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Abstract 
Introduction: The type 2 deiodinase and its Thr92Ala-DIO2 polymorphism have been linked to clinical outcomes in 
acute lung injury and coronavirus disease 2019 (COVID-19).

Objective: The objective was to identify a potential association between Thr92Ala-DIO2 polymorphism and body 
composition (appendicular muscle mass, myosteatosis, and fat distribution) and to determine whether they reflect the 
severity or mortality associated with the disease.

Methods: In this prospective cohort study (June–August 2020), 181 patients hospitalized with moderate-to-severe 
COVID-19 underwent a non-contrast-enhanced computed tomography (CT) of the thorax to assess body composition, 
laboratory tests, and genotyping for the Thr92Ala-DIO2 polymorphism.

Results: In total, 181 consecutive patients were stratified into three subgroups according to the genotype: Thr/Thr 
(n = 64), Thr/Ala (n = 96), and Ala/Ala (n = 21). The prevalence of low muscle area (MA) (< 92 cm²) was 52.5%. Low MA 
was less frequent in Ala/Thr patients (44.8%) than in Thr/Thr (60.9%) or Ala/Ala patients (61.9%) (P = 0.027). Multivariate 
logistic regression analysis confirmed that the Thr/Ala allele was associated with a reduced risk of low MA (41% to 
69%) and myosteatosis (62% to 72%) compared with Thr/Thr + Ala/Ala (overdominant model). Kaplan–Meier curves 
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showed that patients with low muscle mass and homozygosity had lower survival rates than the other groups. 
Notably, the heterozygotes with MA ≥92 cm² exhibited the best survival rate.

Conclusion: Thr92Ala-DIO2 heterozygosity is associated with increased skeletal MA and less myosteatosis in patients 
with COVID-19. The protective effect of Thr92Ala-DIO2 heterozygosity on COVID-19 mortality is restricted to patients 
with reduced MA.

Keywords: COVID-19; muscle; myosteatosis; Thr92Ala-DIO2

Introduction
Over the last 3 years, there have been significant 
morbidity and mortality worldwide caused by the 
coronavirus disease 2019 (COVID-19), a highly infectious 
condition caused by the severe acute respiratory 
syndrome virus 2 (SARS-CoV-2). To infect the cells, 
the virus relies on a structural protein (Spike) that 
recognizes the angiotensin-converting enzyme 2 (ACE2) 
cell receptor (1, 2), which is expressed in a wide range of 
tissues, including the thyroid gland (3, 4).

Much has been done in the search for factors that could 
minimize or aggravate the severity and mortality of 
COVID-19 infection. An aspect that has been extensively 
studied is how obesity and metabolic abnormalities 
affect the outcome of COVID-19 infection, with the 
resulting consensus that visceral adiposity, low muscle 
mass, and high concentration of intramuscular fat 
(myosteatosis) are independent risk factors for critical 
illness and mortality (5, 6).

While looking for independent metabolic factors that 
affect the severity of the illness and mortality, a prospective 
study with 220 consecutive patients with moderate-
to-severe COVID-19 revealed that heterozygosity for 
the Thr92Ala-DIO2 gene was associated with reduced 
severity of the disease and mortality (7). The DIO2 gene 
encodes the type 2 deiodinase (D2), the critical enzyme 
that converts the pro-hormone T4 to its active form, T3. At 
least one Thr92Ala-DIO2 (rs225014) allele can be found 
in about 50% of the population worldwide; carrying it is 
associated with an approximately 40% reduction in the 
conversion of T4 to T3 (8, 9, 10).

Several studies have linked the Thr92Ala-DIO2 
polymorphism to chronic diseases (such as type 2 
diabetes mellitus (11), insulin resistance (12), obesity 
(13), arterial hypertension (14), osteoporosis (15), and 
dementias (16)) and a worse prognosis for COVID-19. A 
recent meta-analysis of 21 studies with more than 20,000 
patients confirmed that Thr92Ala-DIO2 heterozygosity 
is associated with improved long-term outcomes in 
diabetes, obesity, ischemic stroke, myocardial infarction, 
and left ventricular hypertrophy (7).

