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Abstract
Recent approval of the dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) 
receptor agonist, tirzepatide, for the management of type 2 diabetes mellitus (T2DM) has reinvigorated interest in 
exploitation of GIP receptor (GIPR) pathways as a means of metabolic disease management. However, debate has 
long surrounded the use of the GIPR as a therapeutic target and whether agonism or antagonism is of most benefit 
in management of obesity/diabetes. This controversy appears to be partly resolved by the success of tirzepatide. 
However, emerging studies indicate that prolonged GIPR agonism may desensitise the GIPR to essentially induce 
receptor antagonism, with this phenomenon suggested to be more pronounced in the human than rodent setting. 
Thus, deliberation continues to rage in relation to benefits of GIPR agonism vs antagonism. That said, as with GIPR 
agonism, it is clear that the metabolic advantages of sustained GIPR antagonism in obesity and obesity-driven forms 
of diabetes can be enhanced by concurrent GLP-1 receptor (GLP-1R) activation. This narrative review discusses various 
approaches of pharmacological GIPR antagonism including small molecule, peptide, monoclonal antibody and 
peptide-antibody conjugates, indicating stage of development and significance to the field. Taken together, there is 
little doubt that interesting times lie ahead for GIPR agonism and antagonism, either alone or when combined with 
GLP-1R agonists, as a therapeutic intervention for the management of obesity and associated metabolic disease.

Keywords: diabetes; glucose-dependent insulinotropic polypeptide; glucagon-like peptide-1; obesity; polypharmacy; 
satiety

Introduction
Glucose-dependent insulinotropic polypeptide (GIP) is 
a 42-amino acid polypeptide hormone secreted from 
intestinal K-cells of the duodenum and proximal jejunum 
(Buchan et al. 1978). GIP was discovered in 1969, through 
collaboration between John Brown and Raymond 
Pederson at University of British Colombia, Vancouver, 

alongside Viktor Mutt and Erik Jorpes from Karolinska 
Institutet, Stockholm (Brown et  al. 1969, 1970, 1982). 
Thus, GIP was recognised by endocrinologists over a 
decade prior to another closely related, but now more 
widely renowned gut-derived hormone, glucagon-like 
peptide-1 (GLP-1) (Müller et al. 2019). Like GLP-1, GIP is 
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released into the circulation in response to ingestion of 
macronutrients, it is degraded by dipeptidyl peptidase-4 
(DPP-4) and accounts for a major part of the ‘incretin-
effect’ by enhancing glucose-stimulated insulin secretion 
(GSIS) (Pederson et  al. 1975). GIP exerts its effects on 
GSIS via binding at GIP receptors (GIPR) on beta cells 
and activation of cyclic adenosine monophosphate 
(cAMP) plus associated signal transduction pathways 
(Ding & Gromada 1997). Additionally, GIP and its 
receptor are evidenced within the brain, with GIPR 
expression in the hypothalamus being implicated in 
the modulation of food intake and satiety, particularly 
in the arcuate, paraventricular, and dorsomedial nuclei 
regions (Adriaenssens et al. 2019, Samms et al. 2020). In 
addition, GIPR signalling is also demonstrated within 
circumventricular organs (CVOs), including the area 
postrema and nucleus tractus solitarius of the dorsal 
vagal complex (DVC) (Adriaenssens et  al. 2019, 2023), 
which are not enclosed by the blood–brain barrier 
(BBB). Importantly, despite complex interplay between 
neuronal circuitry within these brain regions, distinct 
outcomes following GIPR agonism have been confirmed. 
For example, while hypothalamic GIPRs supress food 
intake, it appears GIPRs in the DVC may be implicated 
in taste avoidance (Adriaenssens et  al. 2023). Use of 
fluorescently tagged GLP-1 mimetics indicate that 
exogenous peptides are not thought to cross the BBB but 

can interact with CVOs (Secher et al. 2014), with the same 
likely to be true for GIP-based compounds. Moreover, 
GIP possesses peripheral actions to improve insulin 
action and modulates lipid metabolism that influences 
overall energy balance whilst also potentially reducing 
energy intake (Samms et al. 2020).

Given the aforementioned biological consequences of 
GIPR modulation (Fig. 1), it is clear that this signalling 
pathway holds theoretical promise for the treatment 
of both type 2 diabetes mellitus (T2DM) and obesity, 
as has been witnessed to profound effect with GLP-1 
(Nauck et  al. 2021a). This is especially relevant since  
GIP appears to be quantitatively the most important 
incretin hormone in both rodents and humans (Gault 
et  al. 2003a, Holst 2019). When we consider that GIP 
was discovered over a decade prior to GLP-1, it begs 
the question: Why has the success of GLP-1R mimetics 
not been emulated or even preceded by GIPR mimetics? 
The rise of GIP from enterogastrone to major metabolic 
hormone makes an interesting story (Marks 2020), 
but the answer is largely due to the well-known  
insensitivity of humans with obesity and obesity-driven 
T2DM to the insulinotropic and glucose-lowering actions 
of GIP (Nauck et  al. 2021b). Such insensitivity can be 
reversed by lowering blood glucose using insulin, 
sulphonylureas or DPP-4 inhibitors (Højberg et al. 2009,  

Figure 1

A summary of the tissue-specific benefits of GIPR agonism and antagonism. In addition, the impact of combined GIPR antagonism combined with 
GLP-1R agonism is considered. Agonism is indicated by green ticks at the GPCR while antagonism is indicated by red crosses. Increases in the 
therapeutic effect in each instance are indicated by upward arrows and decreases and indicated by downward arrows.
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Irwin et  al. 2010, Stensen et  al. 2022). However, 
the situation has not been helped by the debate  
spanning several decades on whether GIPR agonism 
or antagonism is most beneficial (Irwin & Flatt 2009a, 
Campbell et al. 2022). This review will focus on current 
evidence that supports the therapeutic promise of GIP 
and GIPR antagonism and the various approaches  
taken to impart this.

