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ABSTRACT DNA fragmentation index (DFI), a new biomarker to diagnose male 
infertility, is closely associated with poor reproductive outcomes. Previous research 
reported that seminal microbiome correlated with sperm DNA integrity, suggesting that 
the microbiome may be one of the causes of DNA damage in sperm. However, it has 
not been elucidated how the microbiota exerts their effects. Here, we used a combina
tion of 16S rRNA sequencing and untargeted metabolomics techniques to investigate 
the role of microbiota in high sperm DNA fragmentation index (HDFI). We report that 
increased specific microbial profiles contribute to high sperm DNA fragmentation, thus 
implicating the seminal microbiome as a new therapeutic target for HDFI patients. 
Additionally, we found that the amount of Lactobacillus species was altered: Lactobacillus 
iners was enriched in HDFI patients, shedding light on the potential influence of L. iners 
on male reproductive health. Finally, we also identified enrichment of the acetyl-CoA 
fermentation to butanoate II and purine nucleobase degradation I in the high sperm 
DNA fragmentation samples, suggesting that butanoate may be the target metabolite of 
sperm DNA damage. These findings provide valuable insights into the complex interplay 
between microbiota and sperm quality in HDFI patients, laying the foundation for further 
research and potential clinical interventions.

IMPORTANCE The DNA fragmentation index (DFI) is a measure of sperm DNA 
fragmentation. Because high sperm DNA fragmentation index (HDFI) has been strongly 
associated with adverse reproductive outcomes, this has been linked to the seminal 
microbiome. Because the number of current treatments for HDFI is limited and most 
of them have no clear efficacy, it is critical to understand how semen microbiome 
exerts their effects on sperm DNA. Here, we evaluated the semen microbiome and its 
metabolites in patients with high and low sperm DNA fragmentation. We found that 
increased specific microbial profiles contribute to high sperm DNA fragmentation. In 
particular, Lactobacillus iners was uniquely correlated with high sperm DNA fragmenta
tion. Additionally, butanoate may be the target metabolite produced by the microbiome 
to damage sperm DNA. Our findings support the interaction between semen micro
biome and sperm DNA damage and suggest that seminal microbiome should be a new 
therapeutic target for HDFI patients.
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R ecent meta-analyses of semen parameters from 1973 to 2019 indicate a significant 
global decline in sperm concentration (SC) and total sperm count (TSC), with the 

rate of reduction accelerating (1). Inferior sperm quality has been strongly associated 
with adverse reproductive outcomes (2). Nonetheless, the predictive capacity of routine 
semen analysis for assessing male fecundity is constrained (3). The DNA fragmentation 
index (DFI), a measure of sperm DNA fragmentation, has gained clinical relevance (4). 
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Factors, such as reactive oxygen species (ROS) (5) and inflammatory agents (6), have 
been identified as contributors to sperm DNA damage. High levels of sperm DNA 
fragmentation are associated with reduced fertilization rates, poor embryo quality, lower 
pregnancy success, and increased miscarriage rates (7).

Current treatments for high DNA fragmentation index (HDFI) include antioxidant 
therapy, infection management, and lifestyle changes (8), but these approaches often 
prove inadequate, especially in cases of idiopathic HDFI (9). This has led to an increased 
reliance on assisted reproductive technologies (ARTs) (5), yet the success rates vary, 
underscoring the need for alternative treatment strategies.

The human microbiome, encompassing the collective genetic material of microbiota 
in various body niches, plays a vital role in physiological homeostasis (10). Imbalances 
in the microbiome can lead to various pathologies (11). Recent research has begun 
to explore the connection between the semen microbiome and semen quality (12). 
Notably, a study by Sergio et al. using 16S rRNA gene sequencing revealed a nega
tive correlation between certain bacteria and sperm DNA fragmentation in a Western 
Mediterranean cohort (13). Thus, our study aims to further investigate the role of 
the semen microbiome in HDFI using both 16S rRNA and metabolome sequencing. 
We hypothesize that the seminal microbiota could significantly influence sperm DNA 
integrity, potentially offering new avenues for HDFI treatment.