The mechanisms underlying the protective effect of 
the Thr92Ala-DIO2 heterozygosity remain elusive but 
could be related to its role in endoplasmic reticulum 
stress, inflammation, oxidative stress, apoptosis, and 
mitochondrial dysfunction (9), all pathways linked to 

the pathophysiology of COVID-19. In addition, the fact 
that DIO2 is expressed in macrophages (17, 18) could 
interfere in the immune response to COVID-19 infection 
(19, 20) and in the outcome in hospitalized COVID-19 
patients (21, 22, 23).

The association between sarcopenia and myosteatosis 
with a worse COVID-19 prognosis is notable (5, 6), 
given that the skeletal muscle is a key target for thyroid 
hormones (THs). T3-signaling in skeletal muscle regulates 
proliferation, metabolism, differentiation, homeostasis, 
and growth and also plays a key role in muscle protein 
breakdown (24). Given that T3 signaling in the skeletal 
muscle can be modulated by DIO2, in the present 
study, we tested whether the better COVID-19 outcomes 
observed in heterozygous carriers of the Thr92Ala-DIO2 
polymorphism is associated with an effect on visceral, 
subcutaneous fat, area, and muscle density.

Materials and methods

Subjects and data collection
The present study was a subgroup analysis of a clinical 
trial designed to assess thyroid dysfunction and DIO2 
polymorphism in COVID-19 in-hospital patients (7, 21). This 
was a prospective cohort study that lasted between June 
and August 2020 and included 172 consecutive patients 
with confirmed COVID-19 admitted to the emergency 
department of the Metropolitan Hospital Dom José Maria 
Pires, a tertiary referral hospital in João Pessoa, Paraíba, 
Brazil (Fig. 1). The study was approved by the Human 
Research Ethics Committee of the Lauro Wanderley 
University Hospital (CAAE:31562720.9.0000.5183). This 
study was performed in agreement with the Declaration 
of Helsinki and local and national regulations. Written 
consent has been obtained from each patient or subject 
after full explanation of the purpose and nature of all 
procedures used.

Inclusion and exclusion criteria
Blood samples (50 mL) were collected while patients 
were in the emergency department within the first 48 
h of admission. One hundred seventy-two consecutive 
patients with a positive nasopharyngeal swab result 
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(RT-qPCR – Biomol OneStep/COVID-19, IBMP, Paraná, 
Brazil) for SARS-CoV-2 were included. We also included 
patients with negative RT-qPCR if all the following 
criteria were met: clinical, radiological, and serological 
(IgG positive for SARS-CoV-2). We exclude patients with 
a history of thyroid disease, diagnosis of pregnancy, 
and who used iodinated contrast in the last 6 months or 
drugs that interfere with TH metabolism. 

Outcomes
The primary objective was (1) to identify a potential 
association between Thr92Ala-DIO2 polymorphism 
and body composition (appendicular muscle mass, 
myosteatosis, and fat distribution) and (2) to test 

whether the improved COVID-19 outcomes observed 
in heterozygous carriers of the Thr92Ala-DIO2 
polymorphism depend on an association with body 
composition.

Exploratory analyses included cumulative mortality, 
blood biochemistry, thyroid function tests, comorbidities, 
complications, and severity scores during admission 
according to Thr92Ala-DIO2 polymorphism and body 
composition.

Procedures
The detailed clinical information of each patient was 
obtained by physicians using a standard questionnaire 
upon admission, including sociodemographic 

Figure 1

Flowchart of the study. IL-6, interleukin 6; LMM, 
low muscle mass.
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information, medical history, laboratory findings, and 
previous treatments. Patient severity on admission was 
first quantified using three severity scoring: the quick 
Sepsis-related Organ Failure Assessment (qSOFA), the 
National Early Warning Score 2 (NEW2), and the chest 
CT severity score (25).