GIPR antagonism

The above-mentioned actions of GIP relate primarily 
to receptor agonism, with positive effects on insulin 
secretion (Ding & Gromada 1997) and satiety (Samms 
et  al. 2020, Fig. 1) having clear potential benefits in  
obesity and diabetes (Flatt 2008, Irwin & Flatt 2009b). 
However, it is well established that circulating levels 
of GIP are elevated in human obesity and obesity-
driven forms of T2DM (Ebert & Creutzfeldt 1980, Salera 
et al. 1982), with studies using obese rodents reporting 
expansion of intestinal K-cell mass and elevated 
circulating GIP in genetically inherited obesity (Flatt 
et al. 1983) and following prolonged exposure to a high-
fat, high-calorie diet (Bailey et al. 1986).

As such, it has been demonstrated that GIPR-null mice 
are protected against high-fat-fed-induced obesity and 
insulin resistance (Miyawaki et  al. 2002), indicating a 
role for the GIPR in the onset of obesity (Flatt 2008). In 
addition, specific destruction of GIP-secreting K-cells 
in mice also safeguards against diet-induced obesity 
and ameliorates insulin resistance (Althage et al. 2008). 
Furthermore, various methods to specifically inhibit 
GIP secretion in rodents are demonstrated to alleviate 
obesity and insulin resistance (Nasteska et  al. 2014, 
Kanemaru et  al. 2020, Murata et  al. 2021). Moreover, 
it is understood that fat is a powerful stimulus for the 
secretion of GIP which acts at adipocytes. In vitro and 
ex vivo studies indicate this increases fat storage (Fig. 1)  
via upregulation of lipoprotein lipase (LPL) activity 
(Kim et al. 2007) and is associated with phosphorylation 
of cAMP-response element binding protein (CREB) 
and nuclear localisation of cAMP-responsive CREB 
coactivator 2 (TORC2) in human adipocytes (Kim 
et  al. 2010). GIPR agonism promotes fatty acid uptake  
(Killion et  al. 2020a), insulin-induced free fatty acid 
incorporation into adipocytes (Møller et  al. 2016) and 
inhibits lipolysis (Getty-Kaushik et  al. 2006), whilst 
improving blood flow to the adipose tissue (Asmar 
et  al. 2019). GIPR agonism is also directly implicated 
in adipocyte growth, with studies in cultured human 
omental preadipocytes highlighting proliferative  
actions alongside a reduction in pro-apoptotic 
transcription factors such as Bcl-2-associated death 
promoter (BAD) (Chen et al. 2021). Importantly, a GIPR 
antagonist was reported to annul these preadipocyte 
proliferative effects (Chen et  al. 2021). However, full 
in vivo characterisation of the mechanisms involved is 
currently lacking within the literature.

Accordingly, in humans, polymorphisms of the GIPR 
that lead to perturbed activity are linked to reduced 
body mass index (Lyssenko et  al. 2011, Kizilkaya et  al. 
2021). Notably, alterations in G protein coupling and 
subsequent intracellular signalling cascades with  
several of these GIPR variants directly mirror 
consequences of GIPR antagonism (Kizilkaya et  al.  
2021). Additionally, GIP is implicated in increasing 
cytokine penetration into adipocytes to drive insulin-
resistance within these peripheral tissues (Timper 
et  al. 2013). Whether this effect is direct or indirect 
has been debated recently (Campbell et  al. 2022), but 
either way it is clear that GIP exerts important effects 
on adipocyte biology (English et al. 2020). In this regard, 
the literature, based on numerous independent and  
diverse observations, highlights a clear role for GIPR 
activation in the development of obesity, grounding the 
concept of GIPR antagonism as a potential approach 
to alleviate insulin resistance and excessive weight 
gain (Irwin   et  al. 2020). While no such therapy has 
yet made it to clinic, a number of approaches have 
been employed to impart GIPR blockade including  
small molecule, immune-neutralisation and peptidic 
that will be discussed herein.

Small molecule GIPR antagonism

When considering the extensive body of work linked 
to the discovery and development of small-molecular 
weight GLP-1R modulators, including recent work  
with danuglipron in phase 2 clinical trials (Saxena  
et  al. 2023), it is perhaps surprising that a similar  
literature search in relation to the GIPR heralds  
much fewer results. Small molecules remain a 
mainstay of drug development owing to excellent oral 
bioavailability and reduced production costs when 
compared to biologics (Beck et  al. 2022). The desire to 
generate medications suitable for oral administration 
is likely the largest driver here, as evident with 
the retrofitting of Novo Nordisk’s GLP-1R agonist 
semaglutide, co-formulated with sodium N-(8-(2-
hydroxybenzoyl) amino caprylate (SNAC), to prevent 
destruction of the peptide within the stomach and 
promote gastric absorption (Bucheit et al. 2020). While 
this formulation of semaglutide, marketed as Rybelsus®, 
represents a significant success in generation of  
an orally available direct GLP-1R modulator, it is 
important to note that much greater quantities of 
peptide are required for oral delivery compared to 
injectable formulations (14 mg daily vs. 2.4 mg weekly, as 
respective maximal dosages), which is likely influencing 
global shortages of the peptide (Whitley et al. 2023).