MATERIALS AND METHODS

Study population and tissue sample collection

All semen samples were taken during the participants’ abstinence period of 3–7 days 
and were left to liquefy for 30 min. Before collection, the subjects were instructed on 
the proper procedures to minimize the risk of contamination. The subjects washed their 
hands with soap two or three times, and the penis, including the glans and coronal 
sulcus, was cleaned with warm soapy water and then swabbed with 75% alcohol two 
or three times. Semen was ejaculated directly into a sterile glass receptacle, ensuring no 
contact with the inner walls to maintain sterility. Freshly collected semen was used for 
routine clinical tests, Gram staining, and microscopy. The reference for semen analysis is 
the sixth edition of the WHO laboratory manual for the examination and processing of 
human semen. Any remaining semen samples were transferred to sterile freezing tubes 
and placed in liquid nitrogen for at least 15 min, before being transferred to −80°C 
freezer for storage until the next sample-processing session.

Our inclusion criteria were the following: (i) DFI >30% or <15%; (ii) no family history 
of genetic disease; (iii) no history of genetic disease, systemic disease, known diseases 
such as varicocele that can affect DFI, or long-term exposure to radiation and toxic 
substances; (iv) no history of sexually transmitted diseases in the past 3 months; (v) 
no systemic corticosteroid, prescription antibiotics, immunosuppressive drugs, systemic 
corticosteroid use, or cancer chemotherapy in the past 3 months; (vi) no evidence of 
genitourinary infection.

Sperm chromatin structure assay

In accordance with the protocols delineated by the manufacturer, the DNA fragmen
tation index (DFI) was assessed using acridine orange dye supplied by Zhuhai Anda 
Biological Engineering Co., LTD. The fluorescence patterns were captured utilizing a 
flow cytometer, specifically the DxPAthena B4-R2 model from Cytek Biosciences. The 
calculation of the DFI was then achieved by determining the ratio of red to total 
fluorescence intensity (the sum of red and green fluorescence intensities) (14, 15).

Cross-incubation experiment

Semen specimens were procured from 15 individuals, stratified into three distinct 
groups: (i) sperm donor group (n = 5); (ii) high DNA fragmentation index (HDFI) group 
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(n = 5); and (iii) low DNA fragmentation index (LDFI) group (n = 5). A segment of each 
specimen was immediately used to ascertain the DNA fragmentation index (DFI-before).

For HDFI and LDFI groups, the specimens were centrifuged twice at 1800 rpm for 
10 min at 37°C, and seminal plasma was segregated and stored in discrete tubes. 
For the sperm group, a refined density gradient centrifugation technique was utilized 
to segregate spermatozoa from seminal plasma to augment sperm quality. Specifi
cally, gradient liquid was gently introduced to the upper layer of semen, followed 
by centrifugation at 300 × g (1,800 rpm) for 10 min at 37°C. The supernatant was 
subsequently discarded, and the sedimented material was transferred into phosphate
buffered saline (PBS; Servicebio, China), followed by another centrifugation at 300×g 
(1,800 rpm) for 5 min. This procedure was repeated twice to ensure the complete 
removal of residual gradient liquid, culminating in the resuspension of the sperm pellet 
in PBS. The treated semen specimens from the sperm group were then divided into three 
equivalent parts and added to either to the seminal plasma of the HDFI or LDFI group or 
to an identical volume of PBS.

Preliminary evaluations of the DNA fragmentation index (DFI-T0) were executed on 
each semen specimen. Thereafter, the specimens were subjected to a 24-h incubation 
at 37°C. The specimens added in PBS were designated as DFI-T24, whereas those in the 
seminal plasma of the HDFI and LDFI groups were labeled as HDFI-T24 and LDFI-T24, 
respectively.

