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Abstract 9 

Chemical exposures may impact human metabolism and contribute to the etiology of neurodegenerative 10 

disorders like Alzheimer’s Disease (AD). Identifying these small metabolites involves matching experimental 11 

spectra to reference spectra in databases. However, environmental chemicals or physiologically active 12 

metabolites are usually present at low concentrations in human specimens. The presence of noise ions can 13 

significantly degrade spectral quality, leading to false negatives and reduced identification rates. In response 14 

to this challenge, the Spectral Denoising algorithm removes both chemical and electronic noise. Spectral 15 

Denoising outperformed alternative methods in benchmarking studies on 240 tested metabolites. It improved 16 

high confident compound identifications at an average 35-fold lower concentrations than previously 17 

achievable. Spectral Denoising proved highly robust against varying levels of both chemical and electronic 18 

noise even with >150-fold higher intensity of noise ions than true fragment ions. For human plasma samples 19 

of AD patients that were analyzed on the Orbitrap Astral mass spectrometer, Denoising Search detected 2.3-20 

fold more annotated compounds compared to the Exploris 240 Orbitrap instrument, including drug 21 

metabolites, household and industrial chemicals, and pesticides. This combination of advanced 22 

instrumentation with a superior denoising algorithm opens the door for precision medicine in exposome 23 

research.  24 

Introduction 25 

Human diseases are influenced by both genetic predispositions and environmental factors (GxE). 26 

Environmental impacts, including diet, lifestyle, and biological and chemical exposures, account for over 70% 27 

of disease incidence1. However, chemical exposures in human samples are usually low abundant at trace 28 

levels, similar to levels of physiologically active metabolites such as oxylipins, endocannabinoids or modified 29 

bile acids2, 3. Nontargeted exposome research as well as metabolomics and lipidomics methods rely on liquid 30 

chromatography coupled with high resolution mass spectrometry (LC-MS/MS)4. These small molecules are 31 

identified by matching experimental spectra against established repositories like the NIST23 library, 32 

MassBank of North America (MassBank.us), or GNPS/MassIVE5, 6. While the quality of the experimental 33 

spectra is critical for accurate MS/MS matching, mass spectra are often compromised by both electronic noise 34 

and chemical noise 7-9. This problem is particularly pronounced in metabolomics and exposome studies, where 35 

the prevalence of low-abundance compounds can greatly exceed that of high-abundance compounds2. 36 

Electronic noise originates from the inherent characteristics of the electrical system, the discrete nature of ion 37 

signals, or the process of Fourier transformation7, 10. Chemical noise is derived from components in the sample 38 
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that confound the signal generated by the metabolites and exposome compounds of interest9. Chemical noise 39 

in LC-MS/MS is defined as isobaric interferences that emerge from the testing materials themselves, or from 40 

laboratory consumables, solvents, cross-contaminations, buffers or carryovers9. The amalgamation of true and 41 

contaminant fragment ions produces chimeric spectra. Chimeric spectra drastically affect spectral matching 42 

scores and result in false negatives peak annotations, contributing to the ‘dark matter of metabolomics’11, 12. 43 

In proteomics, methods for noise removal resort to intensity modeling13, 14 and matching to in-silico spectra15. 44 

In nontargeted small-molecule studies, methods were developed that required specific experimental 45 

conditions to monitor the precursor-fragment ratios16, or leveraging database assistance17, 18. Overall, these 46 

methods provided only modest enhancements and low throughput. In addition, public datasets19 frequently 47 

lack the experimental settings and database metadata required for these methods. Consequently, existing 48 

denoising methods are unsuitable for large scale, standardized de-noising in metabolomics. Typical 49 

metabolomics data processing software denoises spectra by simply discarding ions below 0.5-1% of the base-50 

peak height20-22. Surprisingly, the chemistry information revealed by the fragment peaks are not considered 51 

when determining if a given fragment is true ion or noise. We here show that integrating intensity modeling 52 

with assessing chemical plausibility greatly enhances the effectiveness of noise ion removal, termed Spectral 53 

Denoising. Spectral Denoising first eliminates electronic noise by stratifying fragment ion intensities, 54 

followed by filtering the remaining fragments based on their chemical plausibility as true fragments of the 55 

molecular formula of the precursor ion. Utilizing a 13-stage series dilution dataset of 240 small molecules 56 

generated an experimental benchmarking dataset with varying levels of spectral quality. This dataset was used 57 

to rigorously benchmark the robustness of Spectral Denoising against other methods, including by virtually 58 

adding different levels of contaminating chemical and electronic noise ions. False discovery rates (FDR) were 59 

thoroughly tested against 1,267 experimental spectra that were annotated by NIST23, MassBank.us and GNPS 60 

libraries. By integrating Spectral Denoising into the spectral matching process (‘Denoising Search’), we 61 

evaluated its performance using human plasma samples from AD patients acquired with advanced 62 