Thus, the appetite for small molecule incretin  
modulators remains high within the pharmaceutical 
industry. In the case of GIPR antagonists, only one 
such agent is described in the literature, termed SKL-
14959 (Nakamura et al. 2012, Table 1), while no similar 
GIPR agonist small molecule can be sourced in the 
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literature at the time of writing. SKL-14959 is a 
potent GIPR antagonist with a molecular weight 
of less than 400 Daltons and an IC50, in relation to 
cAMP downregulation of 2.9 uM (Nakamura et  al. 
2012). Although SKL-14959 may not be entirely 
selective, with activity at GLP-1R and the glucagon 
receptor indicated at concentrations above 3100 
and 1000 nM, respectively (Nakamura et  al. 2012). 
When evaluated in the acute setting in normal mice, 
SKL-14959 increased circulating triglyceride levels 
and reduced LPL and hepatic lipase (HPL) activity 
following an oil tolerance test (Nakamura et  al. 
2012), which would be indicative of reduced lipid  
uptake and storage. Additionally, SKL-14959 also 
effectively countered the actions of exogenously 
delivered GIP in terms of reducing GSIS during a 
glucose tolerance test (Nakamura et al. 2012).

When assessed in the chronic setting over a 96-day 
dosing period in high-fat-diet-induced obese (DIO) 
mice, daily SKL-14959 administration reduced body 
mass by approximately 7%, an effect that appeared 
to be independent of food intake (Nakamura et  al. 
2018). Lack of SKL-14959 induced effects on feeding 
may potentially highlight inability of the molecule 
to penetrate the BBB and appetite controlling 
regions within the hypothalamus. In support 
of observations in the acute setting (Nakamura 
et  al. 2012), triglyceride levels in liver, muscle and 
gastrointestinal muscle were reduced (Nakamura 
et  al. 2018), although as the authors concede there 
is no report of GIPR expression in liver or muscle 
tissue in rodents (Usdin et  al. 1993), indicating a 
likely indirect effect. That said, LPL activity was  
also reduced that would be linked to a reduction in 
tissue lipid uptake.

It is unclear why further study of SKL-14959 has not 
been pursued, especially given promising weight 
reducing effects in DIO rodents. The compound, 
which is of unknown structure, appears to be more 
tolerable than previous attempts of small molecule 
development against related G protein-coupled 
receptor (GPCR) targets such as glucagon, which 
despite clear benefits on diabetes in clinical trials 
(Cheng et  al. 2020) were ultimately shelved due to 
hepatic impairment (Lafferty et al. 2022). However, 
it is noteworthy that despite almost identical 
binding affinities of SKL-14959 and (Pro3)GIP for 
the GIPR, a peptidic GIPR modulator (Gault et  al. 
2002) did not impart as significant a hyperglycaemic 
effect when administered daily to normal mice 
over a period of 11 days (Irwin et  al. 2004), which 
is certainly more attractive when considering the 
target population for a GIPR antagonist treatment. 
This may have been an important consideration in 
the halting of development of SKL-14959. Moreover, 
(Pro3)GIP exerted antihyperglycaemic actions in  
genetically obese diabetic (ob/ob) as well as DIO 
mice (Gault et  al. 2005, 2007b, Irwin et  al. 2007a, Co
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McClean et al. 2007). That said, there are recent notable 
species-specific effects of GIPR modulating peptides that 
also need to be considered when interpreting effects of 
(Pro3)GIP (Sparre-Ulrich et al. 2016, Fig. 2), which will be  
considered in more detail next. Interestingly, 
4-hydroxybenzoic acid 2-bromobenzylidene hydrazide 
(4H2BH) is a small-molecular-weight compound that 
has been reported to inhibit both GIPR and glucagon 
receptor activity (Franklin et  al. 2011), with obvious 
dual benefits for obesity-related diabetes. However, 
4H2BH has not been progressed beyond experiments 
assessing the impact a single injection in rodents, 
perhaps suggesting issues with pharmacokinetics and/or  
safety of this compound.

GIPR immune-neutralisation

A number of studies have indicated that immunisation 
against GIP peptides, as a means to stimulate active 
endogenous antibody generation, is an efficacious  
method of improving obesity-related diabetes in 
rodents (Fulurija et  al. 2008, Irwin et  al. 2009a,b, 2012,  
Montgomery et  al. 2010, Wolfe et  al. 2023), although 
suitability of this approach in humans is yet to be 
determined. Indeed, given the various important 

physiological actions of GIP (Fig. 1), it may be anticipated 
that side effects could occur with this approach. 
Thus, more recent developments have employed 
administration of GIP monoclonal antibodies as a less 
permanent method of GIPR blockade, which should 
decrease side effects risk.

