Table 2.
Prediction performances of methods on the datasets.
| Dataset | Metrics | SVR | GRU | GCN | CGRUG | LPGNN | GDN | STSGCN | SSTLN-SMG | ▴% |
|---|---|---|---|---|---|---|---|---|---|---|
| 5-min | RMSE | 14.69 | 6.87 | 30.33 | 5.31 | 13.58 | 7.50 | 5.22 | 3.14 | 39.92 |
| MAE | 10.08 | 4.35 | 23.44 | 2.58 | 5.09 | 2.44 | 1.94 | 1.61 | 17.01 | |
| MAPE | 42.45 | 24.76 | 21.9 | 23.36 | 8.17 | 5.23 | 5.56 | 3.74 | 28.49 | |
| 15-min | RMSE | 43.63 | 29.36 | 59.48 | 23.17 | 21.02 | 19.19 | 9.54 | 5.85 | 38.68 |
| MAE | 20.84 | 15.05 | 31.94 | 12.71 | 6.86 | 5.42 | 3.85 | 1.86 | 51.58 | |
| MAPE | 54.01 | 37.59 | 38.19 | 37.39 | 4.03 | 3.40 | 5.78 | 1.99 | 41.38 | |
| 30-min | RMSE | 126.04 | 51.73 | 88.52 | 34.08 | 22.37 | 27.91 | 14.87 | 10.89 | 26.77 |
| MAE | 49.30 | 30.26 | 46.02 | 20.59 | 7.66 | 8.50 | 6.76 | 4.04 | 40.24 | |
| MAPE | 85.47 | 57.23 | 48.9 | 36.45 | 5.52 | 5.69 | 6.57 | 4.29 | 22.28 | |
| 60-min | RMSE | 236.47 | 110.67 | 104.14 | 65.35 | 25.12 | 35.77 | 28.08 | 14.86 | 40.84 |
| MAE | 143.67 | 36.82 | 86.01 | 39.69 | 8.64 | 10.86 | 18.95 | 8.10 | 6.25 | |
| MAPE | 97.42 | 85.32 | 68.24 | 49.76 | 5.58 | 4.73 | 12.55 | 3.71 | 21.56 |