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Integrative genomics identifies SHPRH as a tumor suppressor
gene in lung adenocarcinoma that regulates DNA damage
response
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BACKGROUND: Identification of driver mutations and development of targeted therapies has considerably improved outcomes for
lung cancer patients. However, significant limitations remain with the lack of identified drivers in a large subset of patients. Here, we
aimed to assess the genomic landscape of lung adenocarcinomas (LUADs) from individuals without a history of tobacco use to
reveal new genetic drivers of lung cancer.
METHODS: Integrative genomic analyses combining whole-exome sequencing, copy number, and mutational information for 83
LUAD tumors was performed and validated using external datasets to identify genetic variants with a predicted functional
consequence and assess association with clinical outcomes. LUAD cell lines with alteration of identified candidates were used to
functionally characterize tumor suppressive potential using a conditional expression system both in vitro and in vivo.
RESULTS: We identified 21 genes with evidence of positive selection, including 12 novel candidates that have yet to be
characterized in LUAD. In particular, SNF2 Histone Linker PHD RING Helicase (SHPRH) was identified due to its frequency of biallelic
disruption and location within the familial susceptibility locus on chromosome arm 6q. We found that low SHPRH mRNA expression
is associated with poor survival outcomes in LUAD patients. Furthermore, we showed that re-expression of SHPRH in LUAD cell lines
with inactivating alterations for SHPRH reduces their in vitro colony formation and tumor burden in vivo. Finally, we explored the
biological pathways associated SHPRH inactivation and found an association with the tolerance of LUAD cells to DNA damage.
CONCLUSIONS: These data suggest that SHPRH is a tumor suppressor gene in LUAD, whereby its expression is associated with
more favorable patient outcomes, reduced tumor and mutational burden, and may serve as a predictor of response to DNA
damage. Thus, further exploration into the role of SHPRH in LUAD development may make it a valuable biomarker for predicting
LUAD risk and prognosis.

British Journal of Cancer (2024) 131:534–550; https://doi.org/10.1038/s41416-024-02755-y

INTRODUCTION
Globally, lung cancer is the leading cause of cancer mortality
in both men and women, responsible for over 1.8 million deaths
a year [1]. Approximately 85% of lung cancers are classified
as non-small cell lung cancer (NSCLC), with lung adenocarcinoma
(LUAD) the most common histological subtype, followed
by squamous cell carcinoma (SCC) [2]. Incidence rates for
LUAD have proportionally increased when compared to other
NSCLC subtypes over the past few years. A greater
understanding of the drivers of lung cancer development
and progression is urgently needed in order to define new
strategies for risk assessment, prevention, early diagnosis, and
treatment.

The majority of lung cancers are diagnosed at an advanced
stage, which limits the potential for patients to undergo possibly
curative surgical resection and contributes to a 5-year survival rate
of only 22% [2–4]. Advances in genomic profiling technologies
have led to the identification of several genetic drivers of lung
cancer and the development of drugs to target these aberrations
[5]. However, while the successes of targeted therapy are
numerous – including an increased quality of life for treated
patients – significant challenges continue to remain. Of note,
many tumors harbor mutations in uncharacterized genes or genes
that are non-actionable due to difficulty of drug development. In
addition, patients with lung tumors that initially respond to
targeted therapies eventually develop resistance. Therefore,
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identification of novel genetic drivers can further elucidate
strategies to better treat patients with mutations in these genes,
independently or in combination with other targetable genetic
drivers.
While the most well-established risk factor for lung cancer is

smoking, about 28% of lung cancers diagnosed in Canada occur in
people who have never smoked [2, 6]. As the mutation rate in
patients who have never smoked is much lower than in smokers,
there are fewer passenger gene mutations that obscure driver
gene identification [7]. Many lung cancer oncogenes were
originally characterized through the analysis of lung tumors from
never smokers (NSs), most notably EGFR [8]. Thus, assessment of
tumors from NS patients offers an opportunity to better under-
stand the biology of the disease. Importantly, targets and drugs
developed for the treatment of lung cancer in NSs can also be
used to treat patients that have smoked with mutations in the
respective drivers.
In this study, we aimed to assess the genomic landscape of

LUADs in order to reveal new genetic drivers of lung cancer. We
hypothesized that focusing on NS lung tumors would enrich
identification of cancer drivers relative to passenger mutations,
aiding in gene discovery. Using integrative genomic analyses
including next generation sequencing of 83 in-house LUADs and
validation in external cohorts, we identified 21 significantly
mutated genes through our computational pipeline that assessed
for evidence of positive selection, of which 12 were novel
candidates that have yet to be characterized in LUAD. SNF2
Histone Linker PHD RING Helicase (SHPRH) was uncovered as a
candidate of interest due to its frequency of double allelic
disruption and location within the main lung cancer susceptibility
locus on chromosome arm 6q [9]. We subsequently found that in
addition to mutation, SHPRH copy number alterations in LUAD
tumors and cell lines reduce SHPRH expression and that low
SHPRH expression is associated with worse clinical outcomes in
LUAD patients. Furthermore, we demonstrate that re-expression of
SHPRH in LUAD cells with inactivating alterations reduces their
tumorigenic potential in vitro and in vivo, highlighting SHPRH as a
novel tumor suppressor gene in LUAD. Finally, investigation into
the role of SHPRH expression in LUAD tumors suggests that it may
confer a protective effect against DNA damaging agents.
Together, this work suggests that SHPRH is a tumor suppressor
gene in LUAD whose expression is associated with reduced LUAD
development and more favorable prognosis and – coupled with
its chromosomal location in a susceptibility locus and role in DNA
damage tolerance – warrants further assessment as a potential
biomarker for individuals at-risk of developing LUAD.

MATERIALS AND METHODS
Sequencing and variant calling
A panel of 15 NS LUAD tumors and matched normal lung tissues were
obtained from BCCA under informed consent as previously described [10].
Whole-exome sequencing (WES) using the Illumina platform was
performed at the NIH Intramural Sequencing Center (NISC) according to
standard protocols and resulting BAM files were aligned to the hg19
reference genome as previously described [11, 12]. BCFTools [13], Varscan
[14], and Freebayes [15] were used to make variant calls for tumor and
matched-normal controls. ‘Base Quality’ was set to ≥10 and ‘Depth’ to ≥8,
while all other parameters were set at default. Resulting VCF files were
sorted and normalized using BCFtools [16]. Variants that were called in at
least two of the three algorithms were maintained in tumors, and variants
called by any one of the three algorithms were maintained in matched-
normal controls. VCF files were prepared and subsequently annotated with
ANNOVAR [17].

Somatic filtering
Variants that were called by any algorithm in any matched-normal control
were removed from downstream consideration of somatic alteration in
tumors. Variant lists were prepared for evaluation with MutScan [18] in R

using manipulation with maftools [19] and dplyr [20]. Fastq files were
generated from BAM files using Samtools [21] for use in Mutscan. Variants
with an allelic frequency in normal controls of 5% or more were removed
from further consideration. Variants with no reads supporting the
alternative allele but with more than 20 reads supporting the reference
allele were removed. In addition, variants with less than twice the
percentage of reads supporting the alternative allele compared to the
percentage in the matched-normal controls were removed. Variants
filtered by any of the above metrics within a sample were also removed
from consideration across the entire sample set. Finally, variants that were
annotated by ANNOVAR (avSNP150) as being in dbSNP [22] with a healthy
population frequency of more than 1% were removed. Population
frequency was determined by “PopFreqMax” by ANNOVAR [17], containing
the maximum allele frequency from several databases including 1000
Genomes Project [23], ESP6500 [23, 24], and ExAC [25].