Passive immunity against GIP via administration of 
monoclonal antibodies (MABs) targeting endogenous 
GIP, or the GIPR, have proven effective in various 
studies, either alone or when combined with GLP-1R 
agonism. While GIP antibodies such as GIPg013 
have been developed primarily as a research tool to  
assess the biological roles and actions of native GIP 
(Ravn et al. 2013, Table 1), others have been investigated 
as potential pharmacological interventions in obesity. 
For example, when a GIP MAB, namely GIP mAb  
(Table 1), targeting the last 17 residues of the C-terminus 
of murine GIP, was injected once weekly for 17 weeks 
in normal mice prior to exposure to a high-fat diet,  
these mice had a remarkable 47% weight loss when 
compared to untreated control animals (Boylan 
et  al. 2015). This was associated with reductions 
in subcutaneous, abdominal and hepatic fat, with 
obvious improvements in overall metabolism (Boylan 
et  al. 2015). Moreover, these initial findings have 
been endorsed using human GIPR MABs (hGIPR-Ab; 

Figure 2

A peptidic structure analysis of glucagon-like peptide-1 (GLP-1) (7–36), the dual GIP/GLP-1 receptor co-agonist tirzepatide and glucose-dependent 
insulinotropic peptide (GIP) (1–42). Structures for human, mouse and rat GIP(1-42) are provided. Amino acid residues are indicated by single-letter 
abbreviations. Residues shared with GIP(1–42) are shaded in blue, shared with GLP-1(7–36) are shaded in green, residues shared with both GLP-1 and 
GIP are indicated in orange and those unique to tirzepatide are shaded in grey. Additionally, species variations between GIP(1-42) are indicated in red.  
A 20-carbon fatty acid modification, namely eicosanedioic acid, is linked to Glu20 with the full structure provided in gold lettering. ‘Aib’ residues indicate 
inclusion of 2-aminoisobutyric acid, a non-naturally occurring amino acid. Potency at human GLP-1 and GIP receptors (hGLP-1R and hGIPR, respectively) 
as well as at mouse and rat GIP receptors (mGIPR and rGIPR) are provided, where appropriate, based on EC50 values provided within the literature for 
each peptide (Sparre-Ulrich et al. 2016, Willard et al. 2020).
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Table 1) in non-human primates (NHP), indicating 
real potential for translation to the human setting 
(Killion et  al. 2018). However, antibody monotherapy 
in NHPs elicited only a very modest weight reduction 
of 2%, but when combined with the GLP-1R mimetic  
dulaglutide, a 15% body weight reduction was  
observed, which was significantly beyond the 9% 
reduction achieved with dulaglutide monotherapy 
(Killion et al. 2018).

The apparent synergy between GLP-1R mimetics and 
GIPR antagonists has been exploited elsewhere in the 
pursuit of GIP MABs for obesity management (Fig. 1). 
An exciting new direction is the conjugation of GIPR  
MABs to peptidic GLP-1R agonists to create a  
unimolecular dual-acting compound. As such, a recent 
study by Lu and colleagues reports the successful 
development of murine and human- based GIPR MABs 
conjugated to GLP-1(7–37) analogues via a flexible 
(GGGGS)3 linker (Lu et al. 2021, Table 1). Administration 
of the murine-based compound, mGIPR-Ab/P1, over 
18 days in DIO mice elicited a 29% reduction in body 
weight which was associated with reductions in 
hyperinsulinaemia and cholesterol (Lu et  al. 2021). 
Moreover, when the antibody component was delivered 
alone, a body weight reduction of only 1% was  
observed, corroborating previous findings of Killion 
and colleagues on the synergy of this combination 
therapy approach (Killion et  al. 2018). Encouragingly, 
the humanised version of this molecule, hGIPR-Ab/P1, 
elicited a 14% body weight reduction following 6 weeks 
administration in obese NHPs although alterations in 
insulin and cholesterol were less evident than in the 
corresponding rodent study (Lu et  al. 2021, Table 1). 
Mechanistic in vitro studies with hGIPR-Ab/P1 indicate 
a 100-fold increase in cAMP generation when exposed 
to cells expressing both the GIPR and GLP-1R, when 
compared to cells expressing one or the other receptor, 
manifesting in upregulated insulin secretion from 
INS1 832/3 beta cells (Lu et  al. 2021). It is thought that 
dimerisation of the GIPR and GLP-1R in tissues that 
co-express these receptors allows hGIPR-Ab/P1 to bind 
simultaneously to both targets and elicit a heightened 
effect (Whitaker et al. 2012, Lu et al. 2021). While Lu and 
colleagues have evidenced this in pancreatic tissues, 
where GIPR and GLP1-R expression is known to be 
abundant (Irwin & Flatt 2009a), further work is required 
to confirm the phenomenon in other metabolically 
relevant sites such as the hypothalamus.

The excellent transition of this dual GIP MAB and  
GLP-1R agonist approach to NHPs validates appraising 
this paradigm in the human setting (Fig. 1). Recently, 
Amgen have completed a phase 1 trial of a GLP-1R 
mimetic–GIPR antibody conjugate molecule, termed 
AMG133, which elicited a 15% reduction in body 
weight over 85 days in its cohort of participants with 
obesity when administered at the highest dose of 420 
mg monthly (Véniant et al. 2024, clinical trial identifier: 
NCT04478708). Excitingly, for subjects receiving 
either of the highest doses of AMG133 (280 or 420 mg, 

respectively), 10% body weight was maintained after  
150 days of withdrawal (Véniant et al. 2024). However, 
given the lack of comparison against tirzepatide and 
given the relatively small cohort size, excitement will 
have to remain tempered for now. A phase 2 study 
investigating the compound in obese individuals 
with or without T2DM is currently underway and the 
results are awaited with great anticipation, estimated 
to be published in early 2025 (clinical trial identifier: 
NCT05669599), with hope that answers around the 
potential for more sustained weight loss with AMG133 
can be answered through this trial.