Microbial total DNA extraction and sequencing

In this study, seven negative controls were meticulously implemented to minimize the 
risk of contamination, including potential sources: glass receptacle, both unopened 
and opened freezing tubes, ambient air, tabletop surfaces, and reagents, aligning with 
recommendations from a previous study (16). Then, total genomic DNA was extracted 
using MagPure Soil DNA LQ Kit (Magan) following the manufacturer’s instructions. 
NanoDrop 2000 (Thermo Fisher Scientific, USA) and agarose gel electrophoresis were 
used to detect the concentration and purity of microbial DNA, and the extracted DNA 
was stored at −20°C.

For the amplification of bacterial 16S rRNA genes, PCR was conducted using barcoded 
primers specific to the sequence, in conjunction with Takara Ex Taq (Takara), utilizing the 
previously extracted DNA as a template. The bacterial diversity analysis emphasized the 
amplification of the V3–V4 variable regions of the 16S rRNA genes, employing universal 
primers 343F (5′-TACGGRAGGCAGCAG-3′) and 798R (5′-AGGGTATCTAATCCT-3′) (17). After 
secondary purification, the final amplicon was quantified using Qubit dsDNA Assay Kit 
(Thermo Fisher Scientific, USA). Sequencing of the constructed libraries was performed 
on an Illumina NovaSeq 6000 with 250-bp paired-end reads (Illumina Inc., San Diego, CA; 
OE Biotech Company; Shanghai, China).

16S rRNA data analysis

The raw reads underwent a series of pre-processing steps. First, Cutadapt (18) software 
was used to detect and cut off the adapter. Following trimming, the paired-end reads 
underwent a series of operations, including filtering low-quality sequences, denoising, 
merging, and identifying and removing chimera reads. This was achieved through 
the application of DADA2 (19) with the default parameters of QIIME 2 (2020.11) (20). 
Subsequently, the software generated representative reads and an abundance table for 
amplicon sequence variants (ASVs). The representative read for each ASV was selected 
using the QIIME2 package. To enhance taxonomic classification, all representative reads 
were annotated and subjected to a BLAST search against the Silva database (Version 
138) (21) using q2featureclassifier with default parameters. To enhance the differentia
tion of genuine low-biomass signals from contamination and noise, efforts should be 
directed toward enhancing the alignment of experimental and computational pipelines. 
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We utilized the SCRuB (22) software to eliminate contaminating reads identified through 
negative control samples.

Community diversity analysis

The α and β diversity analyses were analyzed using the QIIME2 software. The α-diversity 
is assessed using the Shannon index. The unweighted Unifrac distance matrix performed 
by R package was used for non-metric multidimensional scaling (NMDS) to estimate the 
β diversity. Then, the R package was used to analyze the significant differences between 
different groups using the ANOSIM statistical test.

Microbial composition difference analysis

The taxonomy abundance spectrum was compared using the linear discriminant analysis 
effect size (LEfSe) method. To investigate the potential utility of microbiota in disease 
diagnosis and prediction, we utilized a machine learning approach, specifically random 
forest, to construct classification models based on the level of DFI. First, we calculated 
feature importance scores using the random forest algorithm, specifically the mean 
decrease accuracy, which indicates the contribution of each feature to the accuracy 
of the model. Subsequently, we conducted 10 trials of 10-fold cross-validation using 
random forest to identify optimal biomarkers. The cutoff point for selecting optimal 
biomarkers was determined based on the mean of the minimum cross-validation error. 
Random forest analysis was conducted using R software. The optimal biomarker sets 
were selected based on the cutoff point in the cross-validation error curve, defined as the 
minimum cross-validation error. Redundancy analysis (RDA) was performed in R (http://
cran.r-project.org/) using the vegan package with normalized OTU abundance and 
environmental chemical data. Redundancy analysis (RDA) bi-plot shows the correlation 
between the sequence abundance of microbiota communities and the environmental 
variables.