Calculation of validation rate
A custom Illumina exon capture assay was designed to assess a panel of
268 genes in the 15 tumor/normal pairs analyzed by WES (above) in
addition to an independent set of in-house 68 LUAD tumor and matched
normal pairs. Genes selected for capture were determined through
assessment of identified variants from WES and common drivers previously
reported to be mutated in LUAD and other cancers. Somatic variants in
genes and samples that were sequenced by custom capture were used for
validation (n= 488). Variants were considered validated if 5% or more of
the reads identified in MutScan [18] supported the alternative allele.

Filtering of variants for biologically relevant effects
Candidate somatic mutations were filtered for functional relevance
through the following sequence. First, variants that were not annotated
by ANNOVAR [17] or RefSeq [26] databases as located in protein coding or
splice site regions were removed. Second, variants that were predicted to
be silent at the amino acid level and not predicted by SPIDEX [27] to affect
splicing (annotated by ANNOVAR, |DPSI z-score| ≥ 2) were removed. Third,
variants that were in genes determined not to be expressed in NS LUAD as
determined by Illumina expression microarray analysis of a panel 30 BCCA
samples were removed using a pipeline previously described [28]. Lastly,
amino acid functional change was predicted with SIFT [29], LRT [30],
MutationTaster [31], MutationAssessor [32], FATHMM [33–35], and
MetaSVM [36] by ANNOVAR [17] and if at least half of the algorithms
predicted that a variant was tolerable to protein function, the variant was
removed, unless it was an indel or had a SPIDEX [27]| DPSI z-score|≥2.

Copy number analysis
Copy number processing was performed as described in previous studies
[10, 37]. In brief, genomic DNA from the 83 LUAD tumors and matched
non-malignant lung tissues were hybridized to Affymetrix SNP 6.0 arrays
according to the manufacturer’s instructions and the resulting normal-
ization and copy number segmentation was performed using Partek
Genomics Suite Software (Partek Incorporated, Missouri) with the same
settings and downstream processing described previously [37]. Resulting
segmentation files were used in GISTIC 2.0 [38, 39] on Gene Pattern
(https://cloud.genepattern.org/gp/pages/login.jsf) with amplification
threshold= 0.8, deletion threshold=−0.6, join segment size= 50,
q-value threshold of 0.05, and hg19 genome build, as described previously
[40]. All other parameters were set to default.

Analysis of external LUAD datasets
Copy number status, methylation status (HM450) and gene expression
data (RNA Seq V2 RSEM) for 230 LUAD tumors [41] were downloaded from
the MSKCC cBioPortal (www.cbioportal.org) [42, 43] Affymetrix U133 Plus 2
expression data for 58 LUAD tumors and exfoliated bronchial cells of 67
lung cancer–free individuals obtained during fluorescence bronchoscopy
were obtained and processed as previously described [44, 45]. Copy
number status and mRNA expression for 74 LUAD cell lines were
downloaded from the Cancer Dependency Map portal (https://
depmap.org/portal/) [46, 47]. The Kaplan-Meier (KM) plotter (https://
kmplot.com/analysis/index.php?p=service&cancer=lung) [48] was used to
evaluate the correlation between SHPRH mRNA expression (Affymetrix
microarray) and OS and between SHPRH mRNA expression and PFS in
LUAD patients with data downloaded from Gene Expression Omnibus
(GEO) database on 14-Mar-2024. For all LUAD patients, a sample size of
n= 672 for OS and n= 528 for PFS was used, with n= 140 for the NS

A.L. Nagelberg et al.

535

British Journal of Cancer (2024) 131:534 – 550

https://cloud.genepattern.org/gp/pages/login.jsf
http://www.cbioportal.org
https://depmap.org/portal/
https://depmap.org/portal/
https://kmplot.com/analysis/index.php?p=service&cancer=lung
https://kmplot.com/analysis/index.php?p=service&cancer=lung


subset. For all SCC patients, a sample size of n= 527 for OS and n= 220 for
PFS was used. Samples were divided into high expression and low
expression groups based on a median cutoff or lower quartile cutoff of
SHPRH expression. Hazard Ratio (HR), 95% confidence interval (CI), and log-
rank P-value were then determined and displayed on KM survival plots. A
continuous phenotype Gene Set Enrichment Analysis (GSEA) was
performed on mRNA expression data obtained for 510 LUAD tumors from
the TCGA PanCancer Atlas [49] dataset obtained from cBioPortal [42, 43]
using the GSEA software v4.3.2 [50, 51] and the MSigDB Hallmark gene sets
[52]. The same PanCancer Atlas LUAD dataset was also used to assess the
impact of SHPRH inactivation (copy number loss or mutation) on Tumor
Mutational Burden, Mutation Count, and Fraction of Genome Altered for
samples with available clinical information downloaded from cBioPortal. All
TCGA PanCancer Atlas studies within cBioPortal were also assessed for
SHPRH mutations and plotted to determine recurrent mutations that occur
across cancer types. Lastly, LUAD datasets within cBioPortal with sequence
and/or copy number information for SHPRH were assessed to determine
alteration frequency of SHPRH in comparison to other previously
established tumor suppressor genes.

Cell lines and culture conditions
All cell lines were obtained from American Type Tissue Culture (ATCC),
Manassas, VA and were grown at 37 °C with 5% CO2. HPL1D, NCI-H1395,
NCI-H2347, NCI-H2009, PC9 and A549 were grown in RPMI-1640 medium
(Gibco, 11875119) supplemented with 10% FBS (Gibco, 123483020) and
1% Pen/Strep (Gibco, 15140-122). NCI-H1623 was grown in RPMI-1640
medium supplemented with 5% FBS and 1% Pen/Strep. 293T cells were
grown in DMEM medium (Gibco, 12430062) supplemented with 10% FBS.
For experiments including doxycycline (dox)-inducible constructs, cells
were grown in RPMI-1640 medium with 10% tetracycline (tet) system
approved tet-free FBS (Clontech, 631101) and 1% Pen/Strep. Cells were
regularly checked via polymerase chain reaction [53] for mycoplasma
contamination and were confirmed to be mycoplasma negative. Where
indicated, doxycycline hyclate (Sigma-Aldrich, D9891) was added to cell
culture medium at 100 ng/mL.