Peptide-derived GIPR antagonism
Although notable success to annul GIPR signalling 
has been made with small molecule GIPR modulators 
and immune neutralisation, this would appear to be 
more achievable and probably safer through utilising 
peptide-based ligands of the endogenous receptor.  
Thus, peptide screening processes such as alanine 
scanning, or in silico molecular conformational  
software, allows determination of important amino 
acid residues for peptide activity as well as receptor 
recognition and binding (Lee et  al. 2019). In the case 
of GIP, modification to central amino acid residues is  
better tolerated for maintaining GIPR agonistic  
properties than those at the N-terminus (Alaña et  al.  
2006, Venneti et  al. 2011, Table 1; Fig. 2), with the 
N-terminus being fundamental for GIPR agonist activity 
(Hinke et  al. 2001, Kerr et  al. 2011, Hansen et  al. 
2016). It is perhaps not surprising that the naturally 
occurring DPP-4 cleavage products of full length 
and truncated GIP, namely GIP(3–42) and GIP(3–30) 
respectively, are antagonists of the GIPR when employed 
at supraphysiological concentrations (Parker et  al. 
2006, Hansen et al. 2016, Table 1). However, at normal 
circulating concentrations, neither metabolite is  
thought to have an appreciable impact upon GIPR 
function and overall metabolism (Deacon et  al. 2006). 
Interestingly, further N-terminally truncated GIP 
metabolites have also been established to possess GIPR 
antagonistic properties, including GIP(4–42), GIP(5–42), 
GIP(6–42), GIP(7–42) and GIP(8–42) (Kerr et  al. 2011, 
Table 1).

The C-terminally truncated GIP(1–30), found in intestinal 
K-cells (Fujita et  al. 2010), has been shown to have 
similar potency as GIP(1–42) in acute and longer-
term studies (Fujita et  al. 2010, Gault et  al. 2011). The 
fragment form, GIP(7–30)NH2, was the earliest GIPR 
antagonist used and effectively demonstrated the 
importance of GIPR signalling in the insulin response 
to oral glucose in rats (Tseng  et  al. 1999). However, 
of the various truncated metabolites, GIP(3–30) is 
believed to be a highly effective naturally occurring 
GIPR antagonist (Hansen et al. 2016), being superior to 
GIP(3–42) in terms of inhibiting GIP-induced insulin, 
glucagon and somatostatin release in vitro and in 
the perfused rat pancreas (Sparre-Ulrich et  al. 2017). 
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Indeed, GIP(3–30)NH2 was the first GIPR antagonist to be  
utilised in human studies and shown to reduce the 
GSIS effects of GIP by 82% in healthy volunteers 
(Gasbjerg et  al. 2018). Interestingly, no influence on  
circulating lipid levels was observed following acute 
GIP(3–30)NH2 infusion, but this may be linked to use  
of a single infusion and the fact that volunteers were 
healthy (Gasbjerg et al. 2018).

Interestingly, whilst the aforementioned peptidic GIPR 
antagonists have either N- or C-terminal truncation of 
the GIP amino acid sequence, or a combination of both, 
an analogue of GIP(1–42), namely DPP-4 resistant (Pro3)
GIP, appeared to break this mould (Gault et  al. 2002,  
Table 1). (Pro3)GIP effectively antagonised cAMP-
stimulatory action of GIP in vitro with an IC50 of 2.6 
µM whilst also impeding GIP-induced insulin secretion 
during a glucose tolerance test (GTT) in ob/ob mice 
(Gault et  al. 2002). In addition, related Glu3-substituted 
analogues of GIP(1–42) were also shown to possess 
postulated GIPR inhibitory actions (Table 1; O’Harte 
et  al. 2006, Gault et  al. 2007a). More intensive study 
of (Pro3)GIP followed, which demonstrated that non- 
fasting glucose and plasma insulin levels as well 
as GSIS were not impacted following 11-days once-
daily administration of the peptide in non-diabetic 
mice, thereby suggesting possible compensation by 
endogenous GLP-1 (Irwin et  al. 2004). Indeed, GIPR 
knock-out mice exhibit increased islet sensitivity to  
GLP-1 (Pamir et  al. 2003), with once daily injection of  
(Pro3)GIP for 50 days in DIO mice increasing circulating 
total GLP-1 concentrations (McClean et  al. 2007). 
Additional investigations with (Pro3)GIP revealed 
prominent amelioration of insulin resistance and 
substantial improvements of overall metabolism in ob/ob 
(Gault et al. 2005, Irwin et al. 2007a) as well as DIO mice 
(Gault et al. 2007b). Interestingly, benefits were largely 
absent in streptozotocin (STZ)-treated insulin-deficient 
mice (McClean et  al. 2008a), suggesting positive effects  
to be insulin dependent. Encouraging effects on 
metabolism were also observed when (Pro3)GIP was 
combined with other therapies, such as PYY(3–36) (Irwin 
et  al. 2007b), cannabinoid CB1 receptor antagonism 
(Irwin et  al. 2008), and cholecystokinin (CCK) receptor 
activation (Irwin et al. 2013) as well as GLP-1R agonism 
(Irwin et  al. 2009b), in keeping with observations of 
the marked benefits of AMG133 noted previously.  
Although (Pro3)GIP analogues with a protracted duration 
of biological action have also been characterised 
(Gault  et  al 2007a, McClean et  al. 2008b), subsequent 
study revealed differences in the affinity of (Pro3)GIP 
for human and rodent GIPRs and the occurrence of 
noteworthy species-specific effects of GIP peptides as 
described further next.