Asymmetric Track Lossless (Astral) mass spectrometry and classic Orbitrap instruments. The number of 63 

annotated compounds increased more than 2-fold with Denoising Search compared to classic compound 64 

annotation pipelines. By combining Astral mass spectrometry and Denoising Search, low-abundance 65 

exposome compounds can be detected in human plasma that have not been reported before in the literature. 66 

Hence, Denoising Search may herald a new era in the identification of key biomarkers, more confident 67 

compound annotations and better interpretability of datasets that are critically needed for biomedical research 68 

like neurodegenerative diseases. 69 

 Results 70 

Figure 1 gives the schema of how the Spectral Denoising algorithm removes ions recorded in collision-71 

induced MS/MS spectra that do not represent genuine fragments of the precursor ion. The first step removes 72 

electronic noise that commonly appears as a multitude of (low-abundant) ions with very similar intensities, 73 

also termed 'grass noise'23. Chemical noise is harder to recognize because it is generated by co-isolating and 74 

fragmenting non-target precursor ions in low-resolution quadrupole mass filters that precede the collision-75 

induced dissociation even in high-resolution mass spectrometers24. In practice, the isolation window used in 76 

most metabolomics studies ranges from 1 to 5 Da, increasing the likelihood of inclusion of contaminant ions 77 

due to isobaric interference25. These chemical noise ions can vary widely in intensity, making them difficult 78 

to distinguish from true fragment ions by manual inspection alone9. Hence, our schema to remove chemical 79 

noise ions is based on the unique property of true fragment ions to produce a chemically plausible neutral loss 80 

(or radical losses), calculated from the accurate mass of the target precursor ion26 (Figure 1).  81 
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To test this concept, we first empirically 82 

probed all 230,000 MS/MS spectra of the 83 

NIST23 library that was generated by the U.S. 84 

National Institute of Standards and Technology 85 

through a rigorous validation and fragment 86 

verification process to guarantee a high fidelity 87 

of data quality. For more than 99.5% of all ions 88 

per spectrum, fewer than four ions were found 89 

within relative intensities of ±0.1% (Extended 90 

Figure 1). This data served as valid threshold to 91 

automatically identify electronic noise ions in 92 

experimental MS/MS spectra and remove these 93 

ions, independent of the relative intensity (Figure 94 

1A).  95 

Electronic denoising differs in two key 96 

aspects from simply discarding ions below a pre-97 

defined threshold. First, ions are not discarded 98 

simply based on relative intensity levels. In this 99 

way, electronic denoising retains low-abundant 100 

ions that may represent true fragment ions of the 101 

precursor molecule. This step is important because many small molecules do not produce fragment-rich 102 

spectra, unlike peptides, covered in the new concept of spectral entropy21, 27. The denoised MS/MS example 103 

spectrum in 1.4 (Figure 1) would calculate S= 1.9, compared to a more disordered contaminated spectrum 1.1 104 

with S=3.3 before the denoising process. Second, electronic noise becomes relatively more prominent for 105 

MS/MS spectra that originated from very low-intensity precursor ions. Therefore, a simple cut-off threshold 106 

at 1% base peak intensity does not suffice for metabolomics or exposome nontargeted studies that aim at low 107 

abundant molecules20, 22.  108 

Subsequently, chemical denoising identifies and removes chemical noise ions by calculating whether 109 

the exact mass of each fragment can logically be associated with a subformula loss from the parent molecular 110 

ion species (Figure 1B). The chemical plausibility of relative loss subformulas was validated using the Seven 111 

Golden Rules algorithm to discard chemically impossible losses (e.g., CH12)
28 while ignoring the LEWIS and 112 

SENIOR checks that are designed for intact molecules. In collision-induced dissociation, a fragment ion can 113 

result from multiple relative losses from the precursor ion, potentially violating the SENIOR rule29. 114 

Instead, chemical denoising expands the logic of our subformula-loss calculations of chemical noise 115 

ions. For example, radical fragment ions are formed in about 10% of small molecule MS/MS spectra as 116 

metastable state in mass spectrometry, even for even-electron precursors30. Enforcing the LEWIS rule would 117 

lead to the removal of these valid radical fragment ions30. Moreover, about 1% of MS/MS spectra were 118 

reported in which the collision gas nitrogen formed bonds with substituted aromatic compounds within the 119 

collision cell, with subsequent background water substitution31, 32. We confirmed the occurrence of such 120 

fragmentations in the NIST23 spectral library and validated these experimentally in our laboratory. Hence, 121 

Spectral Denoising accounts for possible [M+N2+H2O] molecule reactions when calculating the relative loss 122 

of fragment ions for substituted aromatic compounds. The sequential combination of electronic and chemical 123 

denoising was validated on 10,000 NIST23 spectra and compared MS/MS similarities of the denoised against 124 

the original library spectra (Extended Figure 2). Entropy similarity is scaled in the same manner as classic 125 

dot-score similarities, from 0-1 with 1 marking perfect matches and 0 giving no similarity at all. If no ions 126 