Plasmids and generation of stable cell lines
pBABE GFP was gifted from William Hahn (Addgene #10668). A sequence-
verified human SHPRH cDNA clone from the Mammalian Gene Collection
(MGC) was obtained from Horizon Discovery (Dharmacon, MHS6278-
211690436). SHPRH was amplified using the following primer sequences:
5’-CACCGGGTCTTTCGGAAGATAACTGA-3’ and 5‘-AAGCCACTGTATAACCA-
GAACAA-3’. GFP and SHPRH were purified and subcloned into pENTR/D-
TOPO using the pENTR™/D-TOPO™ Cloning Kit (Invitrogen, K240020).
SHPRH was then cloned by Gateway LR Clonase II enzyme reaction (Life
Technologies, 11791020) into pInducer20 (gift from Stephen Elledge,
Addgene #44012) [54]. Correct sequence insertions were verified by Sanger
sequencing.
For knockout of SHPRH, sgRNA sequences targeting SHPRH

(sgSHPRH.ex4 5’-ATGCTGGACATCCACTTGGA-3’) were cloned into the
lentiCRISPRv2 plasmid (gift from Feng Zhang, Addgene #52961) using
the Zhang Lab Target Guide Sequence Cloning Protocol obtained from
Addgene [55, 56]. Undigested lentiCRISPRv2 plasmid lacking a sgRNA
insert was used as a control. Sanger sequencing was used to verify correct
sequence insertions.
293T cells, psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259)

were used to generate and package lentivirus with either the pInducer20-
GFP (TetO GFP) or pInducer20-SHPRH (TetO SHPRH) recombinant
lentiCRISPRv2 vectors (SHPRH KO) or the undigested control (EV) vectors.
NCI-H1395, NCI-H2009, NCI-H1623, PC9, HPL1D and A549 cells were
transduced with lentivirus and Lipofectamine 2000 (Life Technologies,
11668019).
Antibiotic selection with G418 was performed (Gibco, 10131027) at

375 µg/mL (NCI-H1395 and NCI-H2009), 500 µg/mL (NCI-H1623 and PC9),
or 7 mg/mL (HPL1D) for 2 weeks to generate stable polyclonal cell lines.
A549 was selected with 0.75 µg/mL puromycin (Sigma, 540222) for 3 days.
For monoclonal populations, polyclonal cells were sorted into 96-wells,
then expanded into single-cell derived colonies. Sanger sequencing was
used to verify correct sequence insertions.

Lysate generation and Western blot analysis
Cell and tumor lysates were generated using RIPA lysis buffer (Thermo
Scientific, 89901) with HaltTM protease and phosphatase inhibitor cocktail

(Thermo Scientific, PI78444). Where indicated, cells were treated with
100 ng/mL doxycycline for 3 days prior to lysate collection. Lysates were
sonicated and BCA protein assay kit (Thermo Scientific, PI23225) was used
to determine protein concentration. Samples were denatured by boiling in
loading buffer (Thermo Scientific, NP0007) and reducing agent (Thermo
Scientific, NP0009). 20 ug of lysates were loaded on 4-12% Bis-Tris NuPage
Protein Gels (Thermo Scientific, NP0335), run in MOPS SDS buffer (Thermo
Scientific, NP000102), transferred to PVDF Immobilon (Millipore,
IPVH00010) in transfer buffer at 70 V for 2 h, and blocked in TBS-T (TBS,
0.1% Tween20) and 5% skim milk. Membranes were immunoblotted
overnight at 4 °C in TBS-T with 5% BSA (Sigma, A9647) with the following
primary antibodies: SHPRH (1:1000, Sigma SAB2105240, only used for A549
KO validation) (1:1000, abcam, ab80129), GFP (1:1000, Cell Signalling
Technology, 2956S), and β-Actin (1:3000, Cell Signalling Technology,
12620S). They were then incubated in HRP-linked secondary anti-rabbit IgG
(1:10000, Cell Signalling Technology, 7074S) in TBS-T with 5% skim milk for
1 h at room temperature. Protein expression was visualized using either
SuperSignalTM West Pico Plus (Fisher Scientific, PI34580) or Femto (Fisher
Scientific, PI34096) Chemiluminescent Substrate on the ChemiDocMP Gel
Imaging System (BioRad). Quantification of protein band density was done
using ImageJ, and calculated relative to control conditions.

Cell viability assays
5 × 103 cells were seeded in a 96-well plate in tet-free media or dox-
containing (100 ng/mL) media and left to grow for 92 h, after which
alamarBlue cell viability agent (Life Technologies, Dal1100) was added at a
10% concentration. Cells were incubated with alamarBlue for 4 h.
Fluorescence (Excitation: 540 nm, Emission: 590 nm) was measured using
a Cytation 3 Multi Modal Reader with Gen5 software (BioTek).

Clonogenic assays
Cells were treated with or without 100 ng/mL dox 3 days prior to seeding.
200 (PC9), 700 (HPL1D), 1 ×103 (NCI-H2009), or 1 ×104 (NCI-H1395 and
NCI-H1623) cells were seeded in 6-well plates in tet-free media or dox-
containing media and left to form colonies. For the clonogenic survival
assays, cells were also treated with various concentrations of MMS (v/v)
(Sigma, 129925), etoposide, (Selleckchem, S1225), cisplatin (Selleckchem,
S1166), or olaparib (Selleckchem, S1060), alongside their vehicle controls
(media only for MMS; DMSO (Fisher Scientific, BP231) for etoposide and
olaparib; and saline (0.9% NaCl solution) for cisplatin). Cells were plated in
triplicate. Media was changed every 3–4 days. 10 days (PC9, HPL1D, and NCI-
H2009), 2 weeks (NCI-H1395) or 4 weeks (NCI-H1623) post-seeding, colonies
were stained using a 20%Methanol and 0.1% Crystal Violet (Sigma, HT90132)
solution and left to dry. Colonies were then destained using 10% Glacial
Acetic Acid and the absorbance was read at 590 nm using the Cytation
3Multi Modal Reader with Gen5 software. For each independent experiment,
absorbance values were averaged between the triplicates of each condition
and calculated relative to the GFP no dox control.

Soft agar colony formation assays
Cells were treated with or without 100 ng/mL dox 3 days prior to seeding.
In 12-well plates, a bottom agar layer containing RPMI-1640, 10% tet-free
FBS, 1% Pen/Strep, and 0.6% Low Melting Point (LMP) agar was used.
1 × 103 (PC9 and NCI-H2009), 5 ×103 (NCI-H1395), 7 ×103 (HPL1D), or
1 × 104 (NCI-H1623) cells were suspended in a top layer containing 0.3%
LMP agar instead. Where indicated, 100 ng/mL of dox was added to both
the top and bottom layers. Cells were plated in triplicate and hydrated with
30 µl of tet-free or dox-containing media every 3-4 days. After 2 weeks
(PC9), 3 weeks (HPL1D), 4 weeks (NCI-H1395), or 5 weeks (NCI-H2009)
formed colonies were stained with 5 mg/mL of MTT (3-(4, 5 –
Dimethyliazol-2-yl)-2,5-Diphenyltetrazolium Bromide) for 30minutes and
the number of colonies was determined from scanned images of the plates
using ImageJ software find maxima tool. For each independent experi-
ment, colony counts were averaged between the triplicates of each
condition.

In vivo mouse xenografts
Tumor formation was assessed in male JAX-NRG (NOD-Rag1null IL2rgnull)
mice kept on a normal or dox (Envigo Teklad, TD.130141) diet. NCI-H1395
and NCI-H2009 cells were treated with or without 100 ng/mL dox 3 days
prior to injection. A549 cells were kept in normal cell culture medium.
1 × 106 cells in 100 µl of PBS (for NCI-H1395) or serum-free RPMI-1640
medium (for NCI-H2009) were alternately injected subcutaneously into the
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left and right flanks of 8-to-10-week-old mice obtained from the BCCA
Animal Resource Centre. Cages were randomly assigned to either normal
or dox diet. Group allocations were not blinded and exclusion criteria was
pre-established prior to data collection which included injection error or
humane endpoint due to ulceration. Mice that did not reach experimental
endpoint were excluded from data analysis. Mean ± SEM and results from
Student’s paired t test are shown. All paired measurements were assumed
to be random, representative samples with normal distribution and
homogenous variance, allowing the use of Student’s paired t test. Tumor
volume was measured twice a week following injection. Experiments were
terminated once tumor volume reached 2 cm3 for a given mouse in the
cohort. Tumors were harvested, weighed, and homogenized for lysate
collection.

