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Glucagon-like peptide-1 (GLP-1) regulates glycemic excursions by aug-

menting insulin production and inhibiting glucagon secretion. Liraglutide,

a long-acting GLP-1 analog, can improve glycemic control for treating type

2 diabetes and prevent neutrophil extravasation in inflammation. Here, we

explored the role of liraglutide in the development and therapy of murine

lung and liver cancers. In this study, liraglutide substantially decreased cir-

culating neutrophil extracellular trap (NET) markers myeloperoxidase,

elastase, and dsDNA in Lewis lung cancer (LLC) and Hepa1-6 tumor-

bearing mice. Furthermore, liraglutide downregulated NETs and reactive

oxygen species (ROS) of neutrophils in the tumor microenvironment.

Functionally, in vitro experiments showed that liraglutide reduced NET

formation by inhibiting ROS. In addition, we showed that liraglutide

enhanced the anti-tumoral efficiency of programmed cell death-1 (PD-1)

inhibition in LLC and Hepa1-6 tumor-bearing C57BL/6 mice. However,

the removal of NETs significantly weakened the antitumor efficiency of

liraglutide. We further demonstrated that the long-term antitumor CD8+ T

cell responses induced by the combination therapy rejected rechallenges by

respective tumor cell lines. Taken together, our findings suggest that

liraglutide may promote the anti-tumoral efficiency of PD-1 inhibition by

reducing NETs in lung and liver cancers.

Glucagon-like peptide-1 (GLP-1) could regulate glyce-

mic excursions by augmenting insulin production and

inhibiting glucagon secretion [1]. Liraglutide, a long-

acting GLP-1 analog with 97% structural homology to

the native hormone [2], binds to the GLP-1 receptor,

displaying a similarly broad range of activities relevant

to improving glycemic control for treating type 2 dia-

betes. Additionally, GLP-1 receptor agonists, including

liraglutide, are safe and not associated with an

increased risk of pancreatic and breast cancer [3–5].
Furthermore, liraglutide presented anticancer effects

on breast cancer cells [3]. However, the influence of

liraglutide on other cancers is yet to be reported. In

addition, GLP-1 also has immune modulatory roles. It

was reported that GLP-1 stimulation regulated eosino-

phil activation in allergic asthmatic subjects [6] and
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decreased neutrophil activation in rodents [7]. Liraglu-

tide also demonstrated promising anti-inflammatory

and immunomodulatory activities [8]. It has been iden-

tified that liraglutide alleviates lipopolysaccharide-

induced acute lung injury by preventing neutrophil

extravasation [2,9].

Neutrophils have been shown to mediate direct and

indirect protumor and antitumor effects during early

tumor initiation and growth [10]. Although an early

antitumorigenic role of neutrophils was reported by

some researchers [11–16], neutrophils have been shown

to mediate mostly pro-tumoral effects in the tumor

microenvironment [17]. Neutrophils could desorb neu-

trophil extracellular traps (NETs) in a process some-

times termed NETosis, although cell death is not

necessarily required for NETs formation [18–20]. NETs

are web-like chromatin structures decorated with pro-

teins responsible for trapping and killing extracellular

pathogens, representing an antimicrobial mechanism of

neutrophilic granulocytes. In addition, neutrophils are

vital in promoting tumor growth and progression.

Increasing evidence herein points to NETs as potential

mediators [21,22]. NETs could also shield tumor cells,

physically obstructing contact with CD8+ T cells and

natural killer cells in Lewis lung carcinoma, thus foster-

ing tumor spread at distant sites [21,22].

The laboratory and clinical evidence supported that

NETs degradation, such as neutrophil elastase inhibitor

and DNase 1, could mitigate NET-dependent cancer

progression and treatment resistance [23–25]. Eventu-

ally, NETs inhibition could enhance the response of

programmed cell death-1 (PD-1) inhibitors in pancreatic

cancer [26]. The recent development of immune check-

point inhibitors (ICIs) targeting PD-1 and programmed

cell death-ligand 1 (PD-L1) have contributed to

improvements in the prognosis of many cancer patients

[27–29]. However, the unprecedented response rates and

survival of ICIs only occur in 15–40% of patients

[30,31]. Therefore, the relationship between responses to

ICIs and key host factors, such as immunologic sta-

tuses, needs to be thoroughly investigated. However,

the modulation of liraglutide in neutrophils and

immunotherapy in the context of cancers is unknown.