Figure 1.  Flowchart for Spectral Denoising.  
(a) Removing electronic noise by recognizing repeated 
fragment ions with identical intensities.  
(b) Removing chemical noise by identifying remaining 
fragment ions that do not fit possible elemental subformulas 
from the precursor ion mass. The dotted line indicates the 
precursor ion m/z.  
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were removed by the denoising algorithm, MS/MS similarities would remain identical, leading to perfect 127 

matching scores of 1. In all calculations, the remaining abundance of the precursor ion intensities is ignored 128 

to focus entirely on genuine fragment spectra, and because all identity-search algorithms already exclude 129 

compounds that do not match specific accurate mass windows of the precursor mass (typically at 5 ppm). The 130 

average similarity of the selected denoised NIST23 spectra was >0.99, proving that the denoising method did 131 

not accidentally remove true ions, and that the NIST23 spectra have very high quality (Extended Figure 2). 132 

Denoising experimental MS/MS spectra of 240 metabolites diluted from 500-0.02 pmol injections  133 

To evaluate the effectiveness of our denoising strategy, we analyzed 240 metabolites in both positive and 134 

negative electrospray ionization (ESI) modes in a 13-step serial dilution from 500 pmol to 0.02 pmol injected 135 

onto the column. MS/MS spectra of the most concentrated 500 pmol injections represented optimal spectral 136 

quality, while the more diluted ones were expected to gradually deteriorate in spectra quality due to an 137 

increased contribution of contaminating noise ions. A total of 28 compounds were excluded due to insufficient 138 

fragmentation with less than two fragment ions (spectral entropy <0.5). The remaining dataset of MS/MS 139 

spectra that were used for MS/MS similarity calculations included a total of 11,823 spectra, encompassing 140 

6,885 in the positive mode and 4,938 in the negative ESI mode (Extended Figure 3). 141 

First, the ability of the denoising algorithm was evaluated to discern noise ions from genuine fragment ions. 142 

To this end, the total explained ion intensity was enumerated as metric to quantify the proportion of true ion 143 

intensities in each spectrum (Figure 2a). The probability density of explained ion intensities shifted markedly 144 

from high to low amounts of injected compounds, highlighting the effectiveness of the denoising algorithm 145 

to identify noise ions. The probability distributions of the calculated entropy similarities (Figure 2b) showed 146 

and even more pronounced decrease in median MS/MS similarities with lowered injected amounts, from 147 

>0.92 entropy similarity at 200 pmol injected to <0.41 median similarity at the lowest injection quantities. 148 

Remarkably, at 1 pmol injections (about 0.3 ng injected onto the column, at the median molecular mass of the 149 

chemicals included test mixture), more than 50% of all MS/MS spectra already failed to match the reference 150 

spectra at entropy similarity > 0.75, a cut-off that is often used in metabolite annotations in metabolomics 151 

(Figure 2b). More importantly, the Spectral Denoising algorithm effectively removed chemical and electronic 152 

noise ions for all test compounds (Figure 2c). As expected, the largest improvement for MS/MS similarity 153 

calculations were observed for very low injected amounts with a median gain of 0.18 entropy similarity scores. 154 

At 1 pmol injections, a median improvement of 0.1 MS/MS entropy similarity gain was noted, and even for 155 

200 pmol injections, 25% of the compounds already showed an improvement of entropy similarities of 0.05 156 

(Figure 2c). Example spectra are depicted in Figure 2d with the precursor ions given as dotted lines to indicate 157 

that residual precursor mass intensities were ignored in MS/MS similarity calculations. For 3,4-didesmethyl-158 

5-deshydroxy-ethoxyscleroin and enoxolone, raw spectra MS/MS of low abundant injections were notably 159 

marred by substantial electronic noise with up to 30% relative base peak intensity, vastly exceeding the typical 160 

1% base peak ratio often used as a threshold (Figure 2d). For spermidine injected at 0.04 pmol, the initial raw 161 

spectrum displayed a diverse set of ion intensities without obvious signs of electronic noise. Surprisingly, the 162 

three most abundant ions m/z 86.004, m/z 95.009, and m/z 108.494 were identified as chemical noise, 163 

compromising the entropy similarity to a level of 0.24 score. The denoised spermidine spectrum showed a 164 

perfect match with an entropy similarity of 0.95 (Figure 2d).  165 

Next, the efficiency of Spectral Denoising was evaluated by benchmarking its performance against three 166 

established MS/MS denoising techniques: the classic 1% base peak height thresholding method20, 22, dynamic 167 

noise level (DNL) denoising14, and MS Reduce denoising13
.  The benchmarking dataset comprised all 2,677 168 
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spectra that had raw MS/MS similarities <0.75 score, meaning they might not be annotated by high confidence 169 

identification schemas (Figure 2e). Similar to Spectral Denoising, the three methods selected for 170 

benchmarking purpose are standalone tools with a generalized scope of applicability, as they do not 171 

necessitate complementary metadata or additional experimental setups. While we initially hypothesized that 172 

all denoising methods might enhance spectral matching, neither of the three benchmarked algorithms showed 173 

any marked improvement. DNL denoising yielded only a slight improvement in entropy similarity for a 174 

limited subset of spectra, with a modest increment of 0.01 in spectral similarity. The MS Reduce approach, 175 

even at the highest quantization level of 1113, failed to enhance spectral similarity effectively. Surprisingly, 176 

even the classic 1% base peak thresholding method showed negligible impact on spectral similarity matching, 177 

indicating that while simple and computationally inexpensive, this method is inadequate for noise ion removal 178 

in low-abundance compound spectra. In contrast, our Spectral Denoising method showed significant gains 179 

for MS/MS spectral matching with a median entropy similarity increase of 0.17, lifting more than 1,500 180 

spectra to MS/MS similarity >0.75 and thereby boosting the compound annotation rates by 30% (Figure 2e). 181 