Species specificity of GIP peptides
There are small, but seemingly important, differences 
in the sequence of human and rodent GIP, with the  

human GIP sequence specifically containing His18, 
Lys30 and Ile40 amongst its 42 amino acid residues, 
which are substituted with Arg18 and Arg30 in mouse 
GIP and then Arg18 and Leu40 in rat GIP (Bailey 2020, 
Fig. 2). In agreement, a recent report further highlights 
physiologically important species- and population-
specific evolutionary conservation of the GIP peptide 
amino acid sequence (Lindquist et  al. 2022, Fig. 2), 
although there is less certainty around importance of 
conservation of the GIPR sequence (Irwin 2020). Indeed 
(Pro3)GIP, that is based on the human GIP amino acid 
sequence, was shown to display greater affinity for 
human than mouse or rat GIPRs in transfected cell 
lines (Sparre-Ulrich et al. 2016, Fig. 2), being considered 
as a low potency GIPR agonist as opposed to a full 
antagonist (Sparre-Ulrich et al. 2016). This suggests that 
diminished GIP action rather than total GIPR blockade 
may be sufficient to impart the positive effects in obesity 
(Gault et  al. 2005, 2007b, Irwin et  al. 2007a, McClean 
et al. 2007). Indeed, this fits well with the clear benefits 
of GIP immune-neutralisation described earlier, that 
is unlikely to induce total blockade of GIP action. 
Interspecies variations of the human, rat and mouse 
GIP(3–30) sequences have been additionally confirmed 
through their GIPR antagonist capabilities, with each  
peptide recognised as a true competitive GIPR antagonist 
only within their respective parent systems (Gabe 
et  al. 2018, Perry et  al. 2019). Furthermore, whilst the  
GIPg013 GIPR antibody reported earlier effectively 
antagonised mouse, rat dog, and human GIPRs, a closely 
related GIPR antibody, Gipg133, had no GIPR antagonist 
activity at mouse and rat GIPRs (Ravn et al. 2013).

Despite concerns over species variation (Fig. 2), 
human (Pro3)GIP(3–30)-based peptides have since been 
described that possess full GIPR antagonist activity 
in rodent systems (Pathak et  al. 2005, Table 1). This 
discovery shadowed initial findings with a GIP(3–30) 
based-peptide, namely GIP(3–30)-Cex-K40PAL, that 
combines GIP(3–30) with the nine C-terminal residues 
of the GLP-1R agonist, exendin(1–39) (Pathak et  al. 
2015a, Table 1), where this C-terminal extension, Cex, 
was previously demonstrated to improve metabolic 
stability and reduce renal clearance of GLP-1 peptides  
(Simonsen et  al. 2013). An additional C-terminal lysine 
residue was also attached to the molecule at position  
40, K40PAL, to facilitate attachment of a C-16 fatty acid  
that prolongs the bioactivity profile (Pathak et al. 2015a, 
Table 1). Modification to the C-terminus of GIP has 
previously been reported to interfere less with ligand-
receptor binding (Hinke et  al. 2001). As an additional 
means to ensure adequate receptor engagement, the 
molecule was also N-terminally capped with phenyl 
lactic acid to preserve the helical structure (Doig 
& Baldwin 1995, Pathak et  al. 2015a). Importantly, 
GIP(3–30)-Cex-K40PAL and the related Pro3GIP(3–30)-
Cex-K40PAL molecules were determined to effectively 
antagonise the actions of native GIP with nanomolar 
potency, specifically in terms of cAMP recruitment in 
human GIPR-transfected Chinese Hamster Lung cells in 
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addition to a reduction of GIP-induced insulin secretion 
from rodent BRIN-BD11 cells (Pathak et al. 2015a). More 
significantly, the GIPR antagonist peptides were then 
assessed in DIO mice and shown to induce sustained 
weight loss, counter insulin resistance and improve 
glycaemic control following once daily injection for 21 
days (Pathak et  al. 2015a). Indeed, Pro3GIP(3–30)-Cex-
K40PAL was the better performing of the two peptides  
and body weight at study termination in this group of 
mice was not significantly different from non-obese 
controls. It is also interesting to note that these mice 
presented with a reduction of fat mass, but no obvious 
impact on lean mass, indicating an appropriate manner 
of weight loss (Pathak et  al. 2015a), that may not be 
the case with some GLP-1 mimetics (Lafferty et  al. 
2023). Generally speaking, the phenotype induced by  
GIP(3–30)-Cex-K40PAL and Pro3GIP(3–30)-Cex-K40PAL 
were similar to those observed previously with  
Pro3GIP (McClean et al. 2007).