In this study, we found that in lung and liver tumor

mice, liraglutide reduced the NETs formation by

inhibiting reactive oxygen species (ROS) production.

Furthermore, the reduction of NETs by liraglutide

enhanced the anti-tumoral response of PD-1 inhibition,

and the combination therapy induced long-term antitu-

mor CD8+ T cell responses. Hereby, this study revealed

that liraglutide improved the anti-tumoral efficiency of

PD-1 inhibition against lung and liver cancers, provid-

ing therapy candidates for tumor treatment.

Materials and methods

Animal studies

Five-week-old male C57BL/6 mice were purchased from

Capital Medical University Animal Laboratories (Beijing,

China). Subcutaneous inoculation of Lewis lung cancer

(LLC) or Hepa1-6 cells was made at 5 9 106 cells in

100 lL, and the mice were divided into several groups.

One week later, they accepted intraperitoneal injection of

PBS, liraglutide (400 lg�kg�1�day�1; Novo Nordisk) [32],

anti-mouse PD-1 (250 lg per mice, twice/week; Clone:

RMP1-14; BioCell) [33] or the combination of liraglutide

and anti-PD-1 for 2 weeks. To remove NETs in C57BL/6

mice, DNase I (5 mg�kg�1) [34] was administered intraperi-

toneally starting 1 week after tumor cell inoculation, and

DNase I was injected daily for 2 weeks.

For surgical tumor resection (STR) and tumor rechal-

lenge, STR was operated in PBS or Liraglutide+anti-mouse

PD-1 (Liraglutide+aPD-1) treated tumor mice under isoflu-

rane anesthesia at tumor volume > 200 mm3 and a mini-

mum of 15 days after tumor cell inoculation [35]. Tumors

were exposed for excision and then disconnected with a dis-

posable cautery to prevent bleeding, and surgical incisions

were closed with wound clips. Carprofen (5 mg�kg�1, s.c.)

was used for analgesia prior to and after STR.

Tumor sizes were measured every 2 days and were calcu-

lated using the formula: volume = 0.5 9 length 9 width2.

All animal studies were approved by the Animal Welfare

and Research Ethics Committee of Capital Medical Univer-

sity (No. 2018-2-8-47). Furthermore, all animal experiments

were performed in accordance with the institutional and

national regulations.

Cell lines

Murine Lewis lung cancer cell LLC and liver cancer cell

Hepa1-6 were cultured in Dulbecco’s Modified Eagle’s

Medium containing 10% FBS and 1% streptomycin–
penicillin (10 000 U�mL�1) (all: Corning, New York, NY,

USA) in a humidified incubator at 37 °C containing 5%

CO2. LLC and Hepa1-6 cells were from the Shanghai Cell

Biology Institute of the Chinese Academy of Sciences

(Shanghai, China).

Circulating molecules and NETs biomarkers

Commercially available ELISA kits were used to measure

murine plasma GM-CSF (GM-CSF Mouse ELISA Kit;

Thermo Fisher Scientific, Waltham, MA, USA), VEGF-A

(VEGF-A Mouse ELISA Kit; Thermo Fisher Scientific),

MMP-9 (Mouse MMP9 ELISA Kit; Abcam), myeloperoxi-

dase (Myeloperoxidase Mouse ELISA Kit; Thermo Fisher

Scientific), and elastase (Mouse Neutrophil Elastase ELISA

Kit; Abcam) according to the manufacturer’s instructions.
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The serum cell-free double strand (ds) DNA concentration

was measured using the phenol/chloroform preparation

method. The separated DNA pellet was dissolved in Ultra-

Pure DNase/RNase-Free Distilled Water (Thermo Fisher

Scientific). The dsDNA measurement was performed using

the ultramicrospectrophotometer NANODROP ONE

(Thermo Fisher Scientific), 1 lL of the sample was used for

measurement, and DNA concentration was determined by

measuring the absorbance at 260 nm.