 182 

Figure 2. Developing, validating and benchmarking the Spectral Denoising algorithm. (a) Probability density 183 
distribution (explained denoised/raw intensities) of all MS/MS spectra from 240 injected standards between 0.02-500 184 
pmol. (b) Probability density distribution of the entropy similarities before Spectral Denoising of all MS/MS spectra 185 
from 240 injected standards between 0.02-200 pmol, using the 500 pmol spectra as reference. (c) Improvement in spectral 186 
entropy similarities after Spectral Denoising. (d) Examples of head-to-tail plots of MS/MS spectra before and after 187 
Spectral Denoising for compounds injected at low quantities. (e) Cumulative distribution of MS/MS entropy similarities 188 
before (‘raw’) and after applying three benchmarking methods against the Spectral Denoising algorithm. Only raw 189 
spectra with MS/MS entropy similarities <0.75, a typical threshold for automatic metabolite annotations. (f) Strip plot 190 
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to visualize absolute improvements in MS/MS similarities across three benchmarking methods and the Spectral 191 
Denoising algorithm. 192 

 A second benchmarking test quantified at how much lower injected quantities compounds could be annotated 193 

at entropy similarity >0.75 by applying the Spectral Denoising method. For all 181 compounds that were 194 

detected in at least more than one dilution stage (Supplement 1), the fold-change was calculated between the 195 

lowest injected amount that reached >0.75 entropy similarity for the raw MS/MS spectra, compared to the 196 

lowest injected amount after Spectral Denoising (Figure 2f). On average, our Spectral Denoising method 197 

required 35-fold lower molar quantities injected onto the column (Figure 2f, Supplement 1), while not a single 198 

compound failed to be annotated after Spectral Denoising (no false negatives). In contrast, all other denoising 199 

techniques showed minimal improvements for annotations injected at lower absolute quantities. Specifically, 200 

the 1% base peak thresholding method demonstrated no enhancement for 163 compounds. Similarly, DNL 201 

denoising and MS Reduce only showed improvements for so-few compounds. More concerningly, both DNL 202 

denoising and MS Reduce did not only fail to improve quantity thresholds for successful MS/MS annotations 203 

but instead detrimentally affected spectral matching. For MS Reduce, 108 compounds became unannotated 204 

(false negative) even at the same concentration level after processing the raw MS/MS spectra. For DNL 205 

denoising, this number of false negatives was 86 compounds. This indicates that both methods inadvertently 206 

removed true fragment ions, thereby shifting entropy similarity distributions to lower values across all spectra 207 

(Extended Figure 4). This disparity in performance across denoising techniques may originate from their 208 

foundational assumptions, as both DNL and MS-reduce were introduced on proteomics data that are usually 209 

fragment-rich, unlike in metabolomics where collision-induced fragments spectra are usually sparse. Thus, 210 

the underlying assumptions of the DNL- and MS-reduce intensity modeling-based denoising methods are no 211 

longer valid when applied to metabolomics data, highlighting the necessity for specialized approaches in this 212 

field.  213 

Applying Spectral Denoising against artificial noise ions 214 

Contamination by noise ions in experimental spectra from biological samples is more challenging than the 215 

sets of chemical standards shown above. A larger diversity of noise origins, e.g. from the chemosphere of the 216 

exposome, requires better mimicking large-scale contribution of different types of noise. To thoroughly assess 217 

the robustness of the tested denoising algorithms, the 0.01-200 pmol dilution series experimental spectra were 218 

used to create artificial chimeric spectra by adding simulated levels of chemical and electronic noise. Both 219 

types of noise ions were introduced using established noise models8, albeit with different parameter sets to 220 

accurately reflect their characteristics. Chemical noise, characterized by real chemical formulas, typically 221 

appears with high intensity but low ion counts. The mass-to-charge ratios of chemical noise ions were sampled 222 

from a database of 3.5 million authentic chemical formulas33, with their relative intensities determined using 223 

the noise model with a mean intensity of 50% of the base peak height. We defined three contamination levels 224 

for chemical noise, with the total noise ion counts to raw ion counts in a ratio of 1:10 (low), 2:10 (medium), 225 

and 5:10 (high). Electronic noise typically manifests as low-intensity but high-quantity 'grass noise'23. Thus, 226 

the mass-to-charge ratios of electronic noise ions were randomly sampled, with their relative intensities 227 