Non-targeted metabolic profiling

Semen samples were subjected to metabolomics analysis. Non-targeted metabolic 
profiling procedure was followed as described previously (23). Semen samples were 
thawed at room temperature and mixed with L-2-chlorophenylalanine as an internal 
standard. After vortexing, an ice-cold mixture of methanol and acetonitrile was added, 
followed by ultrasonication and storage at −20°C. The supernatant was collected after 
centrifugation, dried, and reconstituted with a mixture of methanol and water. After 
further vortexing and ultrasonication, the samples were stored at −20°C and centrifuged, 
and the supernatants were filtered and transferred to LC vials for storage at −80°C 
until LC–MS analysis. Quality control (QC) samples were prepared by pooling aliquots 
of all samples. Metabolomic analysis was conducted using an ACQUITY UPLC I-Class 
plus (Waters Corporation, Milford, USA) coupled with a Q-Exactive mass spectrometer. A 
gradient elution system of water and acetonitrile was used for separation on an ACQUITY 
UPLC HSS T3 column. The mass range was from m/z 100 to 1,000, with a resolution 
of 70,000 for full MS scans and 17,500 for HCD MS/MS scans. The mass spectrometer 
settings included spray voltages, gas flow rates, and temperature control for optimal 
performance.

Non-targeted metabolic data analysis

The matrix was imported into R software (v.4.2.2) for conducting principal component 
analysis (PCA) to observe the overall distribution among the samples and assess the 
stability of the entire analysis process. Orthogonal partial least-squares discriminant 
analysis (OPLS-DA) and partial least-squares discriminant analysis (PLS-DA) were utilized 
to identify metabolites that exhibit differences between groups. To mitigate overfitting, 
sevenfold cross-validation and 200 response permutation testing (RPT) were utilized to 
assess the model’s quality. Variable importance of projection (VIP) values obtained from 
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the OPLS-DA model were used to rank the overall contribution of each variable to group 
discrimination. Subsequently, a two-tailed Student’s t-test was applied to validate the 
significance of differences in metabolites between groups. Differential metabolites were 
selected based on VIP values >1.0 and P < 0.05.

Finally, the distinct metabolites were annotated using the metabolic pathways 
available in the KEGG database (https://www.kegg.jp/kegg/pathway.html) to determine 
the pathways associated with these metabolites. Pathway enrichment analysis was 
conducted using the Python software package scipy.stats (https://docs.scipy.org/doc/
scipy/), with the most relevant biological pathway related to the level of DFI identified 
through Fisher’s exact test.

RESULTS

Subject recruitment and semen collection

In this study, 102 participants were enrolled, including 54 men with HDFI (DFI > 30%) 
and 48 men with LDFI (DFI < 15%). The enrolled participants were divided into two 
cohorts (Fig. 1): for cohort one, cross-incubation experiments were performed on 10 
participants, with another five participants who served as sperm donors; for cohort two, 
16S rRNA sequencing alongside non-targeted metabolic profiling was conducted on 
semen samples from 87 participants, comprising 40 with LDFI and 47 with HDFI. Clinical 
characteristics across the HDFI and LDFI groups were carefully matched (Tables 1 and 2).

FIG 1 Participants enrolled in the study.
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Effect of seminal plasma composition on DFI

To investigate the impact of seminal plasma composition on DFI, cross-incubation 
experiments were conducted (Fig. 2A). Notably, an increase in DFI was observed 
following incubation with plasma from high DFI patients, suggesting that microbiota-
derived compositions within seminal plasma could modify the semen environment (Fig. 
2B; Table S1).

Seminal microbiota composition

Initial analyses compared overall microbiome community compositions between the 
HDFI and LDFI groups. However, no significant differences were found in either 
α-diversity (Shannon index) or β-diversity (ANOSIM: P ＞ 0.05) (Fig. 2C and D). The 
subsequent analysis focused on identifying specific taxa with significant differences in 
abundance between the two groups, revealing notable changes in genera, including 
Escherichia–Shigella and Lactobacillus spp., with a significant increase in L. iners within the 
HDFI group (Fig. 2E and F).