Enrichment of neutrophils

To enrich tumor infiltrated neutrophils, the tumor tissues were

minced with surgical scissors and dissociated in RPMI 1640

medium containing collagenase type I (0.05 mg�mL�1; Sigma-

Aldrich, Burlington, MA, USA) and DNase I (0.01 mg�mL�1;

Roche, Switzerland), then incubated at 37 °C for 10 min, fol-

lowed by being filtered through cell strainers that are available

in 70 lm sizes for the acquisition of single cells. Subsequently,

neutrophils were enriched using the EasySepTM Mouse Neu-

trophil Enrichment Kit (STEMCELL Technologies).

NETs assay

The enriched murine neutrophils were seeded in a 24-well tis-

sue culture plate at 2 9 105 neutrophils/well. The NET for-

mation assays refer to the previous description [26]. Briefly,

the neutrophils were allowed to adhere for � 20 min and

were then incubated with liraglutide (100 mM) for 1 h [36],

followed by the stimulation with PMA (Sigma-Aldrich) at

25 nM for 2 h. Thereafter, 200 nM SYTOX Green (SYTOXTM

Green Nucleic Acid Stain; Thermo Fisher Scientific) was care-

fully added to the plate for staining for 15 min. Then, the

cells were imaged with a Zeiss Vert.A1 fluorescence micro-

scope. For NETs quantification, the fluorescence intensity

was measured using Synergy2 Multi-Mode Microplate Reader

(BioTek). Cells lysed with 0.5% Triton X-100 were considered

100% DNA release.

Detection of intracellular ROS production

The intracellular ROS levels were measured using the Total

Reactive Oxygen Species Assay Kit (Thermo Fisher Scientific),

and the fluorescence was monitored with flow cytometry assay.

Detection of IFN-c secretion by tumor-infiltrating

CD8+ T cells by ELISA

CD8+ T cells from tumor-draining lymph nodes, spleens, or

tumor tissues were enriched from LLC or Hepa1-6 tumor-

bearing C57BL/6 mice using EasySepTM Mouse CD8+ T

Cell Isolation Kit (STEMCELL Technologies). According

to the previous description [37], the enriched CD8+ T cells

(1 9 105 cells) were mixed with irradiated LLC or Hepa1-6

tumor cells (1 9 103 cells) and incubated in 96-well culture

plates for 48 h in a cell culture incubator. The supernatant

was collected and assayed for IFN-c secretion by ELISA

according to the manufacturer’s instructions (IFN gamma

Mouse ELISA Kit; Thermo Fisher Scientific).

Statistical analysis

Data were expressed as the mean � SD. Statistical compar-

ison was analyzed using the two-tailed Student’s t-test or

two-way ANOVA. P < 0.05 (*) was considered statistically

significant.

Results

Liraglutide decreased circulating NETs markers in

tumor mice

To explore the influence of liraglutide on tumor progres-

sion, we constructed the LLC and liver cancer models. The

lung or liver cancer models were established by subcuta-

neous injection of LLC or Hepa1-6 cells into male C57BL/

6 mice. One week after the tumor implant, the mice were

intraperitoneally injected with PBS or liraglutide every day

for 2 weeks. To explore the impact of liraglutide on blood

cells in lung and liver cancers, we first conducted complete

blood count. The results showed that liraglutide signifi-

cantly decreased neutrophils in both tumor models

(Fig. 1A,B). To assess the impact of liraglutide on neu-

trophils’ function, we collected plasma from the LLC and

Hepa1-6 bearing C57BL/6 mice after therapy with either

liraglutide or PBS. Then we measured the concentration of

circulating GM-CSF, VEGF-A, MMP-9, myeloperoxi-

dase, and elastase using ELISA and detected dsDNA using

the spectrometer. The results showed that liraglutide pre-

sented a mild impact on GM-CSF (Fig. 1C), VEGF-A

(Fig. 1D), and MMP-9 (Fig. 1E) compared to PBS-treated

mice. Meanwhile, mice in the liraglutide group experienced

a significant reduction in the concentrations of myeloper-

oxidase (LLC: �19%; Hepa1-6: �12%) (Fig. 1F), elastase

(LLC: �48%; Hepa1-6: �48%) (Fig. 1G), and dsDNA

(LLC: �45%; Hepa1-6: �57%) (Fig. 1H). Interestingly,

circulating myeloperoxidase, elastase, and dsDNA are

NETs biomarkers, indicating that liraglutide might reduce

NETs in tumor-bearing mice.