Neutral comet assay
NCI-H1395SHPRH-DEL cells were treated with 100 ng/mL dox for 3 days.
Following this, cells were treated with 0.01% MMS (v/v) or mock-treated
(media change only) for 4 h. Cells were then collected and the neutral comet
assay was performed according to the manufacturer’s instructions for the
CometAssay Reagent Kit for Single Cell Gel Electrophoresis Assay (R&D
Systems, 4250-050-K). Comets were stained with 16 µg/mL Propidium Iodide
(Thermo Scientific, P1304MP) and imaged on a LeicaDMi8 microscope at 10X
magnification. Tail moment was obtained using an ImageJ plugin that has
been previously described [57, 58]. Measurements were blind reviewed by
individuals without prior knowledge of sample order. 70 events per
condition were analyzed from each independent experiment.

RNA sequencing analysis
1 ×106 NCI-H1395 TetO cells were seeded in triplicate into 10 cm plates.
The following day, media was changed and the cells were treated for 72 h
with or without 100 ng/mL of dox. Total RNA was extracted using the
RNeasy Mini kit (Qiagen) according to the manufacturer’s protocol. Sample
quality assessment, library preparation, and RNA sequencing (RNASeq) was
performed by GENEWIZ™ from Azenta Life Sciences (New Jersey, USA). RNA
Integrity Numbers (RIN) for all samples were 9.5. Quality Control was
performed using FastQC [59] and Illumina adapters were trimmed using
CutAdapt [60]. Trimmed read files were aligned to the GRCh38.p14
(Release 44) reference genome using Salmon [61]. R Statistical Software v.
4.3.2 [62] was used for downstream analysis. A matrix of read counts was
generated via the tximport v.1.30.0R package [63]. Normalized TPM values
were then log(n+ 1) transformed using the dplyr v.1.1.4R package [20],
and a differential expression score for each gene was calculated for the
+dox vs -dox state for both the TetO-GFP and TetO-SHPRH cell lines
individually as previously described [64, 65]. GSEA was then performed on
the resulting gene list for each cell line using the preranked GSEA function
and the H: hallmark gene sets collection from the Molecular Signature
Database (MSigDB). Genes were ranked according to their differential
expression scores and GSEA was run with default settings. Gene sets
significantly enriched in the +dox state were then cross-referenced
between the TetO-SHPRH and TetO-GFP cell lines and only those found
specifically in TetO-SHPRH considered.

Statistical analysis
Cox univariate regression model was used for survival analysis by KM
plotter, with a log rank p-value ≤ 0.05 being considered to be statistically
significant [48]. Data obtained from the TCGA Lung Adenocarcinoma
Dataset [41], Cancer Dependency Map portal (https://depmap.org/portal/)
[46, 47], and biological data was plotted and analyzed using GraphPad
Prism version 8.2.1 (GraphPad Software, San Diego, CA, USA). See figure
legends for the type of statistical test used for each experiment and the
number of independent replicates that were performed. For cell-based
experiments, data from 3-4 independent replicates were collected, and
Mean ± SEM of independent replicates and results from Student’s t test are
shown. For in vivo experiments, based on observations from previous
studies, a minimum sample size of 5 was estimated to be necessary and
Mean ± SEM of independent replicates and results from Student’s paired t
test are shown. For both, replicates were assumed to be random,
representative samples with normal distribution and homogenous
variance, allowing the use of Student’s t test. P values ≤ 0.05 were
considered statistically significant, with *p ≤ 0.05, **p ≤ 0.01, and
***p ≤ 0.0001. For statistical analyses performed by the GSEA software
v4.3.2, a NOM p-value < 0.05 and FDR q-value < 0.25 was considered to be
significant.

RESULTS
Sequencing of LUADs from NSs reveals somatic variants with
evidence of selective pressure
LUADs and matched normal lung tissues from 15 individuals
without a history of tobacco use were collected under informed
consent as previously described [10] (Supplementary Table 1).
WES was performed with Illumina technology (Supplementary
Table 2) and variant calling with three different algorithms was
performed to identify somatic candidates (Supplementary Fig. 1A).
These were then filtered against matched-normal tissues from the
patients, MutScan reads, and healthy control population data-
bases (e.g. dbSNP) to further confirm that the mutations occurred
somatically. After filtering, 10,179 somatic mutations remained
across all 15 tumors. The mutations in the NSs consisted of less C-
>A transversions than smokers, which is consistent with the
known carcinogenic effects of tobacco smoke (Supplementary
Fig. 1B, C). The 15 tumors had an average of 120.3 coding variants
per tumor (Range 15-519, Supplementary Fig. 1D). Overall, the
LUADs from our dataset had a functional mutational burden
(median= 28 per tumor) similar to LUADs from NS in The Cancer
Genome Atlas (TCGA, median= 21 per tumor), much lower than
the burden observed in LUAD from individuals with a history of
tobacco smoking (median= 64 per tumor, Supplementary Fig. 1E).
We next filtered the identified somatic mutations to remove

variants in genes that may be mutated without functional
consequence, as these would be predicted to be probable
passenger mutations. Following removal of non-coding and silent
variants, we searched for variants in genes that are expressed in
LUADs from NSs, as it has previously been demonstrated that
genes not expressed in specific cancers have a higher mutation
rate due to limited selective pressure [28] (Fig. 1a). Finally, amino
acid functional prediction by various algorithms [29–36] as
annotated through ANNOVAR [17] was assessed and only variants
with at least half of the algorithms predicting a deleterious
consequence to protein function were considered as a functional
amino acid substitution. Variants that were either indels,
functional amino acid substitutions, or predicted to affect splicing
(SPIDEX|DPSI z-score|≥2) were considered candidates, resulting in
428 variants with a predicted functional consequence across the
15 samples (Fig. 1a). The median per-sample validation rate was
87% (Supplementary Table 3), as determined by a secondary
custom capture panel of select genes (see Methods).
To implicate new candidates involved in tumorigenesis, we next

assessed the frequency of gene mutation, identifying 30 genes
mutated in two or more of the tumors (Fig. 1a). Mutation frequency
across the TCGA LUAD cohort [41] (n= 230) was also assessed to
further infer prevalence in LUAD tumors from smokers and NSs.
Only genes that were mutated in three or more TCGA LUADs were
considered, resulting in a total of 21 candidate genes (Fig. 1a). These
genes consisted of known and suspected drivers of lung cancer, as
well as genes that have yet to be functionally validated or
characterized in this disease. For the purposes of identifying genes
that are novel and therefore attractive targets to further characterize
for a role in lung cancer biology, known drivers were defined as
those that are present in the COSMIC as a census gene [66] and
present in lung cancer (EGFR, TP53, ERBB2, MET, RBM10, TCF3, ELN),
or those genes that have a confirmed functional role or evidence of
therapeutic potential as evaluated in lung cancer (PAPPA, SMARCA2).
All 21 genes are shown in Fig. 1b, with the 12 novel candidates
segregated in the bottom of the panel. The 12 novel candidates are:
CELSR2, RNF25, KCNMA1, SHPRH, DNAH5, MAP3K5, ASCC3, SVEP1,
DST, MTMR10, SEL1L and LAMA1. Hypergeometric Gene Ontology
(GO) enrichment analysis of these candidates was performed for
each NS LUAD tumor sample to determine if GOs were recurrently
enriched across samples, revealing a range of cellular functions with
which some of the candidates were annotated, while others have
less defined roles to date (Fig. 1c).
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Penetrance of candidate gene disruption and assessment of
two-hit frequency in expanded lung cancer datasets
Genes important for tumorigenesis are typically altered by
multiple mechanisms and we have previously shown that