We split the cases into two clinical classifications: severe 
and critical. Severe cases met any of the following 
criteria: respiratory rate > 30 cycles/min, oxygen 
saturation < 93% at rest, partial arterial pressure of 
oxygen (PaO2)/concentration of oxygen (FiO2) < 300 mm 
Hg (1 mm Hg = 0.133 kPa), and the extent of lung injury 
(ground-glass opacity) estimated > 50%. Critical cases 
met any of the following criteria: a manifestation of 
respiratory failure requiring mechanical ventilation, 
presence of shock, and other organic failures that need 
follow-up and treatment in an intensive care unit (ICU). 
Blood samples for patients who met the inclusion criteria 
were collected before interventions or therapy that 
could potentially interfere with or alter TH or cytokine 
serum levels, always performed within the first 48 h of 
admission.

Serum biochemistry
Plasma concentrations of interleukin 6 (IL-6), high-
sensitive C-reactive protein (CRP), D-dimer and lactate 
dehydrogenase (LDH), thyroid-stimulating hormone 
(TSH), free triiodothyronine (fT3), free thyroxine (fT4), 
reverse triiodothyronine (rT3), thyroglobulin, anti-
thyroid peroxidase antibodies (anti-TPO), and ferritin 
were assessed using chemiluminescence immunoassay 
(MAGLUMI-2000-PLUS, Shenzhen New Industries 
Biomedical Engineering Co., Shenzhen, China), according 
to the manufacturer’s protocol. The complete blood cells 
count with differential was performed on a MEK-7300 
hematological analyzer (Nihon Kohden®, Tokyo, Japan). 
The neutrophil-to-lymphocyte ratio (NLR) was calculated 
by the absolute neutrophil count divided by the absolute 
lymphocyte count.

Image analysis
Chest CT scans were performed on a 64-detector CT 
scanner (Revolution EVO, General Electric). Images were 
acquired in the supine position after end-inspiration and 
extended from the lung apices to the costophrenic angles 
by using the following parameters: 120 kV, 350 mAs, 
rotation time 0.4 s, pitch 1.5, and slice thickness, 2–5 mm. 
The technical parameters of CT acquisition were adjusted 
according to the clinical problem under investigation 
and the patient body size. CT scans of the thorax were 
used to diagnose suspected SARS-CoV-2 pneumonia. 
We considered the following thoracic CT patterns: (1) 
ground-glass opacities, (2) consolidation, (3) crazy-paving 
sign, (4) reticulation, and (5) the prominent pattern of 
opacities (according to the extent of involvement). In all 
cases, we conducted a semiquantitative CT severity score 
proposed by Pan et al. (25).

CT scans were also used to quantify the subcutaneous 
(SAF), visceral abdominal fat (VAF), and MA (abdominal 
muscles excluding the psoas muscle) areas. Although 
magnetic resonance imaging (MRI) would have been 
superior, it was not feasible under the local circumstances 
complicated by the severity of the patient’s conditions. 
Our utilization of CT in these studies was based on Faron 
et al. (2020), who concluded that CT can be used to quantify 
skeletal muscle fat content similarly to MRI's proton 
density fat fraction (26), particularly those involving 
patients with sarcopenia. This analysis was performed 
by an experienced radiologist (with over 10 years of 
experience) using a CT scanner by the AW VolumeShare 
(27, 28), and we performed semi-automated segmentation 
using 3D-Slicer Software (version 4.11.0, www.slicer.
org) (2020) with a method previously described (29). We 
analyzed the cross-sectional tissue areas using tissue-
specific Hounsfield Units (HUs) attenuation ranges. We 
used the following literature values: (1) VAF and SAF: 
between –50 and 250 HU and (2) MA: between –29 and 
150 HU. The first slice in which the lung bases were no 
longer visible at the thoracoabdominal level (between 
the twelfth thoracic vertebra (T12) – second lumbar 
vertebra (L2)) was selected for the analysis. Data for the 
selected tissue, including surface area, were expressed 
in square centimeters (cm²). Skeletal muscle radiation 
attenuation (SM-RA) was computed as the mean HU value 
of all pixels included in MA. The relative distribution of 
abdominal adipose tissue was assessed using the VAF, 
SAF, SM-RA, and VAF/MA ratio (Supplementary Figure 1, 
see section on supplementary materials given at the end 
of this article).