Liraglutide reduced NETs and ROS of tumor-

infiltrated neutrophils

To further explore the influence of liraglutide on

NETs, we enriched tumor-infiltrated neutrophils from

the tumor models after liraglutide treatment, and then

detected NETs using SYTOX Green staining. The
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results showed that, as compared to PBS groups,

liraglutide treatment significantly reduced NETs in

both LLC (Fig. 2A,B) and Hepa1-6 (Fig. 2C,D) tumor

models. Published studies have suggested that ROS is

essential for NETs formation [21,38], and liraglutide

could downregulate the generation of ROS [39–41].

Therefore, we further explored the role of ROS in

inhibiting NET by liraglutide. We detected ROS in

neutrophils from the tumor tissues using flow cytome-

try, and the results showed that, as compared to PBS

groups, liraglutide treatment significantly reduced ROS

production in both LLC (Fig. 2E,F) and Hepa1-6

Fig. 1. Liraglutide inhibits tumor progression through neutrophils. Measure blood cells in (A) LLC and (B) Hepa1-6 cells bearing C57BL/6

mice using complete blood count. Concentrations of circulating (C) GM-CSF, (D) VEGF-A, (E) MMP-9, (F) myeloperoxidase, and (G) elastase

in mice were measured using ELISA. (H) Circulating dsDNA was purified and measured using an ultramicrospectrophotometer. Statistical

significance was determined with t-test. N = 6 mice for every group. Nonparametric tests were utilized to assess statistical significance

between different treatment groups. *P < 0.05, **P < 0.01, ***P < 0.001. Error bars represent SD.
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(Fig. 2G,H) tumor models. The results indicate that

liraglutide reduced NETs and ROS of tumor-

infiltrated neutrophils.

Liraglutide reduced NETs formation through the

inhibition of ROS

We detected ROS in liraglutide-treated neutrophils by

flow cytometry, finding that ROS production was sig-

nificantly decreased after liraglutide treatment

(Fig. 3A,B). According to the previous description

[42], we induced NETs by stimulating enriched murine

neutrophils with PMA. As a result, we found that pre-

incubation with liraglutide significantly decreased

PMA-induced NETs (Fig. 3C,D). However, applying

the ROS inducer Diallyl tetrasulfide in the supernatant

of neutrophils treated by PMA and liraglutide led to a

significant rescue of NETs formation liraglutide

reduced. These results demonstrate that ROS mediated

the induction of NETs formation by liraglutide.

Combining liraglutide and PD-1 blockade

demonstrates enhanced antitumor efficacy

Because it was documented that NETs inhibition

improves the antitumoral effect of PD-1 blockade in

pancreatic cancer [26], we explored whether this phe-

nomenon exists in lung and liver cancers. Based on the

previous results, we further investigated whether

liraglutide influenced the efficacy of anti-PD-1 (aPD-1)

in treating cancers. We randomized LLC or Hepa1-6

allograft mice into four groups that received the fol-

lowing treatments: (a) IgG isotype control, (b) aPD-1,

(c) Liraglutide, (d) Liraglutide+aPD-1. Although

liraglutide or aPD-1 could weaken tumor develop-

ment, the combination of liraglutide and anti-PD-1

showed significantly higher efficiency in restricting

tumor growth (Fig. 4A,B). To further validate the

roles of NETs in tumor inhibition by liraglutide, we

removed NETs in LLC and Hepa1-6 bearing mice

using DNase I. The measurement of circulating

dsDNA from the mice confirmed specific deletion of

Fig. 2. Liraglutide reduced tumor-infiltrated NETs. The LLC and Hepa1-6 cells bearing C57BL/6 mice were treated using PBS or liraglutide,

and neutrophils were enriched for in vitro study. Representative images of tumor-derived NETs from (A) LLC and (C) Hepa1-6 cells bearing

