.857 ± 0.081 7.42G 3.15M
DCSAU-Net (2023) [35] 0.959 ± 0.040 0.922 ± 0.086 0.922 ± 0.067 0.918 ± 0.066 0.854 ± 0.095 6.92G 2.60M
GA-UNet (ours) 0.960 ± 0.039 0.926 ± 0.078 0.923 ± 0.064 0.922 ± 0.061 0.860 ± 0.091 4.45G 2.18M

Table 4  Results on the ISIC-2018 Dataset. The best results are in bold

Method Accuracy Precision Recall F1-score mIoU Flops Parameters

U-Net (2015) [6] 0.953 ± 0.072 0.874 ± 0.187 0.882 ± 0.172 0.858 ± 0.164 0.779 ± 0.192 48.33G 28.95M
ResUNet++ (2019) [23] 0.955 ± 0.069 0.881 ± 0.174 0.903 ± 0.144 0.871 ± 0.143 0.793 ± 0.175 70.99G 14.48M
DoubleU-Net (2020) [21] 0.958 ± 0.067 0.895 ± 0.164 0.890 ± 0.166 0.874 ± 0.152 0.800 ± 0.180 44.37G 18.84M
UNet3+ (2020) [26] 0.960 ± 0.062 0.900 ± 0.142 0.903 ± 0.131 0.886 ± 0.119 0.812 ± 0.156 199.74G 26.97M
LeViT-UNet (2021) [11] 0.956 ± 0.077 0.897 ± 0.154 0.904 ± 0.146 0.880 ± 0.138 0.806 ± 0.171 33.21G 52.14M
CMUNeXt (2023) [34] 0.958 ± 0.067 0.905 ± 0.148 0.901 ± 0.139 0.885 ± 0.126 0.811 ± 0.162 7.42G 3.15M
DCSAU-Net (2023) [35] 0.957 ± 0.082 0.904 ± 0.153 0.907 ± 0.135 0.886 ± 0.136 0.815 ± 0.167 6.92G 2.60M
GA-UNet (ours) 0.963 ± 0.055 0.910 ± 0.142 0.911 ± 0.117 0.896 ± 0.108 0.825 ± 0.145 4.45G 2.18M
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Table 5  Results on the BraTS 2018 LGG Dataset. The best results are in bold

Method Accuracy Precision Recall F1-score mIoU Flops Parameters

U-Net (2015) [6] 0.997 ± 0.003 0.887 ± 0.240 0.859 ± 0.263 0.863 ± 0.257 0.820 ± 0.255 48.33G 28.95M
ResUNet++ (2019) [23] 0.998 ± 0.002 0.899 ± 0.211 0.882 ± 0.226 0.883 ± 0.221 0.837 ± 0.226 70.99G 14.48M
DoubleU-Net (2020) [21] 0.997 ± 0.003 0.886 ± 0.227 0.867 ± 0.242 0.871 ± 0.233 0.822 ± 0.235 44.37G 18.84M
UNet3+ (2020) [26] 0.998 ± 0.002 0.903 ± 0.215 0.887 ± 0.227 0.889 ± 0.222 0.847 ± 0.225 199.74G 26.97M
LeViT-UNet (2021) [11] 0.997 ± 0.003 0.877 ± 0.244 0.851 ± 0.264 0.855 ± 0.255 0.807 ± 0.253 33.21G 52.14M
CMUNeXt (2023) [34] 0.997 ± 0.003 0.865 ± 0.261 0.847 ±0.271 0.850 ± 0.264 0.802 ± 0.259 7.42G 3.15M
DCSAU-Net (2023) [35] 0.997 ± 0.003 0.886 ± 0.237 0.863 ± 0.250 0.869 ± 0.242 0.823 ± 0.241 6.92G 2.60M
GA-UNet (ours) 0.998 ± 0.002 0.907 ± 0.196 0.896 ± 0.213 0.896 ± 0.205 0.853 ± 0.211 4.45G 2.18M

Table 6  Detailed ablation study of the GA-UNet architecture. The best results are in bold

Datasets Method Accuracy Precision Recall F1-score mIoU Flops Parameters

CVC-ClinicDB E1(U-Net [6]) 0.977 ± 0.031 0.898 ± 0.152 0.874 ± 0.182 0.875 ± 0.158 0.802 ± 0.181 48.33G 28.95M
E2(U-Net+GhostV2 

bottleneck and 
DSC downsample)

0.983 ± 0.027 0.926 ± 0.140 0.904 ± 0.161 0.909 ± 0.146 0.854 ± 0.163 4.44G 2.01M

E3(U-Net+CBAM) 0.982 ± 0.025 0.939 ± 0.052 0.909  ± 0.103 0.919 ± 0.066 0.857 ± 0.102 48.34G 29.12M
E4(GA-UNet (ours)) 0.987 ± 0.019 0.941 ± 0.066 0.933 ± 0.084 0.934 ± 0.062 0.882 ± 0.098 4.45G 2.18M

2018 Data Science 
Bowl

E1(U-Net [6]) 0.957 ± 0.041 0.921 ± 0.094 0.913 ± 0.084 0.911 ± 0.081 0.845 ± 0.110 48.33G 28.95M

E2(U-Net+GhostV2 
bottleneck and 
DSC downsample)

