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ABSTRACT: Lithium iodide enables regioconvergent C−F bond functionaliza-
tion of isomeric Morita−Baylis−Hillman fluorides with carbon, sulfur, and
nitrogen nucleophiles. The defluorinative carbon−carbon and carbon−
heteroatom bond formations give multifunctional compounds in excellent yields
and with good to high diastereoselectivities at room temperature. The possibility
of catalytic enantioselective allylation is also discussed.

■ INTRODUCTION
The general significance of fluorinated organic compounds in
the life sciences has stimulated the introduction of many
practical methods to make them.1,2 Organofluorines have
become readily available starting materials that are rapidly
growing in popularity among synthetic chemists. The
usefulness of aryl fluorides in nucleophilic aromatic sub-
stitution and transition metal-catalyzed cross-coupling reac-
tions is well documented. Csp2−F functionalization is a
frequently employed venue to form carbon−carbon or
carbon−heteroatom bonds, while applications of aliphatic
substrates are less explored. Activation of a Csp3−F bond often
requires strong Lewis acids and harsh conditions that may
favor competing hydrodefluorination pathways and reduce
functional group tolerance, although synthetically attractive
protocols for carbon−carbon coupling,3−8 carbon−heteroatom
bond formation,9−11 and halide exchange12,13 are known.14

Our laboratory has contributed to these efforts and introduced
several methods that achieve C−F bond functionalization with
a variety of alkyl fluorides under mild conditions.15−21

We have become increasingly interested in the development
of synthetic methodologies that provide unique access to
multifunctional compounds and exploit new reactivity patterns,
in particular when these complement the outcome of existing
reactions. To this end, we noticed that Shibata, Vilotijevic, and
co-workers exploited silylated pronucleophiles that typically
react at the allylic position in Morita−Baylis−Hillman (MBH)
fluorides.22−31 By contrast, we envisioned that fluoride
displacement might also be possible via attack at the vinylic
carbon. Herein, we report that such a pathway by which the
fluoride is replaced via formal SN2′ reaction can indeed be
realized through activation with inexpensive lithium iodide at
room temperature (Scheme 1). This protocol affords
unprecedented regioselectivity control with carbon, sulfur,
and nitrogen nucleophiles producing a variety of compounds in
high yields and with good to excellent E/Z ratios. Moreover,

this method allows regioconvergent substitution with isomeric
MBH fluorides, which is attributed to the formation of a
common (Z)-2-(iodomethyl)cinnamate intermediate that is
readily consumed in the presence of a nucleophile.
In accordance with previous literature reports, we observed

that the MBH fluoride 1 undergoes nucleophilic substitution at
the allylic carbon when treated with silyl enol ethers 2 and 3 in
the presence of catalytic amounts of DABCO,26−31 and we
obtained 4 and 5 in 10% and 85% yields, respectively. The low
yield of 4 was attributed to the low stability of silyl enol ether
2, which rapidly decomposed at room temperature. We
discovered that employing enamines as nucleophiles switches
the regioselectivity to the vinylic carbon resulting in SN2′
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Scheme 1. Allylic versus Vinylic Functionalization of MBH
Fluorides
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fluoride displacement (Scheme 2). We were pleased to find
that both 6 and 7 afforded 8 and 9 in 74−83% yield and E/Z
ratios of 16:1 and 20:1, respectively.

When treating a 1:1 isomeric mixture of 10 and 11 with
allylamine, 12, we observed that 10 reacts to the corresponding
amine adduct 14 while 11 is not consumed. Further
investigation revealed that the addition of LiI facilitates
regioconvergent transformation of both 10 and 11 to a single
iodide intermediate 13 which reacts quantitatively at room
temperature with 12 to 14 exhibiting a high E/Z ratio of >20:1
(Scheme 3). We were able to isolate 13 to prove its central role

in the regioconvergent defluorination pathway (see S1).
However, we found that 10 can be directly transformed to
14 via SN2′ fluoride displacement in the absence of LiI, but
consumption of 11 was not observed unless it was converted in
situ to intermediate 13 which undergoes SN2 reaction with the
amine nucleophile toward the same product. Alternatively, LiI
can be replaced with TBAI, YI3, or YbI3, while TMSI proved
less efficient, see SI. This generally points to negligible
countercation effects at least when LiI, TBAI, etc., are used.
According to Streitwieser,32 nucleophilic substitutions at allylic
substrates by anionic nucleophiles are generally of the SN2
type, or when the SN2′ reaction prevails due to steric hindrance
it proceeds with anti stereochemistry. The former is observed
with the primary fluoride 11, while 10 is sterically hindered
and therefore undergoes anti-SN2′ displacement. The diaster-
eoselective conversion of 10 to the Z isomer of 13 is in