Genotyping
DNA was extracted from peripheral blood leukocytes 
by a standardized salting out procedure. Thr92Ala-DIO2 
(rs225014) polymorphism was found using primers 
and probes contained in the Human Custom TaqMan® 
Genotyping Assay (7500 Real-Time PCR Systems, Applied 
Biosystems, Foster City, CA). Fluorescence data files from 
each plate were analyzed using automated allele-calling 
software (SDS 1.3; Applied Biosystems). We successfully 
genotyped 181 patients for both polymorphisms. All 
amplification reactions were performed twice. The 
genotyping success was >95%, with a calculated error 
rate based on PCR duplicates of 0.01%.

Statistical analysis
We predicted with Gpower 3.1.9.7 software the total 
number of patients to ensure a power of 0.95 for F 
tests targeting a large effect size (f = 0.3). Chi-squared 
tests were used to determine whether samples were 
in Hardy–Weinberg equilibrium. Variables with a 
non-normal distribution are expressed as median 
(interquartile range). We used the independent t-test for 
comparisons between groups of normally distributed 
variables and the Mann–Whitney U test for comparisons 

www.slicer.org
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between groups of non-normally distributed variables. 
The data were expressed as median ± IQR. We used 
Kruskal–Wallis test analysis followed by Dunn’s post 
hoc test with Benjamini–Hochberg multiple comparison 
corrections. Mann–Whitney, chi-square, or Cochran–
Armitage tests were used for non-parametric variables. 
We used the Kaplan–Meier method and the log-rank test 
to investigate the relationship between variables: MA, 
myosteatosis, and COVID-19 prognosis.

We used uni- and multi-variate logistic regression 
analysis on the whole group (172 patients) to investigate 
the potential association between the heterozygous 
allele (Thr/Ala) vs the homozygous alleles (Thr/Thr and 
Ala/Ala) with low muscle mass and myoesteatosis. Five 
multivariate logistic regression models estimated the 
odds of low muscle mass and myosteatosis. The first 
model (model 1) included sociodemographic and clinical 
features: age >60 years, male gender, diabetes, low SAF, 
high VAF, and obesity. The second and third models 
(models 2 and 3) aimed to evaluate laboratory tests; 
model 2 (assessed the thyroid function: TSH, fT4, fT3, 
and rT3); model 3 (analyzed markers of inflammation, 
tissue damage, and hemochromocytometric parameters: 
IL-6, CRP, red cell distribution width (RDW), creatine, 
neutrophils, and LDH). Finally, model 4 was adjusted 
for models 1, 3, and 5, with all variables of the analyzed 
models.

The significance level of P < 0.05 was accepted as 
statistically significant. We used the statistical program 
GraphPad Prism, v.7.00 (2016) to perform the statistical 
tests.

Results

A total of 274 adult patients admitted with COVID-19 
were eligible to participate in the study. After applying 
the inclusion and exclusion criteria, 200 patients were 
enrolled in the study. An additional 19 patients were 
excluded for lack of genotype determination. The 
remaining 181 patients completed the study (Fig. 1). 
The median age was 61 (IQR: 49–73) years, and 111 
patients (61.3%) were male. The average length of stay 
in the hospital was 6.0 days (IQR: 4–10), with 43 (23.8%) 
patients being admitted to the ICU, and 29 (16%) deaths.

The 181 patients were stratified into three subgroups 
according to the genotype: Thr/Thr (n = 64), Thr/Ala 
(n = 96), and Ala/Ala (n = 21) (Fig. 1). The Thr allele 
frequency was 0.62 and the Ala allele frequency was 
0.38, with distribution in Hardy–Weinberg equilibrium 
(P = 0.094; chi-squared test and Fisher's exact test). Ala/
Thr patients were compared with patients carrying the 
Ala/Ala or the Thr/Thr genotypes.