Finally, a related GIPR antagonist peptide, namely 
GIP(6–30)Cex-K40PAL, exhibited profound benefits on 
metabolism in diabetic db/db mice, but particularly 
so when added to liraglutide treatment (Pathak et  al. 
2015b), further supporting the notion of the significant 
therapeutic promise of combined GIPR antagonism and 
GLP-1 agonism (Fig. 1). Interestingly, there is a school 
of thought that GIPR antagonism can impart beta-cell 
resting benefits (Gault et  al. 2005, Tanday et  al. 2022), 
to help protect chronically over-activated beta cells 
and prevent their apoptosis (Fig. 1). In this respect, it 
is notable that GIP(6–30)Cex-K40PAL and liraglutide  
were administered sequentially in db/db mice by  
Pathak and colleagues to impart scheduled periods 
of beta-cell rest and activation (Pathak et  al. 2015b),  
which may represent a treatment paradigm worthy of 
further consideration.

More recently another acylated GIPR antagonist  
peptide has been reported in the literature, termed 
(Nα-Ac, L14, R18, E21) hGIP(5–31)-K11(γE-C16) (Yang et  al. 
2022, Table 1). This GIP(5–31) analogue seems to have  
directly arisen from an earlier reported C-terminally 
intact GIP analogue, namely NαAc, K10(γEγE-C16), 
R18, hGIP(5–42), which was studied in a head-to-head 
comparison with GIPR agonist peptides (Mroz et al. 2019, 
Table 1). (Nα-Ac, L14, R18, E21) hGIP(5–31)-K11(γE-C16) 
was shown to exert modest reductions of food intake 
and body weight following 27 days administration 
in DIO mice (Yang et  al. 2022). More interestingly, 
when combined with the GLP-1R agonist, semaglutide,  
these mice displayed increased appetite suppression 
and body weight loss as well as a modest improvement 
of glucose tolerance when compared to semaglutide 
monotherapy (Yang et  al. 2022), in good support of 
previous observations utilising this GLP-1R agonism 
and GIPR antagonism treatment paradigm (Pathak 
et  al. 2015b; Fig. 1). To date, none of these longer  
acting, acylated GIPR antagonist peptides have 
been evaluated in humans, but the use of suitably 

characterised humanised versions may represent the 
next major advancement in this area of research.

Does prolonged GIPR agonism 
equate to antagonism?

Considerable excitement has surrounded the emergence 
and clinical approval of tirzepatide, the first-in-class 
GIPR/GLP-1R co-agonist peptide. Tirzepatide was  
shown to elicit up to 10% body weight reduction and 
substantial decrease in waist circumference following 
12 weeks administration in T2DM patients during 
phase 2 trials (Frías et  al. 2021), manifesting in an 
average weight loss of 11.2 kg in the group receiving the  
highest dose of tirzepatide compared to an average  
weight loss of 5.7 kg in participants receiving  
semaglutide. There may be a further benefit in this 
combination owing to a proposed anti-emetic effect of 
GIPR activation at the area postrema (Borner et al. 2021), 
which is the vomiting centre of the brain and could 
alleviate nauseating side effects of GLP-1R agonists.

Despite these marked benefits, the precise mechanism  
of action of tirzepatide remains unclear. The peptide 
amino acid sequence bears a striking resemblance to 
human GIP, in keeping with the strong preference of 
tirzepatide towards the GIPR over the GLP-1R (Willard 
et  al. 2020, Fig. 2). Fascinatingly, there is a growing  
body of evidence suggesting that prolonged GIPR 
activation desensitises the GIPR in vitro, essentially 
then mimicking GIPR antagonism (Campbell 2021, 
Gasbjerg et al. 2023b). This desensitisation is postulated 
to be the result of reduced GIPR recycling to the cell-
membrane surface following initial activation and 
internalisation, as evidenced in 3T3-L1 adipocytes 
(Mohammad et  al. 2014), as well as primary rodent 
adipose tissue exposed to a long-acting GIPR agonist for 
24 h (Killion et al. 2020a). While ex vivo confirmation of 
GIPR desensitisation following prolonged GIPR agonism 
in adipocytes indicates relevance of this phenomenon 
in vivo (Killion et  al. 2020a), comparable data in other 
tissues is currently lacking. Moreover, prolonged GIPR 
agonism exerted clear benefits on bone strength and  
composition in insulin-resistant high-fat-fed mice 
(Vyavahare et al. 2020), as well as improving cognition 
(Siano et  al. 2011), suggesting lack of receptor 
desensitisation in these tissues. This is strengthened 
by studies in type 2 diabetic patients, where GIPR 
agonism clearly reduces bone resorption (Christensen 
et  al. 2020) despite postulated beta-cell insensitivity 
to GIP in this population (Nauck et al. 1993). However, 
the desensitisation perspective is supported by a 
study comparing administration of a long-acting GIPR  
agonist and a GIPR mAb in DIO mice, where both 
approaches elicited almost identical reductions in 
body weight when employed as monotherapy (< 5%) 
or when combined with liraglutide (~20%) (Killion 
et  al. 2020a). Moreover, recent evidence appears to 
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indicate that the human GIPR may be more prone to 
desensitisation through internalisation than the murine 
GIPR (Gasbjerg  et  al 2023a), that may be an important 
consideration when evaluating the translational 
applicability of GIPR antagonists.