C57BL/6 mice. Blue is nuclear stained by Hoechst 33342. Green is DNA stained by SYTOX Green. Quantification of tumor-derived NETs

from (B) LLC and (D) MC38 cells bearing C57BL/6 mice were conducted using a fluorescence microplate reader (n = 3). The tumor infiltrated

neutrophils from (E) LLC and (G) Hepa1-6 cells bearing C57BL/6 mice were stained with total reactive oxygen species (ROS) assay kit, ROS

production was analyzed by flow cytometry, and the green fluorescence of ROS was detected using FITC channel. Mean fluorescence

intensity (MFI) of ROS in tumor-derived neutrophils from (F) LLC and (H) MC38 cells bearing C57BL/6 mice were conducted using a fluores-

cence microplate reader (n = 3). Nonparametric tests were utilized to assess statistical significance between different treatment groups.

*P < 0.05, ***P < 0.001. Error bars represent SD. Scale bar: 400 lm (A, C).
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NETs (Fig. S1). NETs are involved in the enhance-

ment of inflammation in autoimmune diseases [43], like

systemic lupus erythematosus [44], rheumatoid arthritis

[45], psoriasis [46], and also inflammation, such as

pulmonary diseases [47]. Multiple research projects indi-

cate the essential roles of IL-6, IL-10, IL-21, and IL-17

in the pathogenesis of autoimmune diseases [48–50].
Based on these reports, we measured the concentrations

of peripheral IL-6, IL-10, IL-21, and IL-17 using

ELISA. In both LLC and hepa1-6 bearing mice, we

found that the DNase I decreased the concentrations of

IL-6, IL-10, IL-21, and IL-17, indicating that NETs dis-

mantling might reduce inflammation in mice (Fig. S2).

In addition, NETs removal decreased tumor growth sig-

nificantly (Fig. 4C,D). The results showed that liraglu-

tide and Isotype control, or combination therapy and

aPD-1 presented approximative anti-tumor effects in

NETs-removal mice (Fig. 4E,F), indicating that NETs

Fig. 3. Liraglutide reduced NETs formation by inhibiting ROS production. The enriched na€ıve murine neutrophils were incubated with the

liraglutide (100 mM) for 1 h, followed by the stimulation with PMA (Sigma-Aldrich) at 25 nM for 2 h, or incubated with ROS inducer diallyl

tetrasulfide. (A) Representative flow cytometry assay of ROS levels and (B) statistical analysis of mean fluorescence intensity (MFI) (n = 3).

(C) NETs were detected by Hoechst 33342 and SYTOS Green dye. Scale bar: 400 lm. (D) Quantification of tumor-derived NETs using a fluo-

rescence microplate reader (n = 6). Nonparametric tests were utilized to assess statistical significance between different treatment groups.

*P < 0.05, **P < 0.01, ***P < 0.001. ns, non-significant. Error bars represent SD. Triple assays were performed.
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play vital roles in the alleviation of tumor progression

by liraglutide treatment.

Combining liraglutide and PD-1 blockade

improved the anti-tumor activity of CD8+ T cells

Because CD8+ T cells play essential roles against

malignancy in immunotherapy, we further explored

the impact of Liraglutide+aPD-1 combination therapy

on CD8+ T cells, enriching tumor-infiltrated CD8+ T

cells for further research. Due to the importance of

IFN-c in CD8+ T cell-mediated cytotoxicity, we mea-

sured the concentration of IFN-c secreted by the

enriched CD8+ T cells post-stimulation with irradiated

LLC or Hepa1-6. We found that the combination ther-

apy increased the cytotoxicity of CD8+ T cells from

Fig. 4. Liraglutide enhanced the antitumor efficacy of PD-1 blockade. Tumor volumes were monitored in (A) LLC or (B) Hepa1-6 allograft

mice treated by IgG isotype control (isotype), anti-PD-1 mAb (aPD-1), liraglutide, or liraglutide and anti-PD-1 mAb (liraglutide+aPD-1). (C) LLC

and (D) Hepa1-6 tumor volumes for the NETs-removed C57BL/6 mice. NETs were removed using DNase I (5 mg�kg�1). (E) LLC and (F)

Hepa1-6 tumor volumes for the NETs-removed C57BL/6 mice accepting isotype, aPD-1, liraglutide, or liraglutide+aPD-1 treatments. NETs

were removed using DNase I (5 mg�kg�1). Tumor volume = 0.5 9 length 9 width2. Statistical significance was determined with two-way