Low muscle mass and death were less prevalent in 
heterozygous patients (Thr/Ala) than in homozygous 
patients (Thr/Thr + Ala/Ala) (Table 1). There were no 
significant differences between the risk factors evaluated 
(age, arterial hypertension, diabetes mellitus, heart 

disease, obesity, and chronic obstructive pulmonary 
disease) among the three subgroups.

Several thyroid function tests and markers of 
inflammation, tissue damage, or hemochromocytometric 
parameters were evaluated across alleles and MA. 
Only serum fT3 and RDW levels were influenced by the 
patient’s genotype (Table 2).

Clinical outcomes
The prevalence of low muscle mass was 52.5% (95/181). 
Low muscle mass was less frequent in Ala/Thr patients 
(44.8%) than in Thr/Thr (60.9%) or Ala/Ala patients 
(61.9%) (P = 0.027) (Table 1). In addition, MA (97.8 cm² vs 
86.5 cm², P = 0.025) and myosteatosis (40.2 HU vs 36.3 HU, 
P = 0.002) were higher in the Thr/Ala allele subgroup than 
in the Thr/Thr + Ala/Ala alleles subgroup (Table 2 and Fig. 
2). Among serum TH levels, only TSH and free T3 levels, 
and free T3●rT3 product were significantly different as a 
function of MA (Supplementary Figure 2).

When comparing patients with different body 
compositions (MA < 92 cm2 or MA > 92 cm2) and 
genotypes, age, VAF, SAF, VAF/SAF, MA, VAF/MA, 
SM-RA, D-dimer, TSH, fT3, and fT3●rT3 were significantly 
different among the groups (Fig. 3). Logistic regression 
analysis confirmed that the Thr/Ala allele was associated 
with a reduced risk of low muscle mass and myosteatosis 
compared with Thr/Thr + Ala/Ala (overdominant model), 
even after correcting for 14 comorbidities and other 
covariates (Fig. 3).

The mortality rate was higher in the homozygotic 
sarcopenic group (MA < 92 cm2) than in the heterozygous 
without sarcopenia (34.6% vs 3.7%, P < 0.0001) (Fig. 
4A). Kaplan–Meier curves showed that patients with 
sarcopenia (MA < 92 cm²) and homozygosity had lower 
survival rates (P = 0.0012) than the other groups. Notably, 
the heterozygotes with MA ≥ 92 cm² exhibited the best 
survival rate. Furthermore, no differences in survival 
were observed between heterozygotes and homozygotes 
with normal muscle mass (MA ≥ 92 cm²) (Fig. 4B). 
Mortality rates were higher in the homozygotic group 
with myosteatosis (<38 HU) compared to the heterozygous 
group with myosteatosis (<38 HU) (25% vs 3%, P < 0.037), 
as evidenced by both the Kaplan–Meier curve and Chi-
square evaluation. However, no differences in mortality 
rates were observed between the other groups (Fig. 4C 
and 4D).

Discussion

Sarcopenia, myosteatosis, and obesity are important 
risk factors for mortality among older adult COVID-
19 patients (6, 30). These conditions are multifactorial 
processes that involve low-grade chronic inflammation, 
stem cell exhaustion, increased cellular apoptosis, 
endothelial, hormonal, and mitochondrial dysfunction 
(31, 32). To our knowledge, this is the first study to identify 
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increased muscle mass and reduced myosteatosis in 
heterozygous COVID-19 patients carriers of the Thr92Ala-
DIO2 polymorphism. This was detected through robust 
univariate and multivariate logistic regression analyses, 
adjusted for multiple (14) covariates. The importance 
of these findings is linked to the protective effect of 
Thr92Ala-DIO2 heterozygosity on COVID-19 mortality 
(7). Here, we assessed clinical outcomes in COVID-19 
patients considering reduced muscle mass, myosteatosis, 
and Thr92Ala-DIO2 heterozygosity. Remarkably, we 
observed that the protective effect of Thr92Ala-DIO2 
heterozygosity was restricted to the patients who had 
reduced muscle mass (heterozygosity for Thr92Ala-DIO2 
had no effect in patients that had normal muscle mass), 

and it was only minimally affected by myosteatosis. No 
association between heterozygosity for Thr92Ala-DIO2 
and visceral obesity were observed.