agreement with an SN2′ transition state having the phenyl and
the ester groups in a coplanar trans conformation according to
a study of the reaction between phosphorus nucleophiles and
MBH acetates by Georgiadis et al.33 This explains the
regioconvergent generation of Z-13 from either allylic fluoride.
Finally, SN2 displacement of the iodide in Z-13 with 12 gives
E-14 in high yield and in excellent diastereomeric excess. This
method is highly advantageous as it allows the use of both
MBH fluoride isomers which are typically obtained as a
mixture from their corresponding alcohols and are difficult to
separate by column chromatography.
Intrigued by the regioconvergence and high diastereoselec-

tivity of this reaction, we began screening various conditions
including base additives, stoichiometry of reactants, and
solvents (see SI). We determined that optimal results are
obtained with two equivalents of nucleophile, diisopropylethyl-
amine, and LiI in dichloromethane at room temperature. It is
noteworthy, however, that only slightly lower yields were
obtained with one equivalent of lithium iodide, and the
reaction was found to proceed with catalytic amounts,
generating 14 in 52% yield as well as 25% of a dialkylation
byproduct, see SI. Next, we evaluated the substrate scope
under optimized conditions. As shown in Scheme 4, a diverse
array of nucleophiles undergoes the desired regioconvergent
allylic substitution with isomeric mixtures of MBH fluorides in
high yields and good to excellent diastereoselectivity. MBH
fluorides with different ester groups gave the corresponding
products 14−17 in almost quantitative yields and 20:1 dr when
treated with allylamine. Overall, amine nucleophiles are well
tolerated and give yields ranging from 83% to 99%. The
reaction with primary, secondary, and heterocyclic amines all
afford the desired products 18 and 20−25 in >20:1 dr. A
moderate decrease in dr (10:1) was observed when aniline was
used in the synthesis of 19, while yields were not affected.
Interestingly, thiols are also tolerated, and we obtained 26 in
99% yield and 10:1 dr. A noticeable drop in the
diastereoselectivity was observed with carbon nucleophiles
that can, however, be generated in situ with Hünig’s base, thus
eliminating the need to prepare enamines. The use of dimethyl
malonate, 1-pyrrolidino-1-cyclohexene, and 2-carbethoxycyclo-
pentanone afforded the desired products 27−29 with yields
ranging from 81% to 95% and dr’s between 4:1 and 10:1. The
reaction outcome proved sensitive to the presence of electron-
withdrawing and electron-donating groups in the phenyl ring
of the MBH fluoride. The 4-cyanophenyl and 4-nitrophenyl
derivatives quantitatively converted to the intermediate 13, but
subsequent amination with 12 was not observed even after
heating to 50 °C overnight. By contrast, overalkylation to the
tertiary amine byproduct could not be controlled with the 3-
methoxyphenyl MBH fluoride despite the use of two
equivalents of 12.
We discovered that HFIP-assisted palladium-catalyzed

asymmetric alkylation is also possible and proceeds exclusively
at the same carbon atom. Similar to our LiI protocol, we
discovered that isomeric mixtures of MBH fluorides 10 and 11
react in a regioconvergent mechanism with the palladium
catalyst following fluoride abstraction with HFIP. The
comprehensive screening of palladium complexes and reaction
conditions revealed that 29 can be obtained in 95% yield, 65%
ee, and 10:1 diastereomeric ratio, Scheme 5 and SI.
In conclusion, we have introduced a practical method that

allows smooth substitution at the vinylic carbon of MBH
fluorides with excellent regioconvergence, yield, and E/Z

Scheme 2. Fluoride Substitution at the Allylic Carbon in the
MBH Fluoride 1 with Silyl Enol Ethers versus SN2′
Displacement by the Corresponding Enamines

Scheme 3. Regioconvergent Addition of Amine 12 to an
Isomeric Mixture of the MBH Fluorides 10 and 11 via
Iodide Intermediate 13
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diastereoselectivity with carbon, sulfur, and nitrogen nucleo-
philes. The use of LiI increases the practicality of this
chemistry by enabling regioconvergent substitution of isomeric
fluoride mixtures via a common intermediate. This affords
multifunctional MBH derivatives in 81−99% yields and high
dr’s in most cases. Asymmetric catalytic substitution at the
vinylic carbon is also possible, albeit with only moderate
enantioselectivity. This method complements previously
reported regioselective substitutions of MBH fluorides with
silylated pronucleophiles that react at the allylic carbon center.
In addition, the necessity to separate E/Z isomers of the MBH
fluoride starting materials is overcome with inexpensive lithium

iodide which produces a common allylic iodide intermediate
and thus significantly increases overall yields.