ANOVA tests. N = 12 mice for every group. Nonparametric tests were utilized to assess statistical significance between different treatment

groups. **P < 0.01, ***P < 0.001. Error bars represent SD.
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lymph nodes (Fig. 5A,B), spleen (Fig. 5C,D), and

tumor bulks (Fig. 5E,F) significantly. To determine

whether the Liraglutide+aPD-1 combination therapy

induced long-term antitumor CD8+ T cell responses,

we conducted surgical resection of primary tumors on

one side of the mice and rechallenged them through

administration of respective tumor cell lines on the

opposite side. We found that the tumor formation dis-

appears completely in combination therapy-treated

mice compared to the mice pre-treated with PBS

Fig. 5. Long-term immune responses induced by the combination therapy rejected rechallenge. The measurement of IFN-c concentration in

the culture media of CD8+ T cells from (A, B) lymph node, (C, D) spleen, and (E, F) tumor tissues in LLC or Hepa1-6 allograft mice after

7 days of treatment. N = 12 mice for every group. (G) LLC or (H) Hepa1-6 allograft C57BL/6 mice were treated with STR. Mice pre-treated

with PBS, or the combination therapy received tumor rechallenge by administration of respective cell lines. N = 6 mice for every group.

Tumor volume = 0.5 9 length 9 width2. Statistical significance was determined with two-tailed t-test. Nonparametric tests were utilized to

assess statistical significance between different treatment groups. *P < 0.05, **P < 0.01, ***P < 0.001. Error bars represent SD.

1372 FEBS Open Bio 14 (2024) 1365–1377 � 2022 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Liraglutide enhances immunotherapy in cancer D. Chen et al.



(Fig. 5G,H). These findings indicate that the Liraglu-

tide+aPD-1 combination therapy induced long-term

anti-tumor immunity capable of protecting the tumor

rechallenged mice.

Discussion

Liraglutide is widely used in treating type 2 diabetes

through binding to the GLP-1 receptor, decreasing

pancreatic beta-cell apoptosis, and promoting cell

proliferation [2]. However, liraglutide also influences

the biological behavior of other cell types, such as

reducing neutrophil extravasation and activation

[2,7,9]. To explore the impact of liraglutide on

peripheral blood cells, we measured cells using com-

plete blood counting. Interestingly, we found that in

lung and liver cancer models, liraglutide decreased

neutrophil number.

Considering the impact of liraglutide on neutrophil

activation and the critical roles of neutrophils in can-

cer prognosis [51], we further analyzed the important

circulating molecules released by neutrophils, finding

that liraglutide decreased NETs markers myeloperoxi-

dase, elastase, and dsDNA in both tumor models. Fur-

thermore, because neutrophils mainly influenced tumor

progression in the tumor microenvironment, we fur-

ther explored whether liraglutide modulates tumor-

infiltrated NETs. Interestingly, the NETs formation in

tumor tissues also decreased after liraglutide treat-

ment.

Neutrophils have multiple effects on tumor progres-

sion, and NETs attract increasing attention in cancer

research [52]. The elevated levels of NETs in pancre-

atic cancer are associated with shorter survival [53–55].
Some studies have tried to measure the circulating

levels of NETs markers in the serum of cancer patients

[56]. In this study, we first found that liraglutide inhi-

bits NETs formation in circulation and tumor

microenvironment. To some extent, this study indi-

cates the importance of reducing NETs in delaying

tumor progression by liraglutide.

Notably, ROS is involved in NETs formation, and

serum ROS concentrations are associated with circu-

lating NETs [57]. Liraglutide reduced NETs formation

as well as ROS production in tumor infiltrated neu-

trophils. Therefore, we further performed in vitro

study to explore the role of ROS in liraglutide-reduced

NETs. PMA was a stimulant often employed to induce

NETs through the induction of ROS [42,58–60].
Therefore, it was used in our study for the initiation

of NETs. In our research, NETs formation in PMA-

treated neutrophils was decreased by liraglutide. How-

ever, the ROS inducer Diallyl tetrasulfide reversed the

inhibition of NETs formation by liraglutide, further

confirming the hypothesis that liraglutide decreased

NETs formation by reducing ROS level. Our results

were consistent with previous studies that liraglutide

could downregulate the generation of ROS [39–41],
and ROS were important mediators in NETs forma-

tion [21,38]. In addition, we further proved that

liraglutide inhibits NETs formation by decreasing

ROS production. Of course, in future we will use a

non-cancer line for baseline, especially for studying the

influence of liraglutide in ROS. This is more convinc-

ing for exploring the effect of liraglutide on ROS.