Skeletal muscle is a primary target of TH signaling, 
influencing structural and metabolic properties; thus, 
several studies have addressed the role of TH in muscle 
health (33) There is clear evidence that an excess of TH 
leads to accelerated proteolysis and reduction in muscle 
mass. For example, Brennan et al. (2006) documented 
significant improvements in thigh strength and cross-
sectional area in patients with overt hyperthyroidism 
(n = 30) and subclinical hyperthyroidism (n = 24) 6–9 
months after they achieved euthyroidism, highlighting 

Table 1 Demographic and clinical characteristics of the cohort in patients and their association with Thr92Ala polymorphism. 
Data are presented as n (%) or as median (IQR). Mann–Whitney test was performed for continuous variables (age, NEWS2, 
qSOFA, and CT COVID-19 score) while Cochran–Armitage test was performed for all other variables.

Total Thr/Ala Thr/Thr Ala/Ala P Thr/Thr + Ala/Ala P

n 181 96 64 21 85

Age (years) 61 (49–73) 58 (47–73) 62 (50–72) 65 (51–77) 0.541 63 (50–73) 0.309

Age > 60 years 93 (51.4) 46 (47.9) 34 (53.1) 13 (61.9) 0.232 47 (55.3) 0.321
Gender male 111 (61.3) 65 (67.7) 33 (51.6) 13 (61.9) 0.183 46 (54.1) 0.061
Length of hospital stay 
(days)

6 (4–10) 6 (4–9) 7.5 (4–11.7) 6 (4.5–12.5) 0.532 7 (4–12) 0.278

Symptom onset to  
hospital admission (days)

9 (7–11) 10 (7–11) 9 (6.2–10.7) 7 (5–11) 0.342 9 (6–10.5) 0.212

Comorbidities
 Hypertension 118 (65.2) 57 (59.4) 47 (73.4) 14 (66.7) 0.181 39 (40.6) 0.080
 Diabetes mellitus 85 (47) 47 (49) 30 (46.9) 8 (38.1) 0.414 38 (44.7) 0.567
 Heart disease 21 (11.6) 11 (11.5) 9 (14.1) 1 (4.8) 0.661 10 (11.7) 0.948
 Chronic pneumopathy 9 (5) 4 (4.2) 4 (6.3) 1 (4.8) 0.717 5 (5.9) 0.596
 Obesity 89 (49.2) 47 (49) 33 (51.6) 9 (42.9) 0.808 42 (49.4) 0.951
 Low muscle mass 95 (52.5) 43 (44.8) 39 (60.9) 13 (61.9) 0.043 53 (55.2) 0.027
Complications
 Use of vasoactive drugs 21 (11.6) 9 (9.4) 9 (14.1) 3 (14.3) 0.362 12 (14.1) 0.994
 Death 29 (16) 9 (9.4) 15 (23.4) 5 (23.8) 0.018 20 (23.5) 0.009
 Admission to the ICU 43 (23.8) 19 (19.8) 19 (29.7) 5 (23.8) 0.333 24 (28.2) 0.182
Scores systems
 NEWS2 score 6 (5–7) 6 (5–7) 5 (5–6) 6 (5–7) 0.245 6 (5–7) 0.321
 q-SOFA score 1 (1–1) 1 (1–1) 1 (1–1) 1 (1–1) 0.731 1 (1–1) 0.538
 CT COVID-19 score 20 (15–20) 20 (15–20) 20 (15–20) 20 (15–20) 0.883 20 (15–20) 0.951

CT, computed tomography; ICU, intensive care unit; NEWS2, National Early Warning Score 2; qSOFA, quick Sepsis Related Organ Failure Assessment.