determined by the same noise model mean ion intensity of 5% base peak height. Similarly, we also designed 228 

three levels of electronic noise contamination: low (2:1), medium (10:1), and high (100:1), yielding nine tests 229 

of combined noise levels.  230 

The resulting chimeric spectra were matched against the 500 pmol benchmark spectra of the authentic 231 

standards, and denoised with Spectral Denoising, MS Reduce, DNL denoising and 1% bp thresholding 232 
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(Figure 3). The distribution frequency plot of all combined raw spectra of the compound dilution series yielded 233 

a median entropy similarity of 0.8, with an average of 0.71 and a mode at 0.95 (Extended Figure 4). Adding 234 

virtual noise to render chimeric spectra drastically reduced the spectral quality in all nine test scenarios, even 235 

for the lowest level of chemical and electronic noise (Figure 3), to a mode of 0.5 spectral entropy. When 236 

considering the mode points in the frequency distributions of the raw spectra, electronic noise worsened 237 

spectral entropy scores more dramatically than chemical noise additions, even at low levels of electronic noise. 238 

For all nine test cases, our denoising method restored the frequency distributions of the contaminated spectra 239 

above the levels of the original spectra, with the median spectral entropy similarity ranging from 0.71 (high 240 

electronic, high chemical noise) to 0.87 (low electronic, low chemical noise) (Figure 3). Importantly, the 241 

benchmarking test clearly demonstrated that none of the other algorithms came close to the performance of 242 

our Spectral Denoising method (Figure 3), with the best frequency modes located at spectral entropy 0.6 for 243 

the MS Reduce method for the low electronic, low chemical noise test scenario. 244 

 245 

Figure 3. Probability distributions of MS/MS entropy similarities before (‘raw’) and after applying three benchmarking 246 
methods against the Spectral Denoising algorithm, under varying levels of artificially added chemical and electronic 247 
noises. Chemical noise: Level 1:10 added at least one noise ion for every 10 experimental ions; Level 1:5 added at least 248 
one noise ion for every 5 experimental ions; Level 1:2 added at least one noise ion for every 2 experimental ions. 249 
Electronic noise: Level 2:1 added two noise ions per experimental ion; Level 10:1 added ten noise ions per experimental 250 
ion; Level 100:1 added one hundred noise ions per experimental ion. 251 
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Overall, neither the 1% bp thresholding nor the DNL denoising approaches yielded any substantial 252 

improvement across any level of chemical noise contamination (Figure 3). Last, we investigated if the 253 

improvement of MS/MS similarities by Spectral Denoising depended on the entropy of the 500 pmol 254 

reference spectra themselves. Spectra were categorized into five groups, from 0-1 entropy (low number of 255 

fragment ions) to 4-5 entropy levels (high number of fragment ions with varying intensities). We suspected 256 

that most experimental spectra from biological samples would only be subjected to minor to moderate 257 

contamination and therefore only used mid-level and low-level combinations of virtually added noise ions. 258 

As expected, reference raw spectra that started with lower entropy (0-1) benefitted the most from Spectral 259 

Denoising, as such spectra also see the most dramatic decline in MS/MS spectral similarities when noise ions 260 

are added (Figure 4). Conversely, reference raw spectra with high spectral entropy (S >4) better tolerate the 261 

addition of noise ions, and hence benefit a little less from Spectral Denoising (Figure 4). Yet, mass spectra 262 

from any starting entropy levels showed clear improvements in MS/MS similarity from Spectral Denoising 263 

when artificial noise was added, with a frequency distribution mode of 0.42 similarity improvements for S=4-264 

5 spectra and middle levels of added noise, and 0.2 similarity improvements at low levels of added noise 265 

(Figure 4). The results for the remaining seven sets of entropy similarity improvements are given in Extended 266 

Figure 5. Overall, these sets of benchmarking and noise-addition experiments clearly demonstrates that our 267 

Spectral Denoising method outperforms all other techniques and is extremely robust across varying levels of 268 

chemical and electronic noise contamination. 269 

 270 
Figure 4. Density distributions for MS/MS similarity improvements after Spectral Denoising for all MS/MS spectra 271 
from 240 injected standards between 0.02-200 pmol, using the 500 pmol spectra as reference. Chemical standards were 272 
grouped into five sets with different starting spectral entropies (blue to purple). (a) MS/MS similarity improvements for 273 
spectra to which contamination ions were artificially added at ‘mid-levels’, Level 10:1 electronic noise, and Level 1:5 274 
chemical noise. b MS/MS similarity improvements for spectra to which contamination ions were artificially added at 275 
‘low levels’, Level 2:1 electronic noise and Level 1:10 chemical noise. 276 

Development and applying Denoising Search on HILIC-MS/MS data from the plasma of AD patients 277 

In the prior experiments, all test spectra had a priori knowledge of the molecular formula information. 278 