■ EXPERIMENTAL SECTION
General Information. All chemicals and solvents were used as

purchased without further purification. The MBH fluorides were
synthesized following literature procedures.22−24,26−29 NMR spectra
were obtained at 400 MHz (1H NMR) and 100 MHz (13C NMR) in
deuterated chloroform or methanol. Chemical shifts are reported in
ppm relative to the solvent peak. Reaction products were purified by
column chromatography on silica gel (particle size 40−63 μm) as
described below.

General Procedure of the Regioconvergent Substitution of
MBH Fluorides with C-, N-, and S-Nucleophiles. A vial was
charged with LiI (0.2 mmol), MBH fluoride (0.1 mmol), nucleophile
(0.2 mmol), diisopropylethylamine (0.2 mmol), and anhydrous
dichloromethane (0.5 mL). The mixture was stirred at room
temperature under N2 atmosphere for 24 h. The residue of the
crude reaction mixture was directly dry loaded onto silica gel and
purified by flash chromatography using hexanes−ethyl acetate
mixtures as mobile phase as described below.

General Procedure of the Regioconvergent Substitution of
MBH Fluorides with Enamines. A vial was charged with the MBH
fluoride (0.1 mmol), enamine (0.1 mmol), and THF (0.5 mL) under
nitrogen. The reaction was stirred at room temperature for 18 h. The
mixture was quenched with saturated ammonium chloride and
extracted with CH2Cl2, followed by purification of the residue by flash
chromatography as described below.

General Procedure of the Regioconvergent Substitution of
MBH Fluorides with Silyl Enol Ethers. A vial was charged with the
silyl enol ether (0.1 mmol), DABCO (0.01 mmol), MBH fluoride

Scheme 4. Scope of the Regioconvergent Allylic Substitution Reactiona

aConditions: MBH fluoride (0.1 mmol), nucleophile (0.2 mmol), LiI (0.2 mmol), DIPEA (0.2 mmol) in anhydrous dichloromethane (0.5 mL).
aPrepared from 1-pyrrolidino-1-cyclohexene.

Scheme 5. Palladium-Catalyzed Asymmetric Allylic
Alkylation Using Ketoester 30 and a Mixture of the
Fluorides 10 and 11
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(0.1 mmol), and anhydrous CH2Cl2 (0.5 mL) under nitrogen. The
reaction was stirred for 18 h. The mixture was quenched with
saturated ammonium chloride and extracted with CH2Cl2, followed
by purification of the residue by flash chromatography as described
below.

Asymmetric Allylic Alkylation Procedure. A vial was charged
with (S)-(+)-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a′]-
dinaphthalen-4-yl)bis[(1R)-1-phenylethyl]amine (0.024 mmol, 24
mol %) and [η3-C3H5ClPd]2 (0.01 mmol, 5.0 mol %) in anhydrous
dichloromethane (0.5 mL). The mixture was stirred at room
temperature under N2 atmosphere for 1 h. HFIP (0.2 mmol) was
added followed by diisopropylethylamine (0.2 mmol), ketoester 30
(0.2 mmol), and the MBH fluoride 10 (0.1 mmol). The resulting
mixture was stirred at room temperature for 2 days. The residue of the
crude reaction mixture was directly dry loaded onto silica gel and
purified by flash chromatography as described below.