integrating different dimensions of genomic data can aid in
cancer gene discovery [10, 45, 67]. To assess the true penetrance
of candidate gene alteration and highlight potentially relevant
cancer genes, we assessed copy number and mutational data for
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the 21 genes of interest in a panel consisting of 68 additional in-
house NS and smoker LUAD tumors (Fig. 2a, Supplementary
Table 4). Mutational status was determined using a custom
Illumina capture-based approach while Affymetrix arrays were
utilized for copy number determination across the larger LUAD
cohort [10]. Overall, mutation frequencies were lower than in the
initial WES cohort for the majority of candidates, which may reflect
differences in clinical attributes such as smoking status, ethnicity,
age or gender as indicated in Fig. 2a.
Oncogenes are typically affected by recurrent mutations

clustered at specific genomic hotspots, leading to constitutive
protein activation [68]. However, only one of our candidate genes,
CELSR2, a member of the flamingo subfamily of non-classic-type
cadherins that is thought to have a role in cell-to-cell signaling
during nervous system development, demonstrated mutation at
the same residue across multiple tumors in our dataset. Thus, we
postulated that many of the identified candidates may function as
tumor suppressors, as mutations in these genes are commonly
dispersed throughout the coding sequence and are inactivating in
nature [68]. Indeed, many of the candidates are mutated in
conjunction with known driver genes such as EGFR and MET,
suggesting they may cooperate with these oncogenes to promote
tumorigenesis. Finally, genes altered at multiple genomic dimen-
sions have been shown to be more likely to be associated with
cancer development [69]. For most cancer-related genes, it has
been suggested that both genomic copies must be inactivated to
cause a phenotypic change in tumorigenesis [70]. Therefore,
evidence of “two-hit” alteration can be a useful indicator of a
gene’s potential to behave as a tumor-suppressor. We evaluated
12 candidate genes for their frequency of “two-hit” or double
alteration across both the TCGA and BCCA cohorts. The well-
established tumor-suppressor TP53 was also evaluated for two-hit
frequency as a control. Double alteration included all cases that
showed evidence of loss-of-function in both alleles, including
homozygous loss (deep deletion), homozygous mutation, or
heterozygous mutation combined with loss of the second allele.
The most frequent two-hit genes across the TCGA and BCCA
cohorts included SHPRH and ASCC3, with a combined frequency of
double alterations of 7% and 6%, respectively (Fig. 2b).

SHPRH as a candidate tumor suppressor gene located within
the lung cancer susceptibility locus on chromosome arm 6q
The frequency of double allelic alterations (Fig. 2b) in SHPRH and
ASCC3 suggest that they may be candidate tumor suppressor
genes in LUAD, whereby their inactivation could contribute to
LUAD development and progression. Both genes are located on
chromosome 6q, a region of frequent copy number deletion in
LUAD [71], with SHPRH on chromosome 6q24.3 and ASCC3 on
chromosome 6q16.3. Previous investigation using genome-wide
linkage analysis of families with lung cancer revealed that a
potential lung cancer susceptibility gene(s) resides within the
chromosome 6q23-25 region [9]. Because of its location within this
susceptibility locus, SHPRH was determined to be the focus of our
subsequent follow up to evaluate its candidacy as a tumor
suppressor gene in LUAD.
Examination of copy number alterations in the TCGA LUAD

dataset [41] reveals that 52.2% of LUAD tumors (n= 230)
demonstrate copy number loss of SHPRH (Fig. 3a). Furthermore,
lower levels of SHPRH mRNA are associated with a loss of DNA
copy number (Fig. 3a), but does not appear to have an association
with the methylation status of SHPRH (Supplementary Fig. 2A),
suggesting that copy number alterations are the main determi-
nant of SHPRH expression in these tumors. Further assessment of
LUAD cell lines supports this observation, since SHPRH mRNA
levels and DNA copy numbers are positively associated (Fig. 3b)
[46]. Lastly, expression of SHPRH was significantly reduced in LUAD
(N= 58) in comparison to normal lung epithelium from individuals
without lung cancer (N= 67), suggesting that SHPRH is

downregulated/inactivated during cancer development, consis-
tent with a tumor suppressive function (Fig. 3c).
In an expanded analysis of all LUAD datasets available through

cBioPortal with available copy number and mutation data, we
found that SHPRH was mutated or deeply deleted in ~4% (34/980)
of tumors, similar in frequency to known LUAD tumor suppressor
genes including RB1 (~6%), BRCA2 (~5%), BRCA1 (~3%) and PTEN
(~2%) (Supplementary Fig. 2B). In total, 38% (374/980) of the
LUADs demonstrated either mutation or copy number loss
(deletion or deep deletion).

SHPRH is mutated across different solid cancer types
To determine whether mutation of SHPRH is exclusive to LUAD, we
next assessed its status across the TCGA PanCancer Atlas datasets.
This revealed that SHPRH was mutated in 2.4% (251/10443) of all
samples profiled, with endometrial carcinoma (11.6%), cutaneous
melanoma (5.9%), colorectal adenocarcinoma (4.9%) and stomach
adenocarcinoma (4.1%) having the highest mutation rate other
than lung cancer (LUAD= 3.9%) (Supplementary Fig. 2C). Further-
more, assessment across cancer types revealed recurrent mutation
sites in SHPRH, including mutations at G458 (non-sense or
frameshift deletions in 8 cases, including LUAD), G587 (missense
or frameshift deletions/insertions in 8 cases) and R1365 (R1365C in
5 cases). Indeed, many of the mutations found in LUAD occurred
in other cancer types, including those at S93 (3 cases), G183 (2
cases), G458 (8 cases), S725 (2 cases) and R1560 (2 cases)
(Supplementary Fig. 2D). Together, this suggest that SHPRH may
be inactivated in many aggressive solid cancer types in addition to
LUAD, with recurrent mutations providing potential evidence of
positive selection during tumor evolution.

Reduced SHPRH expression is associated with lower rates of
survival in LUAD patients
To explore the clinical implications of SHPRH expression, we assessed
survival of LUAD patients in comparison with the levels of SHPRH
mRNA in their tumors. Patients with LUAD tumors that have low
SHPRH expression (as determined by a median cutoff for SHPRH
mRNA expression) have significantly worse overall survival (OS)
(N= 672) and progression-free survival (PFS) (N= 443) than patients
with tumors that have high SHPRH expression (Fig. 3d, top). This
trend also persists when assessing only NS LUAD patients (N= 140)
(Fig. 3d, bottom). To better represent the proportion of LUAD
patients that have a double alteration of SHPRH, we further
performed survival analysis on a lower quartile cutoff for SHPRH
mRNA expression and observe a similar association where patients
whose tumors have low SHPRH expression have poorer disease
outcomes, regardless of smoking status (Supplementary Fig. 3A). In
contrast, assessment of SCC patients does not reveal an association
between SHPRH mRNA expression and disease outcomes (Supple-
mentary Fig. 3B). Taken together, this suggests that SHPRH may be a
candidate tumor suppressor gene with a clinical impact specifically in
patients with LUAD tumors.