Although today’s algorithms are capable of annotating molecular formulas from MS/MS spectra of reference 279 

compounds with >95% confidence33, 34, these tests have never been conducted on low abundant or noisy 280 

spectra. To enhance the applicability of our denoising method, Spectral Denoising was integrated into the 281 

spectra searching process, now termed 'Denoising Search.' 282 
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Denoising Search starts by denoising the experimental spectra using all molecular formulas that fall within 283 

the predefined precursor mass accuracy, i.e. not assuming a single starting formula. As it is a spectral identity 284 

search algorithm, it depends on the formula space that is being searched. In combination, MassBank.us, GNPS 285 

and NIST23 contain 2,028,556 experimental spectra, corresponding to 435,698 compounds and 37,493 286 

formulas. When restricting the search space in this way, spectral matching scores for the Denoising Search 287 

were calculated based on all denoised spectra that fit the formula criteria within the mass accuracy of the 288 

instrument. For practical 289 

reasons, a 10 mDa mass 290 

accuracy threshold was used 291 

although Orbitrap instruments 292 

are known to yield much better 293 

exact masses (i.e., sub-ppm with 294 

internal calibration). However, 295 

for low abundant ions, mass 296 

accuracy levels suffer in 297 

concordance with compromised 298 

ion statistics. Essentially, 299 

Denoising Search functions 300 

similarly to a Bayesian 301 

probability approach, evaluating 302 

how likely it is to observe the 303 

query spectra with all potential 304 

chemical and electronic noise 305 

removed, given a specific target 306 

compound. The rationale is that 307 

if the correct molecular 308 

information is used to denoise 309 

the spectra, noise ions will be 310 

accurately identified and 311 

removed, thereby improving 312 

spectral matching scores. 313 

Conversely, if the molecular 314 

formula information is incorrect, 315 

the fragment patterns will be 316 

vastly different, and the removal 317 

of true ions would lower the 318 

entropy similarity scores, still 319 

resulting in true negative 320 

annotations. This rationale was 321 

validated by testing the false 322 

discovery rate (FDR) of 323 

Denoising Search against simple entropy similarity identity search on an in-house validation dataset with 324 

extensive manual curation (Extended Figure 6). At an entropy similarity level of 0.75, the two methods 325 

showed <1% differences in terms of the FDR rate, indicating that Denoising Search did not introduce 326 

unwanted bias or false positives (Extended Figure 6). 327 

Figure 5. Denoising Search results for positive ESI mode HILIC-MS/MS data 
acquired on an Exploris 240 Orbitrap instrument and the Astral mass spectrometer, 
using 20 plasma samples of Alzheimer’s disease patients.  
(a) Improvement of metabolite annotations at MS/MS similarity >0.75 before and after 
Denoising Search using MassBank.us, GNPS and NIST23 libraries. (b) Cumulative 
probability density before and after Denoising Search for Astral mass spectrometry 
spectra. (c) Proportions of metabolite annotations after Denoising Search at MS/MS 
similarity >0.75 for different chemical superclasses using the Exploris 240 Orbitrap 
(inner ring) or the Astral mass spectrometer (outer ring). (d) Head-to-tail plots for four 
selected compounds annotated uniquely on Astral data after Denoising Search (blue) 
against library spectra (red). 
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To evaluate the performance of Denoising Search on experimental spectra of human patient samples, a small 328 

pilot plasma study was used comparing two high-resolution, accurate mass instruments: the classic Orbitrap 329 

Exploris 240 mass spectrometer and a new instrument introduced in 2023, the Orbitrap Asymmetric Track 330 

Lossless (Astral) mass spectrometer. The Astral mass analyzer acquired 17 times more spectra in each scan 331 

cycle compared to the Exploris 240 instrument, resulting in 5-times more MS1 m/z-retention time features 332 

that had corresponding MS/MS spectra. In effect, the Astral instrument provided a top-35 data dependent 333 

analysis MS/MS survey, surpassing the Exploris 240 instrument that only used a top-2 DDA mode. While the 334 

Orbitrap Astral instrument had previously shown its superior capabilities in proteomics studies, this 335 

comparison demonstrates its advantages for metabolomic tests.  Overall, the raw spectra from the Astral 336 

analyzer achieved 60% more annotations than those from the Exploris 240 mass spectrometer when matching 337 

spectra against the NIST23, MassBank.us and GNPS libraries (Figure 5a). For the Exploris 240 instrument, 338 

Denoising Search facilitated an additional 22% increase in annotations, while Denoising Search yielded a 339 

45% increase in annotated compounds over the raw spectra for the Astral mass analyzer (Figure 5a). Hence, 340 

compared to the raw Exploris MS/MS spectra, the Denoising Search on Astral data led to 2.3-fold more 341 

annotations, including many exposome compounds that were not found on the Exploris Orbitrap instrument. 342 