Relationship between seminal microbiota and level of DFI

The linear discriminant analysis effect size (LEfSe) method identified differential bacteria 
at the genus level, highlighting enrichments of Peptostreptococcales–Tissierellales, 
Finegoldia spp., and Corynebacterium spp. in the LDFI group and Acinetobacter spp. in 
the HDFI group (Fig. 3A). Random forest analysis further pinpointed Finegoldia spp., 
Acinetobacter spp., and Lactobacillus spp. as significant contributors to the HDFI and LDFI 
group classifications (Fig. 3B). Through redundancy analysis, we identified key Lactobacil
lus spp. that correlated with the level of DFI (Fig. 3C). Subsequently, we compared the 
differences in various Lactobacillus species between HDFI and LDFI groups and found 
significant alterations in the distribution proportions of different Lactobacillus species, 
particularly L. iners (Fig. 3D). Additionally, L. iners was the most prevalent species in the 

TABLE 1 Clinical parameters of cohort one participantsa

Parameters HDFI group (n = 5) LDFI group (n = 5) P

Age (years) 35.00 ± 4.000 29.80 ± 3.633 0.0636
DFI (%) 44.60 ± 12.09 6.690 ± 2.264 0.0001
pH 7.440 ± 0.0894 7.440 ± 0.0894 >0.9999
Sperm concentration 46.62 ± 20.71 65.93 ± 49.75 0.4462
Total number of spermatozoa (×106) 104.1 ± 42.48 278.8 ± 259.8 0.176
Progressive motility sperm (106/mL) 28.60 ± 2.302 68.00 ± 14.58 0.0003
Non-progressive sperm (106/mL) 9.800 ± 2.168 12.40 ± 3.912 0.2298
Immotile sperm (106/mL) 61.60 ± 3.209 19.60 ± 15.82 0.004
aDFI, DNA fragmentation index; HDFI, high sperm DNA fragmentation index; LDFI, low sperm DNA fragmentation 
index.

TABLE 2 Clinical parameters of cohort two participantsa

Parameters HDFI group (n = 47) LDFI group (n = 40) P

Age (years) 39.72 ± 6.156 38.88 ± 4.195 0.4628
DFI (%) 39.89 ± 9.993 9.649 ± 3.535 <0.0001
pH 7.406 ± 0.136 7.433 ± 0.135 0.3721
Sperm concentration 66.8 ± 57.21 80.53 ± 58.69 0.2739
Total number of spermatozoa (×106) 249.2 ± 202.3 239.4 ± 128.7 0.7928
Progressive motility sperm (106/mL) 17.27 ± 21.17 41.15 ± 33.07 0.0001
Non-progressive sperm (106 /mL) 8.979 ± 13.59 16.51 ± 19.34 0.0365
Immotile sperm (106/mL) 42.70 ± 35.11 22.87 ± 14.83 0.0013
aDFI, DNA fragmentation index; HDFI, high sperm DNA fragmentation index; LDFI, low sperm DNA fragmentation 
index.
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HDFI group. Together, our results showed that microbial community structures were 
different between HDFI and LDFI groups.

Differential microbiota and KEGG pathways

Functional analysis of the differential seminal microbiota revealed enrichment in 34 
metabolic pathways (Fig. 4A), with the HDFI group showing significantly higher activity 
in pathways related to acetyl-CoA fermentation to butanoate II, cob(II)yrinate a,c-diamide 
biosynthesis I, ppGpp biosynthesis, and purine nucleobase degradation I (Fig. 4B through 
E). Differential microbiota in the LDFI group exhibited a pronounced enrichment in 
amino acid metabolism (Fig. 4F).