Re-expression of SHPRH in lung adenocarcinoma cells with
inactivating alterations leads to tumor suppression in vitro
and in vivo
We next assessed whether re-expression of SHPRH in LUAD cell
lines with biallelic inactivation or mutation of SHPRH would
decrease their tumorigenic potential. NCI-H1395 has a homo-
zygous deletion of SHPRH (NCI-H1395SHPRH-DEL), while NCI-H2009
has a nonsense mutation at E41 (NCI-H2009SHPRH-E41*). Using a
doxycycline(dox)-inducible lentivirus vector system, we trans-
duced these cells to conditionally express SHPRH (TetO SHPRH)
or GFP as a control (TetO GFP) (Fig. 4a). This system was also
introduced in PC9s, which are wildtype for SHPRH (PC9SHPRH-WT)
(Fig. 4a).
Re-expression of SHPRH in NCI-H1395SHPRH-DEL and NCI-

H2009SHPRH-E41* does not alter cell viability after 4 days
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(Supplementary Fig. 4). However, evaluation of colony growth
over longer periods of time shows that re-expression of SHPRH in
NCI-H1395SHPRH-DEL significantly reduces the number of
anchorage-independent colonies formed in agar, while re-
expression of SHPRH in NCI-H2009SHPRH-E41* significantly reduces
both anchorage-dependent and -independent colony formation

(Fig. 4b, c). In contrast, overexpression of SHPRH in PC9SHPRH-WT

does not confer any differences in colony formation (Fig. 4b, c).
This suggests that sustained re-expression of SHPRH in cell lines
with inactivating alterations of SHPRH can affect their tumorigenic
potential, but overexpression in cell lines with functional SHPRH
has limited consequences. Re-expression of SHPRH in another
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homozygous deletion cell line (NCI-H1623SHPRH-DEL) and over-
expression of SHPRH in a normal lung epithelial cell line
(HPL1DSHPRH-WT) further supports this observation upon assess-
ment of colony growth (Supplementary Fig. 5), suggesting that
the subset of LUADs that evolve to select for SHPRH inactivation
are dependent on its suppression for sustained survival.
Next, we assessed whether re-expression of SHPRH in NCI-

H1395SHPRH-DEL and NCI-H2009SHPRH-E41* cells subcutaneously
implanted into the flanks of immunocompromised mice kept on
a dox diet would affect their ability to form tumors, in vivo. Indeed,
TetO SHPRH cells show a significant reduction in tumor growth
(Fig. 5a) and size (Fig. 5b, c) in mice kept on a dox diet, whereas
TetO SHPRH cells implanted into mice kept on a normal diet do
not show a significant difference in comparison to the GFP control.
Lastly, we aimed to confirm that inactivation of SHPRH can have a

tumor promoting effect by knocking out SHPRHwith CRISPR in a LUAD
cell line with wildtype status (A549) (Supplementary Fig. 8A, B) and
performing the same in vivo experiments as described previously. This
demonstrated that cells with SHPRH knockout had increased growth
(Supplementary Fig. 8C) and tumor size (Supplementary Fig. 8D, E) at
endpoint compared to their SHPRH expressing counterparts, further
supporting the role of SHPRH in tumor suppression. SHPRH inactivation
was confirmed in the tumors collected at endpoint (Supplementary
Fig. 8F). Together, this data phenotypically characterizes SHPRH as a
tumor suppressor that acts to reduce tumorigenesis in LUAD cells with
inactivating alterations of SHPRH.

Re-expression of SHPRH in lung adenocarcinoma cells with
inactivating alterations increases cellular fitness in response
to DNA damage
To investigate themechanism by which SHPRHmay operate as tumor
suppressor in LUAD, we next set out to perform RNAseq on the NCI-
H1395SHPRH-DEL cells which do not basally express SHPRH. In effort to
identify early events which may be driving the tumor suppressive
phenotype that is observed in these cells upon re-expression of
SHPRH, RNA was collected from TetO GFP and TetO SHPRH cells
treated with or without dox for 72 h and then profiled. Differential
gene expression analyses (see methods) were performed to compare
the dox and no dox conditions for each cell line and GSEA [50, 51] was
performed to identify Hallmark [52] gene sets enriched after the
addition of dox (Fig. 6a). This analysis revealed that “DNA REPAIR”was
the only gene set that was significantly positively enriched in the
TetO SHPRH vs TetO GFP cells after the addition of dox (Fig. 6b).
To confirm the clinical relevance of these findings, we next

performed GSEA on LUAD patient tumor mRNA expression data
(N= 510) [49] in order to identify the top gene sets that are
negatively correlated with SHPRH expression (Fig. 6c), in concordance
with SHPRH’s proposed function as a tumor suppressor gene. Among
the most negatively enriched Hallmark gene sets was “DNA REPAIR”
(Fig. 6d), further suggesting a reduction in this gene expression
signature may be contributing to LUAD tumorigenesis when SHPRH
is inactivated. Interestingly, this coincides with SHPRH’s GO
annotated functions in DNA repair and cellular response to DNA
damage stimulus (Fig. 1c) and its functionally characterized
involvement in a mechanism of DNA damage tolerance (DDT) called
template switching within literature. Because of this well-established

role in DDT, we were interested to determine what specific processes
within the DNA REPAIR gene set were affected in tumors with low
SHPRH expression. We performed KEGG pathway analysis [72, 73] to
identify the primary biological actions of the leading edge subset of
genes from the DNA REPAIR gene set. This analysis revealed that the
top enriched pathways are RNA polymerase, basal transcription
factors, nucleotide excision repair (NER), mismatch repair (MMR), and
DNA replication (Fig. 6e). Interestingly, SHPRH is known to interact
with DNA replication components, transcription factors and RNA
polymerase, and along with its paralog HLTF, has recently been
demonstrated to have roles in various DNA repair pathways in
addition to template switching including MMR and NER, further
supporting these findings [74–78].
Based on the above findings, we were interested in exploring

whether SHPRH expression affects the tolerance of LUAD cells to
DNA damaging lesions. To investigate this in vitro, we re-expressed
SHPRH in NCI-H1395SHPRH-DEL and treated the cells with different
concentrations of methyl methanesulfonate (MMS), an alkylating
agent and carcinogen that methylates the guanine and adenine
nucleotides in DNA [79]. MMS was used as a DNA damaging agent
in our studies because SHPRH expression has previously been
characterized to affect cellular fitness in response to MMS-induced
lesions in other cell-based models [80–82]. Therefore, we wanted to
see whether similar observations would be had in the context of
LUAD. Furthermore, this was assessed in NCI-H1395SHPRH-DEL

because it was observed that SHPRH re-expression alone does not
affect anchorage-dependent colony formation (Fig. 4b) and there-
fore provides a more accurate comparison of cell survival in the
presence of a genotoxic agent such as MMS.
Using clonogenic survival assays to assess for alterations in cell

survival, we observed that re-expression of SHPRH in NCI-
H1395SHPRH-DEL cells reduces their sensitivity to MMS compared to
control conditions (Fig. 6f). In addition, assessment of these cells
upon MMS treatment using the neutral comet assay revealed that
they have a reduction in their overall tail moment compared to GFP-
expressing cells (Fig. 6g), suggesting that the SHPRH-expressing
cells have a reduced amount of double stranded breaks.
Lastly, to determine whether evidence of increased DNA damage is

associated with SHPRH inactivation in LUAD patients we separated
tumors based on SHPRH inactivation status (mutation or deletion vs
wildtype) and compared the degree of Tumor Mutational Burden
(TMB), Mutational Count, and Fraction Genome Altered using
sequence and clinical data from the LUAD TCGA PanCancer dataset
[49]. This revealed that LUADs with SHPRH inactivation had
significantly more TMB, Mutational Count and Fraction Genome
Altered, consistent with a role of this gene in mediating processes
related to DNA repair (Fig. 6h). Additionally, two-hit alterations of
SHPRH had significantly more TMB and Mutational Count compared
to one-hit alterations (Supplementary Fig. 9). Taken together, these
experimental and clinical findings suggest that SHPRH expression
may have a role in the tolerance of DNA damage during LUAD
tumorigenesis.