During NETs formation, DNA becomes decorated

with granule proteins, such as elastase and MPO

[18,61]. Neutrophil-stimulation results in rapid

NADPH oxidase activation and increased intracellular

ROS [62]. Increased ROS mobilizes the cytoskeleton

to transport particles outside the activated neutrophils

[63]. Our results showed that liraglutide inhibited

ROD-dependent NETs formation. The possible mech-

anism is liraglutide restrained NADPH oxidase activa-

tion, leading to decreased ROS production and NETs

formation.

It has been reported that the presence of NETs was

associated with a worse prognosis in Ewing sarcoma

[64]. Also, NETs inhibition improves the antitumoral

effect of PD-1 blockade in pancreatic cancer [26]. We

further explored whether liraglutide influenced the effi-

cacy of anti-PD-1 in treating cancers, finding that the

combination of liraglutide and anti-PD-1 surpassed

single treatment in restricting tumor growth and pro-

longing survival. Of course, this is not enough to vali-

date whether NETs are involved in the inhibition of

tumor progression by liraglutide because the decrease

of NETs might be the bystander effect. Therefore, we

removed NETs in liraglutide-treated tumor mice using

DNase I. As a result, NETs depletion reduced tumor

suppression effects by liraglutide. Based on these

explorations, we draw the preliminary conclusion that

NETs play direct roles in attenuating tumor progres-

sion by liraglutide.

It is documented that CD8+ T cells play vital roles

in suppressing tumor development [65–67] and are the

primary effectors in PD-1 blockade-induced antitumor

responses [68–71]. In our study, the combination ther-

apy of liraglutide and PD-1 targeting increased IFN-c
secretion from CD8+ T cells in the tumor, lymph

nodes, and spleen. The evidence indicated that liraglu-

tide presented systemic effects in tumor mice, consis-

tent with the results that both peripheral and tumor

infiltrated neutrophils were influenced by liraglutide.

Furthermore, the impact of liraglutide was not only

systemic but also long-lasting. After surgical resection,
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the liraglutide-treated mice rejected tumor rechallenge

effectively. In this study, NETs might form a physical

and functional barrier that shields tumor cells from

CD8+ T cells, favoring tumor growth due to a lack of

immune recognition. On the contrary, liraglutide might

expose tumor cells to CD8+ T cells by eliminating

NETs, thereby causing CD8+ T cell killing and mem-

ory of tumor cells.

In summary, we identified liraglutide as a NETs-

reduced regent in lung and liver cancers and elucidated

that the suppression of ROS is an essential mediator.

Notably, the liraglutide-reduced NETs improved the

efficacy of PD-1 blockade in treating cancers. Here, we

explore critical insights for tumor development and

provide clues for enhancing the effects of immune

checkpoint blockade.
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Fig. S1. Confirmation of depletion of NETs in LLC or

Hepa1-6 bearing mice. Circulating dsDNA was puri-

fied and the concentration was measured using ultra-

microspectrophotometer. Nonparametric tests were

utilized to assess statistical significance between differ-

ent treatment groups. **P < 0.01. ***P < 0.001. Error

bars represent SD. N = 3 mice for every group. Triple

assays were performed.

Fig. S2. Measurement of inflammation associated

cytokines concentrations after depletion of NETs.

Plasma was collected from LLC or Hepa1-6 bearing

mice after dismantling NETs using DNase I. The con-

centrations of (A) IL-6, (B) IL-21, (C) IL-10 and (D)

IL-17 were measured using ELISA. Nonparametric

tests were utilized to assess statistical significance

between different treatment groups. *P < 0.05.

**P < 0.01. ***P < 0.001. Error bars represent SD.

N = 5 mice for every group. Triple assays were per-

formed.
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