Semen microbiota alters sperm DFI by influencing metabolite composition

Untargeted metabolomics analysis of seminal metabolomes from LDFI (n = 40) and 
HDFI (n = 47) patients identified significant alterations in metabolite profiles (Fig. 5A). 
A notable enrichment of 5,766 metabolites was found in HDFI samples (Fig. 5B), with 
a significant proportion being fatty acyls and carboxylic acids and derivatives (Fig. 
5C). Further pathway analysis revealed that upregulated metabolites were significantly 
enriched in three KEGG pathways (Fig. 5D), whereas downregulated metabolites were 
associated with glutamatergic synapse, GABAergic synapse, and sphingolipid signaling 
pathways (Fig. 5E).

Integrated analysis of metabolites and microbiota demonstrated significant 
correlations, particularly between Lactobacillus spp. and specific unsaturated fatty acids, 
and negative correlations between Corynebacterium spp. and metabolites, including 

FIG 2 Overview of cross-incubation and composition of the seminal microbiota. (A) The experimental workflow for cross-incubation. (B) Boxplots illustrating 

the level of DFI after cross-incubation with seminal plasma from HDFI or LDFI groups. (C) Boxplots comparing the Shannon index α-diversity of microbial 

communities in HDFI and LDFI groups. (D) Principal-component analysis plots of β-diversity in the two groups. Stacked plot of genus composition of HDFI and 

LDFI groups at the genus level (E) and species level (F).
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testolic acid, succinyladenosine, and 16-phenoxy tetranor prostaglandin E2, indicating a 
complex interaction between seminal microbiota and metabolite composition affecting 
sperm DFI (Fig. 6).

DISCUSSION

Dysbiosis of the microbiome is closely related to semen quality. However, there was 
a paucity of research on its relationship with sperm DFI. Previous studies, such as the 
one conducted by Sergio et al., have leveraged full-length 16S rRNA gene sequencing 
to delineate the microbial characteristics of semen from infertile idiopathic patients. 
However, these investigations predominantly focused on idiopathic infertility, leaving 
the specific impact of seminal microbiota on DFI largely unexplored (13). Addressing this 
gap, our study expanded the patient cohort and integrated non-targeted metabolomics 
with 16S rRNA gene sequencing to elucidate the influence of seminal microbiota on 
sperm DFI, thereby revealing the detrimental impact of microbiota-derived metabolites 
on sperm DNA integrity.

Our comparative analysis identified distinct microbial compositions between HDFI 
and LDFI groups, with the HDFI group showing a prevalence of Actinomycetaceae 
and Acinetobacter spp., aligning with prior findings (13). Notably, our redundancy 

FIG 3 Bioinformatic analysis of 16S rRNA gene sequencing data. (A) Linear discrimination analysis (LDA) effect size (LEfSe) analysis identified the microbes 

whose abundances significantly differed between the HDFI and LDFI groups. (B) Model candidates for disease discrimination were established using random 

forest model analysis. (C) Biplot of redundancy analysis (RDA) of the microbiota composition responding to the level of DFI. (D) Pie chart showing distribution 

proportions of different Lactobacillus species.
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analysis pinpointed a correlation between Lactobacillus species levels and DFI, particu
larly highlighting variations in Lactobacillus species distribution between groups. The 
predominance of L. iners in the HDFI group, a species traditionally associated with the 
vaginal microbiome and indicative of dysbiosis due to its link with proinflammatory 
factors (24) and its ability to directly induce DNA damage in cancer cells (25), suggests a 
novel microbial marker for semen quality and DFI. DNA damage leads to an increase in 
intracellular phosphorylation of serine (26). Lactobacillus iners was negatively correlated 
with 1-(2-methoxy-6Z-heptadecenyl)-sn-glycero-3-phosphoserine, a compound that may 
be a product of DNA damage. Additionally, Lactobacillus spp. were negatively associated 
with Corynebacterium spp., and L. iners, a species of Lactobacillus that lacks genes for 
the metabolism of amino acids and carbohydrates (27), may stimulate the growth 
of Corynebacterium spp. by producing unsaturated fatty acids (28–30), leading to a 
reduction in metabolites conducive to spermatogenesis.