SHPRH inactivation increases sensitivity to therapeutic agents
Finally, SHPRH status may also serve to highlight targetable
vulnerabilities and predict response to therapeutic agents in LUAD.

Fig. 4 Re-expression of SHPRH specifically reduces colony formation, in vitro, in cells with inactivating alteration of SHPRH. a Induction of
SHPRH in NCI-H1395SHPRH-DEL (SHPRH homozygous deletion), NCI-H2009SHPRH-E41* (SHPRH nonsense mutation), and PC9SHPRH-WT (SHPRH
wildtype) cell lines. GFP or SHPRH was induced by the addition of 100 ng/mL of dox and protein levels were measured by Western blot.
b Above: Representative images of clonogenic plates showing differences in anchorage-dependent colony growth in TetO GFP and SHPRH
cells with or without the addition of 100 ng/mL dox. Below: Quantification of crystal violet staining, calculated relative to GFP no dox
condition. Mean ± SEM of N= 4 independent replicates is shown. Results from Student’s t test are indicated, where *p ≤ 0.05. c Above:
Representative images of soft agar plates showing differences in anchorage-independent colony formation in TetO GFP and SHPRH cells with
or without the addition of 100 ng/mL dox. Below: Quantification of colonies. Mean ± SEM of N= 4 independent replicates is shown. Results
from Student’s t test are indicated, where **p ≤ 0.01, and ***p ≤ 0.001.
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Given its proposed role in mediating DNA damage response, SHPRH
expression may affect tolerance to various types of DNA lesions
targeted by numerous chemotherapeutic and inhibitors currently
employed in the clinic. Indeed, there is reported evidence to
suggest that SHPRH expression may predict response to various
therapeutic agents across several cell types [83–85]. Therefore, to
assess whether SHPRH expression can help mediate the tolerance of
LUAD cells to DNA damaging chemotherapeutics (etoposide and
cisplatin) and PARP inhibitors (olaparib), we performed clonogenic
survival assays on NCI-H1395SHPRH-DEL, NCI-H2009SHPRH-E41 and
PC9SHPRH-WT TetO GFP and TetO SHPRH cells (Fig. 7). Etoposide
and cisplatin are presently used as first line adjuvant or neoadjuvant

therapies to treat NSCLC, while olaparib is currently not approved
for use in lung cancer but has been explored as a possible
therapeutic for chemo-sensitive NSCLC tumor control in clinical
trials [86]. Interestingly, SHPRH re-expression appears to significantly
confer a protective effect in response to etoposide treatment across
multiple concentrations in cell lines with inactive SHPRH (H1395 and
H2009) (Fig. 7a), with a moderate effect seen upon cisplatin and
olaparib treatment (Fig. 7b, c). In contrast, overexpression of SHPRH
in SHPRHwildtype PC9 cells demonstrated no difference at effective
concentration for these agents. Together, this suggests that the
absence of functional SHPRH in LUADmay provide a vulnerability to
clinical therapeutics that target DNA damage response.
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DISCUSSION
The discovery and identification of cancer-associated genes has
been transformative for our understanding of LUAD. In recent
decades, the improvement and diversification of sequencing
platforms has allowed for a greater emphasis to be placed on
characterizing the genomic landscape of lung cancer to direct

molecular testing, identify therapeutic targets, and inform cancer
care via the development of personalized therapies for patients
[87]. However, while our understanding and targeting of the
specific oncogenic alterations driving lung cancer has progressed
significantly, considerably less is known about the tumor
suppressive landscape of LUAD outside of the limited number of
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well-characterized tumor suppressors such as RB, TP53, P16, and
LKB1. By focusing on integrative genomic analyses using WES of
15 NS LUAD tumors supplemented with custom capture and copy
number analyses of an expanded cohort of 68 in-house LUAD
tumors and validated with external LUAD datasets, we were able
to identify several novel tumor suppressor candidates in LUAD
with minimal confounding from passenger gene alterations that
can be caused by smoking.
While the mutations of a gene such as SHPRH appear

functionally relevant for tumorigenesis, the absence of hotspot
mutations in individual cancer types and overall size of this gene
could prevent it from reaching statistical relevance in commonly
used computational pipelines that assess mutational significance
[88], some of which were built on specific observations that may
not be transferable to all cancer types or study conditions [89].
Thus, while these algorithms are helpful for identification of
cancer drivers, they may have a degree of false negatives,
underscoring the relevance of using various approaches for
discovery of cancer associated genes. The workflow described
here uses a unique filtering method, which identifies candidates
based on mutations that are predicted to have a significant
functional impact. Indeed, genes that have been well-documented
in other cancers yet have not been given much clinical interest in
lung cancer are demonstrated in our data. This may be due to the
low penetrance of these mutations and relatively small number of
LUADs from NSs subjected to DNA sequencing to date. Further
evaluation may continue to lead to better understanding of lung
cancer biology and the application of novel treatment strategies
that are being assessed in other cancer types for a subset of
patients with relevant alterations in these genes.
Because of the predicted functional impact in our tumor

population, the frequency of double allelic disruptions in the
expanded datasets, and its chromosomal location in a major lung
cancer susceptibility region [9], we propose that SHPRH is a
candidate tumor suppressor gene in LUAD. Across several cancer
types, there has been an observed loss of heterozygosity of
chromosome 6q24 [90], further suggesting that SHPRH – located
at 6q24.3 – may have a tumor suppressive role in cancer. In
ovarian cancer, germline mutation of SHPRH is associated with a
moderate-to-high risk of developing ovarian cancer [91], while in
colon cancer, SHPRH has been shown to inhibit Wnt signaling [92].
This suggests that its inactivation may also be involved in tumor
initiation or progression. Furthermore, recent studies of a novel
protein encoded by a circular RNA form of SHPRH (circ-SHPRH) has
identified it as having a tumor suppressive function in glioblas-
toma [93]. However, while it was suggested that this protein
operated by protecting the full-length SHPRH protein from
degradation, no further investigation was done on the function
of full-length SHPRH itself in glioblastoma [93]. Similarly, while
there has been a recent emergence of evidence suggesting that

circ-SHPRH operates as a tumor suppressor gene in a multitude of
other cancers – where its downregulation in turn promotes cancer
development and progression by affecting a variety of oncogenic
processes – the evaluation of its effect on full-length SHPRH in
these cancers has yet to be conducted [94]. As such, despite the
overwhelming evidence suggesting that full-length SHPRH may
be a tumor suppressor in multiple cancer types, the functional
characterization of it as a tumor suppressor gene has yet to be
exhibited.
In this study, we showed that low SHPRH expression is

associated with poorer overall survival outcomes in LUAD
patients, regardless of smoking status. Furthermore, we were
able to phenotypically characterize SHPRH as a tumor suppressor
gene by demonstrating that SHPRH re-expression in LUAD cell
lines with inactivating alterations of SHPRH reduces their
tumorigenic potential, in vitro and in vivo. Interestingly, we only
observed this in cell lines with biallelic inactivation or mutation of
SHPRH, while overexpression of SHPRH in cell lines with wildtype
SHPRH had no impact on their tumorigenic potential, suggesting
that its inactivation plays an integral role in the tumorigenicity of
these cells. Furthermore, GSEA of LUAD tumors revealed an
enrichment for DNA repair-associated genes that is negatively
correlated with SHPRH expression and a preliminary investigation
into the mechanistic effect that SHPRH expression may have on
the tolerance of DNA damage suggests it may be protective
against MMS-induced lesions and therapeutic agents that induce
DNA damage. However, further investigation is needed to better
understand the role of SHPRH in LUAD development, progression,
and outcome.
Chromosome 6q is a region of frequent copy number deletion