Representative Examples. Ethyl 2-(Naphthalen-2-yl(2-
oxocyclohexyl)methyl)acrylate (5). Structure 5 was produced as a
colorless oil in 85% yield (28.6 mg, 0.09 mmol) from ethyl 2-
(fluoro(naphthalen-2-yl)methyl)acrylate (25.8 mg, 0.1 mmol) and
(cyclohex-1-en-1yloxy)trimethylsilane (17.0 mg, 0.1 mmol) after 18 h
at 25 °C using the protocol provided above and hexanes/EtOAc
(95:5) as the mobile phase. The dr was determined as >20:1 by 1H
NMR analysis. 1H NMR (400 MHz, chloroform-d) δ 7.79−7.71 (m,
3H), 7.66 (m, 1H), 7.48−7.38 (m, 2H), 7.33 (m, 1H), 6.26 (s, 1H),
5.66 (s, 1H), 4.40 (d, J = 11.2 Hz, 1H), 4.14−3.97 (m, 2H), 3.17 (m,
1H), 2.55−2.31 (m, 2H), 2.02 (m, 1H), 1.82−1.48 (m, 4H), 1.39−
1.25 (m, 1H), 1.19 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz,
chloroform-d) δ 212.0, 166.7, 143.2, 138.1, 133.4, 132.4, 128.1, 127.8,
127.7, 127.6, 126.5, 126.0, 125.6, 60.8, 54.6, 45.6, 42.5, 33.4, 29.1,
24.6, 14.0. HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C22H24O3Na
359.1619, found 359.1616.
Ethyl (E)-3-(Naphthalen-2-yl)-2-((2-oxocyclopentyl)methyl)-

acrylate (8). Compound 8 was formed as a colorless oil in 83%
yield (26.8 mg, 0.08 mmol) from ethyl 2-(fluoro(naphthalen-2-
yl)methyl)acrylate (25.8 mg, 0.1 mmol) and 1-(cyclopent-1-en-1-
yl)pyrrolidine (13.7 mg, 0.1 mmol) after 18 h at 25 °C using the
general protocol provided above and hexanes/EtOAc (95:5) as the
mobile phase. The dr was determined as 16:1 by 1H NMR analysis.
1H NMR (400 MHz, chloroform-d) δ (m, 5H), 7.52−7.39 (m, 3H),
4.29 (q, J = 7.1 Hz, 2H), 3.16 (m, 1H), 2.66 (m, 1H), 2.41 (m, 1H),
2.26 (m, 1H), 2.08 (m, 1H), 1.89 (m, 1H), 1.62 (m, 1H), 1.45 (m,
1H), 1.36 (t, J = 7.1 Hz, 3H), 0.83 (m, 1H). 13C NMR (100 MHz,
chloroform-d) δ 219.8, 168.2, 140.0, 133.1, 133.0, 132.9, 131.7, 129.1,
128.4, 128.2, 127.6, 126.8, 126.7, 126.5, 61.0, 48.7, 37.7, 29.7, 27.1,
20.5, 14.3. HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C21H22O3Na
345.1461, found 345.1459.
Ethyl (E)-2-(Allylamino)methyl)-3-phenyl acrylate (14). Structure

14 was obtained as a colorless oil in 99% yield (24.5 mg, 0.1 mmol)
from ethyl 2-(fluoro(phenyl)methyl)acrylate (20.0 mg, 0.1 mmol)
and allyl amine (11.0 mg, 0.2 mmol) after 18 h at 25 °C using the
general protocol provided above and hexanes/EtOAc (92:8) as the
mobile phase. The dr was determined as >20:1 by 1H NMR analysis.
1H NMR (400 MHz, methanol-d4) δ 7.83 (s, 1H), 7.44−7.31 (m,
5H), 5.82 (m, 1H), 5.11−5.00 (m, 2H), 4.28 (q, J = 7.1 Hz, 2H), 3.59
(s, 2H), 3.17 (ddd, J = 6.3, 1.4, 1.4 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H).
13C NMR (100 MHz, methanol-d4) δ 167.8, 141.9, 141.8, 135.8,
134.8, 130.0, 128.9, 127.8, 116.4, 59.8, 50.5, 43.9, 12.7. HRMS (ESI-
TOF) m/z: [M + Na]+ calcd for C15H19NO2Na 268.1313, found
268.1308.

This reaction was repeated on a larger scale, and 14 was obtained
as a colorless oil in 94% yield (230.4 mg, 0.94 mmol) from ethyl 2-
(fluoro(phenyl)methyl)acrylate (208.2 mg, 1.0 mmol) and allyl amine
(114.0 mg, 2.0 mmol) after 18 h at 25 °C using the procedure
provided above and hexanes/EtOAc (92:8) as the mobile phase. The
dr was determined as >20:1 by 1H NMR analysis.
Ethyl (Z)-2-((Phenethylthio)methyl)-3-phenyl acrylate (26).