0.960 ± 0.039 0.926 ± 0.065 0.917 ± 0.065 0.920 ± 0.053 0.856 ± 0.083 4.44G 2.01M

E3(U-Net+CBAM) 0.958 ± 0.040 0.922 ± 0.079 0.916 ± 0.081 0.916 ± 0.070 0.851 ± 0.100 48.34G 29.12M
E4(GA-UNet (ours)) 0.960 ± 0.039 0.926 ± 0.078 0.923 ± 0.064 0.922 ± 0.061 0.860 ± 0.091 4.45G 2.18M

ISIC-2018 E1(U-Net [6]) 0.953 ± 0.072 0.874 ± 0.187 0.882 ± 0.172 0.858 ± 0.164 0.779 ± 0.192 48.33G 28.95M
E2(U-Net+GhostV2 

bottleneck and 
DSC downsample)

0.960 ± 0.062 0.908 ± 0.146 0.900 ± 0.135 0.886 ± 0.125 0.814 ± 0.160 4.44G 2.01M

E3(U-Net+CBAM) 0.959 ± 0.063 0.899 ± 0.153 0.892 ± 0.152 0.878 ± 0.135 0.802 ± 0.168 48.34G 29.12M
E4(GA-UNet (ours)) 0.963 ± 0.055 0.910 ± 0.142 0.911 ± 0.117 0.896 ± 0.108 0.825 ± 0.145 4.45G 2.18M

BraTS 2018 LGG E1(U-Net [6]) 0.997 ± 0.003 0.887 ± 0.240 0.859 ± 0.263 0.863 ± 0.257 0.820 ± 0.255 48.33G 28.95M
E2(U-Net+GhostV2 

bottleneck and 
DSC downsample)

0.998 ± 0.002 0.905 ± 0.210 0.890 ± 0.225 0.890 ± 0.219 0.849 ± 0.224 4.44G 2.01M

E3(U-Net+CBAM) 0.997 ± 0.003 0.885 ± 0.231 0.866 ± 0.247 0.867 ± 0.239 0.820 ± 0.241 48.34G 29.12M
E4(GA-UNet (ours)) 0.998 ± 0.002 0.907 ± 0.196 0.896 ± 0.213 0.896 ± 0.205 0.853 ± 0.211 4.45G 2.18M

Table 7  Ablation study of different feature extraction modules on the CVC-ClinicDB dataset. The best results are in bold

Method Accuracy Precision Recall F1-score mIoU Flops Parameters

U-Net [6] 0.977 ± 0.031 0.898 ± 0.152 0.874 ± 0.182 0.875 ± 0.158 0.802 ± 0.181 48.33G 28.95M
U-Net + Residual block [23] 0.978 ± 0.031 0.907 ± 0.154 0.870 ± 0.211 0.870 ± 0.187 0.805 ± 0.211 51.09G 30.35M
U-Net + Mobilenetv2 block [36] 0.980 ± 0.027 0.920 ± 0.077 0.904 ± 0.119 0.906 ± 0.086 0.838 ± 0.127 20.14G 8.46M
U-Net + GhostV2 bottleneck and 

DSC downsample
0.983 ± 0.027 0.926 ± 0.140 0.904 ± 0.161 0.909 ± 0.146 0.854 ± 0.163 4.44G 2.01M
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for the isolated regions (pink and orange circles) that are dif-
ficult to detect in the image, GA-UNet makes a more com-
plete delineation of lesion areas, which is crucial for medical 

diagnosis and treatment. These findings suggest that GA-UNet 
excels at capturing intricate details from medical images and 
represents an effective model for medical image segmentation.

Table 8  The p-values on the four datasets. P 
UG

denotes the p-values of comparing UNet3+ with GA-UNet. P 
DG

denotes the p-values of compar-
ing DCSAU-Net with GA-UNet. A p-value < 0.05 indicates the performance improvement is statistically significant

CVC-ClinicDB 2018 Data Science Bowl ISIC-2018 BraTS 2018 LGG

P
UG

1.495e-3 8.075e-3 1.153e-2 3.598e-5
P
DG

2.160e-2 1.465e-1 3.440e-2 2.061e-2

Fig. 9  Testing results of the first 20 epochs on four medical image segmentation tasks. Our GA-UNet exhibits the fastest convergence speed
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However, there is still room to improve our model. Red 
circles in Fig. 11 show that our GA-UNet model has limi-
tations in segmenting similar foreground and background, 
delineating complex edges, and identifying tiny lesion 
regions. Addressing these challenges will be a key focus of 
our future research.

Conclusion

This work proposes GA-UNet, a novel lightweight encoder-
decoder model for medical image segmentation which con-
sists mainly of the GhostV2 bottleneck, the DSC downsample 
module and CBAM. To assess the performance, we evalu-
ate our model on four medical image segmentation datasets 
(i.e., Polyp, Nuclei, Cellular lesions and Brain tumors). The 
experimental results show that our model is better than other 
seven SOTA models in terms of F1-score and mIoU. It is worth 
mentioning that our GA-UNet has much fewer parameters and 
Flops. The segmentation results of GA-UNet are more consist-
ent with ground truth than other SOTA models, demonstrating 
its potential as an aid to diagnostic tools. In the future, our 
work will focus on improving the model’s ability to segment 
the challenging regions mentioned above and moving towards 
a lightweight architecture for 3D medical image segmentation.
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