Further to this, biased agonism at the level of GLP-1R 
has also been suggested with tirzepatide (Xiao  et  al 
2023) that leads to favoured cAMP generation over 
β-arrestin recruitment for GLP-1R but not GIPR, 
activation (Gasbjerg et al 2023b). However, this needs to 
be considered in the context that tirzepatide binds with 
greater preference to GIP rather than GLP-1 receptors 
(Willard et  al. 2020). GIPR desensitisation also appears 
to hold more weight to its argument than the theory of 
incretin receptor compensation, which surmises that 
when either incretin receptor is knocked out, sensitivity 
for the opposite hormone is improved (Campbell 
2021), as is its therapeutic effect. However, double  
incretin-receptor knock-out mice also display reduced 
weight gain when exposed to a high-fat diet (Hansotia 
et  al. 2007). Thus, while a compensatory phenomenon 
may play a partial role when antagonising a singular 
receptor, it is unlikely to be the primary mechanism at 
play when considering the therapeutic benefits GIPR 
antagonism in combination with GLP-1R agonism.

Further research and mode of action 
of tirzepatide

The remarkable story of tirzepatide has substantially 
reinvigorated interest in the GIPR as a drug target. 
However, more research is needed to determine the 
molecular action of this dual GIP/GLP-1 analogue and 
to assess whether GIPR agonism in this context equates 
to antagonism. Our laboratory at Ulster has been a 
strong advocate for the exploitation of GIP therapeutics 
since the late 1990s, providing substantial evidence 
for beneficial metabolic effects of both agonism and 
antagonism of the GIPR (Gault et  al. 2003b,c, Irwin & 
Flatt 2009a). This position appeared counterintuitive 
to many (Meier & Nauck 2004, Seino et  al. 2010), 
but may now have greater appeal, given that the 
action of tirzepatide is believed to possibly involve  
desensitisation of the GIPR (Gasbjerg et al. 2023a). Thus, 
as evident from our early preclinical studies (Gault 
et  al. 2005, McClean et  al. 2007), diminished action or 
antagonism of GIP substantially decreases obesity-
driven insulin resistance by depleting liver triglycerides, 
reducing adiposity, and thereby substantially  
diminishing insulin demand with the induction of 
beneficial beta-cell rest and decreased circulating insulin. 
As noted above, subsequent studies using our next 
generation of GIP antagonist peptides, namely GIP(3–30)- 
Cex-K40PAL, Pro3GIP(3–30)-Cex-K40PAL or GIP(6–30)
Cex-K40PAL, evoked remarkably similar effects (Pathak 
et  al. 2015a,b). This scenario clearly contrasts with  

the more obvious and predominantly insulin-releasing 
incretin effects triggered by GIP agonism, which would 
predominate if tirzepatide acted simply as a dual GIP/
GLP-1 agonist. Another mechanistic pathway postulated 
recently by Gasbjerg and colleagues is that tirzepatide 
acts solely as a GLP-1R super agonist (Gasbjerg et  al. 
2023b), but this possibility seems less appealing based  
on the more impressive effects of tirzepatide over those  
of GLP-1 mimetics in both humans and animal models  
with obesity-diabetes (Coskun et  al. 2018, Frias et  al. 
2020b). Additionally, the aforementioned binding 
preference of tirzepatide towards the GIPR, and high 
sequence homology with native GIP, would tend to 
cast aspersions on this argument (Willard et  al. 2020,  
Fig. 2). Future acute studies in man looking at the 
efficacy of tirzepatide alone and in combination 
with the GIPR antagonist GIP(3–30) or the GLP-1R  
antagonist exendin(9–39) can be expected to help 
to resolve this issue and shape the development of  
future GIP-incorporating compounds.

Conclusion

The resounding therapeutic success of the GIPR/
GLP-1R co-agonist, tirzepatide, has seen a resurgence of  
interest in GIPR modulation for the management of 
T2DM and obesity (Nauck & Müller 2023). While it 
appears that the pendulum has begun to swing in favour 
of GIPR agonism over GIPR antagonism for imparting 
metabolic benefits, significant debate remains given 
recent evidence that prolonged GIPR activation may 
lead to GIPR desensitisation (Killion et  al. 2020a,b), 
particularly in the human setting (Gasbjerg  et  al 
2023a). This becomes even more relevant given the 
receptor preference of tirzepatide towards the GIPR 
(Willard et  al. 2020). In addition to this, it is apparent 
that metabolic advantages of GIPR antagonism can 
be enhanced through concomitant GLP-1R activation 
(Fig. 1), as evidenced by preclinical studies (Gault et al. 
2005, 2007a,b, 2011, Irwin et  al. 2009a,b, Pathak et  al.  
2015a,b) and progression of the conjugated MAB GIPR 
antagonist/GLP-1R agonist therapy, AMG133 (Véniant 
et al. 2024), to phase 2 clinical trials. Finally, the organ-
specific effects of GIPR agonism and antagonism  
must be ascertained, particularly in relation to 
desensitisation given the wealth of evidence supporting  
a central mechanism for GIPR-agonist-induced  
reductions in food intake (Seino et al. 1997, Adriaenssens 
et  al. 2019, Samms et  al. 2020), but with no current 
evidence supporting a role for desensitisation of GIPR 
in appetite-regulating centres of the brain through 
prolonged exposure. Thus, with continuing development 
on GIP/GLP-1R co-agonists modalities (Lafferty et  al. 
2023), it is hoped that clarity can be ascertained as to 
whether GIPR agonism or antagonism has the greatest 
role to play in management of obesity and related 
metabolic diseases.
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