Notably, using Denoising Search, a significant increase of 0.11 median MS/MS entropy similarity was 343 

achieved for Astral spectra that showed raw entropy similarity ≥ 0.4 (Figure 5b). A closer examination of the 344 

seven main ClassyFire compound superclasses revealed a notable increase in the number of annotations across 345 

all superclasses on denoised Astral spectra compared to those found with Exploris (Figure 5c). Superclasses 346 

such as organic acids and derivatives fully leveraged the capabilities of the Astral, resulting in a 2.2-fold 347 

increase in annotated compounds, while organoheterocyclic compounds saw an 89% increase in annotated 348 

compounds. A significant increase in the number of MS/MS spectra was acquired by Astral Orbitrap mass 349 

spectrometry, thanks to its high sensitivity and its unprecedented acquisition speed (up to 200 Hz in DIA 350 

mode, 160 Hz in DDA mode). By combining our Denoising Search with Astral mass spectrometry, several 351 

compounds were identified that were previously underexplored in human blood (Figure 5d). Beyond drugs 352 

like threo-dihydrobupropion and N-(4-chlorophenyl)-3-phenylpropanamide, Irganox 565, a hindered phenol 353 

antioxidant, was reported in human blood for the first time, despite its prior detection in environmental dust 354 

samples35. This pilot study demonstrates that the advancement of mass analyzers allows for the acquisition of 355 

more spectra, and the Denoising Search is crucial for fully taking advantage of these extra spectra triggered 356 

by precursors across a wide range of magnitudes. 357 

Discussion 358 

The impact of noise ions in spectra of low-abundance compounds is well-recognized in metabolomics and 359 

exposome research. These ions complicate chemical annotations, contributing significantly to the 360 

accumulation of 'dark matter' in small-molecule research. We here employed a strategy combining intensity 361 

modeling and subformula assignments to effectively eliminate noise ions while preserving essential true 362 

fragment ions, even at low relative intensities. Using a 13-stage dilution of MS/MS spectra of genuine 363 

chemical reference standards as a ground truth dataset, demonstrated a superior ability for the Spectral 364 

Denoising algorithm to identify and remove noise ions. Noise removal notably enhanced MS/MS entropy 365 

similarities, particularly for spectra that were injected at low absolute quantities. Low abundant peaks 366 

represent the large majority of unknown compounds in metabolomic studies, rendering Denoising Search as 367 

a promising tool for major improvements in metabolome and exposome coverage. 368 



11 

We benchmarked our method against three alternative denoising algorithms. Spectral Denoising consistently 369 

outperformed the benchmarked alternatives, improving both the entropy similarity and the absolute quantity 370 

limit of high-confidence compound annotations. Despite varying levels of artificial noise, our method 371 

maintained robust performance. However, not all added noise ions were removed, primarily because our 372 

chemical plausibility checks were limited to the algorithms embedded in the Seven Golden Rules method28, 373 

without considering molecular connectivity. Alternative approaches for recognizing true fragment ions 374 

involve the application of substructure annotation tools. Current software, such as Sirius34, and MS-FINDER36, 375 

often fails to recognize radical losses, which are prevalent in small molecule spectra (affecting over 60% of 376 

even-electron precursors spectra in NIST20)30. Without recognizing radical losses, true fragment ions may 377 

potentially be discarded. Therefore, subformula assignments that preserve valuable true fragment ions should 378 

be preferred over substructure annotation tools. 379 

Yet, inherent limitations persist when solely relying on MS/MS spectra for compound annotation, even after 380 

removing noise ions. Reference spectra with inherently low spectral entropy are particularly vulnerable to 381 

noise ions, potentially leading to false negatives. The inability to differentiate between isomeric compounds 382 

and in-source fragments also presents significant challenges for the annotation of compounds in metabolomics 383 

when solely relying on MS/MS spectral matching. These observations indicate that employing hard 384 

thresholding based exclusively on spectral similarity is suboptimal for compound annotation in metabolomics 385 

and exposome research. Instead, Denoising Search should be supplemented with orthogonal experimental 386 

measures, such as retention time matching37, molecular cross-section comparisons38, and biological metadata 387 

screening39, to further enhance the confidence of compound identifications in small molecule research. When 388 

applied to the latest ThermoFisher Scientific instrument, the Astral mass spectrometer, Denoising Search 389 

facilitated a 2.3-fold increase in the number of annotated compounds compared to classic MS/MS similarity 390 

investigations on an Exploris 240 mass spectrometer, with improvements noted across all seven major 391 

chemical superclasses. 392 

Methods 393 

Spectral Denoising  394 

High-resolution mass spectra utilized for the development and validation of our Spectral Denoising algorithm 395 

were sourced from the licensed NIST23 Tandem Mass Spectral Library (2023 release). The explained ion 396 

intensity was calculated as the ratio of ion intensity retained post-denoising, denoted as, 𝐼!,#$%&' ,	to the total 397 

ion intensity of raw spectra,	𝐼!, as demonstrated in equation (1): 398 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	(%) = 	
∑ 𝐼!,#$%&'!,#$%&'

∑ 𝐼!!