[71] and has been suggested to contain tumor suppressor genes
[95–97]. Previous studies using family-based linkage analysis
have also found that a major lung cancer susceptibility locus
located at chromosome 6q23-25 is frequently deleted in families
with lung cancer [9]. Specifically, it was noted that a lung cancer
susceptibility gene(s) is co-inherited with a genetic marker in the
chromosome 6q23-25 region in an estimated 67% of families,
which increased with more affected relatives. Furthermore,
carriers of alterations in this susceptibility region experience a
significantly enhanced risk for developing lung cancer than non-
carriers, which was further augmented upon the introduction of
smoking [9, 98]. This suggests that a tumor suppressor gene or
several tumor suppressor genes may be responsible for these
findings and that the biological function of the susceptibility
gene(s) may work alongside the carcinogenic effects of smoking
to promote lung cancer development. While subsequent fine
mapping studies have identified several genes as being
candidate susceptibility markers in this locus, including SASH1,
RGS17, and EYA4 [99–101], limited progress has been made to
comprehensively characterize these genes as independent or

Fig. 6 SHPRH expression is negatively correlated with DNA repair-associated genes in LUAD tumors and confers a protective effect to
MMS-induced lesions, in vitro. a Schematic showing the analysis workflow of RNA-seq data collected from NCI-H1395SHPRH-DEL TetO GFP and
SHPRH cells with or without dox. b GSEA enrichment plot generated for the Hallmark DNA Repair gene set based on pathways unique to
SHPRH expressing NCI-H1395SHPRH-DEL cells. c Table outlining the top 5 negatively enriched gene sets within the MSigDB Hallmarks database
that are negatively correlated with SHPRH expression in LUAD tumors (N= 510). Gene set size, enrichment score (ES), normalized enrichment
score (NES), nominal p-value (NOM p-val), and false discovery rate q-value (FDR q-val) are indicated. d GSEA enrichment plot generated for the
DNA Repair gene set based on SHPRH expression in LUAD tumors. e Dot plot showing KEGG pathway analysis of leading-edge genes from the
DNA Repair gene set. Dot plot generated using ShinyGO [72, 73]. f Quantification of crystal violet staining of clonogenic plates for NCI-
H1395SHPRH-DEL TetO GFP and SHPRH cells with or without dox and treated with various concentrations of MMS (or mock-treated control).
Calculated relative to the mock-treated condition. Mean ± SEM of N= 3 independent replicates are shown. Results from multiple t-tests with
correction using the Holm-Sidak method are indicated, where *p ≤ 0.05 and **p ≤ 0.01. g Left: Quantification of comet tail moment from the
neutral comet assay of NCI-H1395SHPRH-DEL TetO GFP and SHPRH cells in dox upon treatment with 0.01% MMS or mock-treated for 4 h.
Mean ± SEM of N= 3 independent replicates are shown, with 70 events counted per replica. Results from ANOVA are indicated, where
**p ≤ 0.01. Right: Representative images of the resulting comets. h Violin plots outlining the Tumor Mutation Burden (Left), Mutation Count
(Center), and Fraction of Genome Altered (Right) in LUAD cases within the TCGA cohort with wildtype or inactivated (mutated or lost) SHRPH.
Results from one-tailed Mann–Whitney U tests are shown, where *p ≤ 0.05 and ** p ≤ 0.01.
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cooperative tumor suppressor genes with a hereditary and
prognostic role in lung cancer development. Because SHPRH
resides within this lung cancer susceptibility region at chromo-
some 6q24.3 and is an appealing candidate for a tumor
suppressor gene with an implicated association with LUAD,
further investigation into its role in lung cancer risk and
development would be of interest.
SHPRH is an E3 ubiquitin ligase involved in mediating

template switching, a mechanism of DNA damage tolerance
to single stranded lesions. Template switching helps maintain
the integrity of the genome by using homologous
recombination-based machinery during replication to bypass
such lesions in the replication fork, which would otherwise
cause for the replication fork to stall and become prone to
breakage if left unresolved [74, 102]. Indeed, our investigations
suggest that SHPRH expression in LUAD cells may confer a
protective effect against cellular toxicity and double-stranded
breaks in response to MMS-induced lesions; however, further
investigation of its implication for the cell’s overall genomic
stability and an understanding of the mechanism by which
SHPRH operates in the face of DNA damage – MMS-induced and

otherwise – is needed. Because of its role in DNA damage
tolerance, SHPRH may work to counteract the effects of lung
cancer risk factors, such as smoking, environmental factors, and
intrinsic cellular DNA damage, in order to help prevent lung
cancer development and progression. In support of this, we
show that SHPRH inactivation is associated with increased
mutations and genomic instability in LUAD, confirming a recent
report demonstrating a similar association across TCGA data-
sets [77]. In addition, investigating the cooperative effect
of SHPRH inactivation with other known risk factors or genetic
drivers of lung cancer – such as EGFR or KRAS mutations – may
provide further understanding of its role in LUAD biology,
such that the inactivation of SHPRH may make cells
more permissive to undergo malignant transformation in the
presence of these cooperating partners. Finally, we show that
SHPRH may also serve to be a predictor of response
to therapeutic agents, whereby inactivation of SHPRH is
associated with better efficacy of drug therapies that operate
by inducing overwhelming amounts of DNA damage to the
cancer cells, providing a potential strategy for treatment of
LUAD patients.
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independent replicates are shown. Results from multiple t-tests without correction are indicated, where *p < 0.05, **p ≤ 0.01, and ***p ≤ 0.001.

A.L. Nagelberg et al.

547

British Journal of Cancer (2024) 131:534 – 550



CONCLUSIONS
In conclusion, our study has identified several novel candidate
genetic drivers that have a predicted functional consequence in
LUAD. One of the genes, SHPRH, was of particular interest due to
its frequency of double allelic alterations and location in a lung
cancer susceptibility region. Through clinical and biological
investigations, we were able to characterize SHPRH as a tumor
suppressor gene in LUAD whose expression is associated with a
more favorable prognosis. However, further understanding of its
role in LUAD tumorigenesis is required. Because of its function as
an E3 ubiquitin ligase, the identification of SHPRH-interacting
proteins paired with an analysis of the transcriptome in SHPRH-
expressing LUAD may help guide our understanding of the
influence that SHPRH expression has in mediating LUAD devel-
opment and progression. Similarly, explorations into its reported
role in cellular functions such as DNA repair, cellular response to
DNA damage stimulus, and others identified by the GSEA results
of LUAD cell lines and tumors may yield a greater appreciation of
SHPRH’s role in response to extrinsic and intrinsic factors affecting
LUAD tumorigenesis. In doing so, SHPRH may become an
important genetic marker to identify at-risk individuals for lung
cancer and to highlight a targetable vulnerability in these patients.

DATA AVAILABILITY
The data from this study have been submitted to NCBI BioProject under BioProject
number PRJNA985279.
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