With further clustering of the differentially distributed microbiota into KEGG 
Orthology prediction results in the HDFI group, we found a significantly higher activation 
level of the acetyl-CoA fermentation to butanoate II pathway compared with the 
LDFI group. The acetyl-CoA fermentation to butanoate II pathway involves a series 
of enzyme-catalyzed reactions that convert acetyl-CoA to butanoate (31). Butanoate 
salts are a class of compounds known as histone deacetylase inhibitors (HDIs). Histone 
deacetylases (HDACs) remove acetyl groups from lysine residues, resulting in condensed 
and transcriptionally silenced chromatin. HDIs block this action, potentially leading 
to hyperacetylation of histones (32), which may affect the conversion of sperm DNA 
histones to protamines, resulting in increased sperm DNA fragmentation. Furthermore, 
we observed an elevated level of purine nucleobase degradation I pathway in the 

FIG 4 Functional alterations of the microbiota. Difference analyses of KEGG orthology (A–E) and metabolic pathways from all domains of life (metacyc) (F).
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HDFI group. The activity of the purine metabolic pathway correlates with DNA damage. 
Disruption in purine metabolism can lead to erroneous encoding of DNA (33), which may 
also be a potential cause of increased sperm DFI.

Our correlation analyses underscored Acinetobacter spp.’s close association with DFI 
levels, and we identified its correlation with antioxidant metabolites through correlation 
analysis. Acinetobacter sp. is an opportunistic pathogen, and it can produce DNA-damag
ing metabolites, such as angucyclines, anthracyclines, bleomycins, enediynes, mitomy
cins, and quinoxalines. These molecules are combined with DNA and cause either DNA 
distortion, alkylation, crosslinking, and/or oxidative damage (34). Acinetobacter spp. 
and other bacteria, including Serratia spp., Pseudomonas spp., and Stenotrophomonas 
spp., were identified in the genitourinary system and were related to reduction in 
sperm motility, lack in DNA integrity, destruction of mitochondrial functions and shape 
abnormalities of the sperms (35). El-Gendy and his colleagues performed subcutaneous 
injection of extracts obtained from Acinetobacter spp. to albino rats and found that 
sperm deformities percentage was statistically significantly increased (36). Therefore, we 
speculate that, in human semen, Acinetobacter spp. may deplete antioxidant metabolites 
and restrain the antioxidant capacity of sperm.

We recognize certain limitations in our study. For instance, our conclusions were 
based on 16S rRNA sequencing, which can only detect microbial communities statisti
cally significant and not other organisms, such as fungi and viruses, and we did not 
conduct further experimental validation. Traditional microbial culture methods serve 
as the gold standard for clinical detection of microbiota and can also provide further 
analysis of drug resistance. However, some microbiota may not grow in common culture 

FIG 5 Metabolite composition and KEGG analysis. (A) Compositional patterns of metabolites in HDFI and HDFI groups. (B) Volcano plot showing differential 

metabolites between HDFI and HDFI groups. (C) Pie chart showing the percentage of the types of differential metabolites. KEGG analysis of upregulated (D) and 

downregulated differential metabolites (E).
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media or may have low abundance, making it difficult to validate the microbiota 
identified by next-generation sequencing using traditional microbial culture methods 
(37). Overall, our findings uncover a microbial perspective underlying sperm DNA 
integrity.

Conclusions

This study not only provides a comprehensive overview of the metabolic interplay 
between microbiota and host in HDFI patient semen but also prompts further inves
tigation into the microbiome’s role in semen quality. By combining non-targeted 
metabolomics and 16S rRNA gene sequencing, we offer insights into seminal micro
biota’s potential adverse effects on sperm DNA, whether through antioxidant deple
tion or DNA-damage metabolite production. Future research is warranted to validate 
these findings and explore therapeutic interventions aimed at modulating the seminal 
microbiome to improve sperm quality and fertility outcomes.
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