Structure 26 was produced as a colorless oil in 99% yield (32.6 mg,
0.1 mmol) from ethyl 2-(fluoro(phenyl)methyl)acrylate (20.0 mg, 0.1
mmol) and 2-phenylethane-1-thiol (27.6 mg, 0.2 mmol) after 18 h at

25 °C using the general protocol provided above and hexanes/EtOAc
(96:4) as the mobile phase. Rf = 0.66 (hexanes/EtOAc, 8:2). The dr
was determined as 10:1 by 1H NMR analysis. 1H NMR (400 MHz,
methanol-d4) δ 7.80 (s, 1H), 7.43−7.30 (m, 5H), 7.28−7.09 (m, 5H),
4.16 (q, J = 7.1 Hz, 2H), 3.60 (s, 2H), 2.80−2.67 (m, 4H), 1.23 (t, J =
7.1 Hz, 3H). 13C NMR (100 MHz, methanol-d4) δ 167.6, 141.8,
141.6, 139.4, 134.5, 130.6, 129.1, 128.8, 128.4, 128.2, 125.4, 60.72,
49.7, 44.5, 35.0, 13.0. HRMS (ESI-TOF) m/z: [M + Na]+ calcd for
C20H22NO2SNa 349.1238, found 349.1235.
3-Ethyl 1,1-Dimethyl (E)-4-phenylbut-3-ene-1,1,3-tricarboxylate

(27). Structure 27 was produced as a colorless oil in 95% yield (30.2
mg, 0.1 mmol) from ethyl 2-(fluoro(phenyl)methyl)acrylate (20.0
mg, 0.1 mmol) and dimethyl malonate (26.4 mg, 0.2 mmol) after 18 h
at at 25 °C using the procedure provided above and hexanes/EtOAc
(95:5) as the mobile phase. The dr was determined as 4:1 by 1H
NMR (400 MHz, methanol-d4) δ 7.76 (s, 1H), 7.44−7.29 (m, 5H),
4.25 (q, J = 7.1 Hz, 2H), 3.74 (t, J = 7.8 Hz, 1H), 3.57 (s, 6H), 3.14
(d, J = 7.9 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz,
methanol-d4) δ 169.2, 167.5, 141.6, 141.4, 137.4.0, 134.9, 128.8,
128.4, 60.8, 51.4, 50.3, 25.9, 13.1. HRMS (ESI-TOF) m/z: [M + Na]+
calcd for C17H20O6Na 343.1158, found 343.1152.
Ethyl (E)-1-(2-(Ethoxycarbonyl)-3-phenylallyl)-2-oxocyclopen-

tane-1-carboxylate ((E)-29). Compound (E)-29 (32.8 mg, 0.95
mmol) was isolated as a colorless oil in 95% yield from ethyl 2-
(fluoro(phenyl)methyl)acrylate (20.8 mg, 0.1 mmol) and ethyl 2-
oxocyclopentanecarboxylate (31.2 mg, 0.2 mmol) after 48 h at 25 °C
using the general protocol provided above and hexanes/EtOAc (94:6)
as the mobile phase. The dr was determined as 10:1 by 1H NMR
analysis. The ee was determined by HPLC (Chiracel OJ-H, hexanes/i-
PrOH 98:2, flow rate 1 mL/min, λ = 254 nm) as 65% ee, tR (minor) =
43.8 min, tR (major) = 59.7 min. 1H NMR (400 MHz, methanol-d4) δ
7.73 (s, 1H), 7.42−7.30 (m, 5H), 4.20 (q, J = 7.1 Hz, 2H), 4.06−3.86
(m, 2H), 3.40 (d, J = 14.4 Hz, 1H), 2.96 (d, J = 14.4 Hz, 1H), 2.41−
2.22 (m, 2H), 2.13 (m, 1H), 1.85−1.72 (m, 3H), 1.31 (t, J = 7.1 Hz,
3H), 1.11 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, methanol-d4) δ
214.3, 170.8, 168.3, 141.5, 135.2, 129.4, 129.1, 128.8, 128.5, 128.1,
61.3, 60.8, 59.5, 36.6, 32.8, 29.8, 18.9, 13.0, 12.7. HRMS (ESI-TOF)
m/z: [M + Na]+ calcd for C20H24O5Na 367.1521, found 367.1517.
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