Figure 2

Thr92Ala-DIO2 polymorphism and tomographic 
parameters (heterozygous, and MA < 92 cm2) in 
172 COVID-19 hospitalized patients during the 
first 48 h of admission. Gray areas in plots 
represent normal reference ranges. Statistics 
used: Mann–Whitney test. HU, Hounsfield units; 
MA, muscle area.
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the critical importance of early thyroid management, 
particularly in vulnerable populations such as the 
elderly (34). This indicates that an excess of TH can have 
significant consequences to muscle mass. Nonetheless, 
a study by Netzer et al. (35) on 267 older adults with 
persistent subclinical hypothyroidism revealed that 
LT4 treatment did not significantly affect gait speed, 
handgrip strength, or annual muscle mass change when 
compared to a placebo (35).

Several lines of evidence indicate that DIO2 plays a role 
in skeletal muscle differentiation and growth (36), which 
could explain its relationship with skeletal muscle mass. 
DIO2 expression is typically low in muscle fibers but 
increases in muscle stem cells during myogenesis and 
regeneration, supplying additional T3 that promotes 

differentiation (36, 37). DIO2 may also play a role in 
skeletal muscle regeneration as shown in mice during the 
recovery process (post-lesion) when DIO2 is expressed in 
fibro-adipogenic progenitor cells (38). Moreover, DIO2 is 
induced in skeletal muscle during physical exercise and 
is associated with the induction of PGC-1a expression, 
linking Dio2 to energy homeostasis in muscle tissues (39).

Recent studies highlight the complex interactions 
between DIO2 polymorphisms and wider genetic 
networks. McAninch et al. (2015) revealed correlations 
between different DIO2 alleles and the expression of 81 
genes associated with inflammatory processes, oxidative 
stress, and neurodegenerative diseases. Notably, the Thr/
Ala genotype showed associations with genes such as 
CXCR4, SLC16a2, SLC44a2, CDK2, and BST2 (40). Research 

Ala/Thr vs. Ala/Ala+Thr/Thr
(Overdominat model)

Low muscle mass
(MA < 92 cm²)

Myosteatosis 
(SM-RA < 38 HU)

OR* CI 95% P OR* CI 95% P

M
o

d
el

 5

M
o

d
el

 4

M
o

d
el

 1

Age > 60 year 0.53 0.28 – 0.98 0.047 0.28 0.13 – 0.57 0.0005

Gender (male) 0.59 0.30 – 1.16 0.128 0.35 0.19 – 0.66 0.0014

Diabetes 0.50 0.27 – 0.91 0.023 0.31 0.16 – 0.58 0.0002

Low SAF 0.50 0.27 - 0.91 0.026 0.33 0.18 - 0.60 0.0004

High VAF 0.49 0.26 – 0.90 0.024 0.32 0.17 – 0.60 0.0003

Obesity 0.46 0.24 – 0.87 0.018 0.32 0.17 – 0.59 0.0003

Model 1 0.57 0.26 – 1.22 0.153 0.29 0.13 - 0.60 0.0011

M
o

d
el

 2

TSH 0.50 0.27 – 0.92 0.028 0.32 0.17 – 0.59 0.0004

Free T3 0.53 0.29 – 0.97 0.041 0.33 0.18 – 0.61 0.0005

Free T4 0.51 0.28 – 0.93 0.029 0.33 0.17 – 0.60 0.0004

Reverse T3 0.52 0.28 – 0.95 0.035 0.33 0.18 – 0.61 0.0004

Model 2 0.52 0.27 – 0.97 0.041 0.33 0.17 – 0.61 0.0005

Leptin 0.51 0.28 – 0.92 0.028 0.33 0.17 – 0.60 0.0003

M
o

d
el

 3

IL6 0.52 0.28 – 0.94 0.033 0.32 0.17 – 0.60 0.0004

CRP 0.50 0.27 – 0.93 0.031 0.37 0.19 – 0.70 0.002

RDW 0.48 0.26 – 0.88 0.019 0.34 0.18 – 0.64 0.0008

Creatin 0.49 0.26 – 0.90 0.022 0.35 0.18 – 0.64 0.0009

Neutrophil 0.51 0.28 – 0.92 0.027 0.32 0.17 – 0.60 0.0004

LDH 0.46 0.25 – 0.85 0.014 0.29 0.15 – 0.54 0.0001

Model 3 0.41 0.20 - 0.80 0.01 0.38 0.19 – 0.76 0.006

Model 4 0.39 0.15 - 0.97 0.046 0.31 0.13 – 0.69 0.005

Model 5 0.31 0.11 - 0.81 0.021 0.30 0.13 – 0.69 0.0051

Figure 3

Multivariable regression analyses between D2 Thr92Ala polymorphism (Thr/Thr, Thr/Ala, Ala/Ala, and overdominant model) and low muscle mass and 
myosteatosis. Multivariable regression analyses – model 1: adjusted for age > 60 anos, diabetes, low SAF, high VAF, and obesity; model 2: adjusted for 
TSH, fT3, fT4, and rT3; model 3: adjusted for leptin, IL6, CRP, RDW, neutrophil, and LDH; model 4 – adjusted for models 1 and 3; model 5 – adjusted for 
all of the abovementioned variables.
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in Slc44a2 knock-out mice showed that a decrease in 
muscle mass and tone appeared to increase muscular 
thyroid hormone content (41, 42). Additionally, Shams 
et al. (43) demonstrated the indispensable role of CXCR4 
signaling in the early activation, proliferation, and self-
renewal of satellite cells for skeletal muscle recovery 
during acute events (43). These findings suggest an 
indirect link between the Thr92Ala-DIO2 heterozygosity 
and muscle mass maintenance, providing a potential 
mechanistic pathway through which this polymorphism 
may confer a protective effect in COVID-19.

The present study is not without some limitations. They 
include (i) a relatively small number of patients, which 
has an effect size index of 0.3; (ii) an analysis that was 

limited to hospitalized moderate-to-severe COVID-19 
patients, which may not apply to individuals with non-
hospitalized COVID-19 patients; (iii) analysis of the 
skeletal muscle that was limited to area and the presence 
of fat. In addition, it is conceivable that the COVID-19 
infection could have modified the skeletal muscle mass, 
the presence of myosteatosis and/or presence of visceral 
obesity. Nonetheless, the median interval between start 
of symptoms and admission was 9 days (IQR: 7–11) (Table 
1) and the CT scans were done within 48 h of hospital 
admission, minimizing the chances that poor COVID-19 
outcomes affected the skeletal muscle.

In conclusion, here we found that the Thr92Ala-DIO2 
heterozygosity is associated with increased skeletal 

Figure 4

Kaplan–Meier curves and Bar chart for predicting mortality in patients with COVID-19 (heterozygous, and MA < 92 cm2, and ME < 38 HU). (A) and (C) Bar 
chart depicting sample number with (+) and without (−) the parameter below the cutoff (heterozygous, MA < 92 cm2, and ME < 38 HU) in patients with 
COVID-19 (survivors vs nonsurvivors) and highlighting the proportion of nonsurvivor. (B) and (D) Kaplan–Meier curves for predicting mortality in patients 
with COVID-19 (heterozygous, MA <92 cm2, and ME < 38 HU). HR, hazard ratio; HU, Hounsfield units; MA, muscle area; ME, myosteatosis; ns, not 
significant.
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muscle mass and less myosteatosis in COVID-19 
patients. In addition, the protective effect of carrying a 
Thr92Ala-DIO2 heterozygosity on COVID-19 mortality is 
restricted to patients with reduced muscle mass. Future 
studies should confirm these findings and clarify their 
mechanistic basis.
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