	(1) 399 

Figure 1 (main text) visualizes the schema of the Spectral Denoising pipeline. All spectra were subjected to 400 

precursor removal before applying any form of Spectral Denoising, to ensure that residual intensities of the 401 

precursor ions do not inflate MS/MS matching scores. 402 

 403 

Acquiring serial dilution MS/MS data of reference compounds to validate Spectral Denoising  404 

Stock solutions of all target chemicals were prepared at 10 mM concentrations in methanol. Six mixtures of 405 

non-isobaric standards, each containing 40 compounds, were prepared by mixing 2.27 µL of each standard to 406 

achieve a concentration of 0.25 mM. 13 dilutions from these stock solutions were made to obtain final amounts 407 

to be injected into the LC-MS/MS systems, ranging from 0.02 pmol to 500 pmol: 0.02, 0.04, 0.1, 0.2, 0.4, 1, 408 
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2, 4, 10, 40, 100, 200 and 500 pmol (the concentration of the stock solution). Prior to injections, solutions 409 

were dried and resuspended in 100 ul of the LC starting buffer. 2 ul volumes were injected onto a 10 cm, 2.1 410 

mm i.d., 1.7 um particle Waters Acquity BEH amide column maintained at 30 °C with a flow rate of 0.4 411 

mL/min, utilizing a gradient of mobile phases of water with 0.1% formic acid (A) and acetonitrile with 0.1% 412 

formic acid (B)40. Mass spectrometric detection was carried out on a Thermo Q- Exactive HF Orbitrap 413 

instrument (ThermoFisher Scientific, San Jose, CA) operated in positive electrospray ionization mode. Mass 414 

spectrometry was performed from a mass range 60-1500 m/z with a sheath gas flow rate 60, auxiliary gas 415 

flow rate 25, sweep gas flow rate 2, spray voltage 3.6 kV, capillary temperature 300 °C, S-lens RF level 50, 416 

and an auxiliary gas heater temperature 370 °C. MS1 settings were set at a resolving power R=70,000, an 417 

automatic gain control target of 1e6, and a maximum injection time of 100 ms for single scans in centroid 418 

mode. MS/MS data were acquired in data-dependent mode at a resolving power R=15,000, an AGC target of 419 

1e4, and a maximum injection time of 100 ms, with an isolation window of 1.0 m/z and no offset. The Top-420 

N setting was 4, with an MSX count 1, loop count 4, and normalized collision energy steps 25, 35, and 65 421 

NCE in centroid mode. For each mixture, precursor ions of the target compounds were specifically included 422 

for MS/MS acquisition as separate target inclusion lists to ensure that MS/MS spectra were acquired even for 423 

very low injected amounts, for which MS1 ion intensities may not have been found within the top-4 most 424 

abundant ions in an MS1 spectrum. Feature detection was performed on MS 4.9.2. 425 

 426 

Benchmarking Spectral Denoising against alternative denoising algorithms 427 

Algorithms were obtained from literature based on their premise to remove noise ions in MS/MS spectra and 428 

to promote spectral annotations. Methods were excluded if they relied on data integration across multiple 429 

spectra (‘consensus spectra’) or if they required auxiliary instrumentations16, 17. Three alternative denoising 430 

algorithms were implemented in Python 3.8. The reducing factor used for MS Reduce denoising was 90 with 431 

the maximum allowed quantization level of 11. For threshold denoising, the widely used 1% base peak height 432 

was selected as the predefined noise level. DNL denoising algorithm does not require additional parameter 433 

settings. The performance of the denoising algorithms was benchmarked on the 240 metabolite standards with 434 

absolute injected volumes from 200 pmol to 0.02 pmol, using the 500 pmol spectra as reference spectra. The 435 

improvements of MS/MS similarities for low abundant compounds were calculated using the ratio of the 436 

lowest injected quantity of compounds that yielded an MS/MS entropy similarity >0.75 of the raw spectra, 437 

divided by the lowest injected quantity of compounds that yielded an MS/MS entropy similarity >0.75 of the 438 

MS/MS spectra after the use of the benchmarked algorithms. A ratio less than 1 indicates that spectra gave 439 

<0.75 MS/MS similarity after denoising, even for the injected quantities of compounds for which raw spectra 440 

were annotated at MS/MS entropy similarity >0.75. Spectral entropy and entropy similarity were calculated 441 

as published before21, 27. 442 

 443 

Adding chemical and electronic noise ions to MS/MS spectra 444 

To test the robustness of the Spectral Denoising method against three benchmarking algorithms, chemical 445 

noise and electronic noise were artificially added to all MS/MS spectra of the 240-compound mixtures with 446 

absolute injected volumes from 200 pmol to 0.02 pmol. The relative intensity of both electronic and chemical 447 

spectral noise I was generated using a Poisson distribution, demonstrated in equation (2): 448 

𝑓(𝐼) = 	
𝜆(𝑒)*

𝐼!
	(2) 449 

Here, 𝑓(𝐼) represents the probability that a peak with relative intensity 𝐼 will be generated, where 𝜆 = 50 450 

characterizes the chemical noise and 𝜆 = 5  represents the electronic noise, to accurately mimic their 451 

respective behaviors. For chemical noise, m/z values were randomly selected from a database of 3.5 million 452 
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formulas to ensure that only chemically feasible element ratios were used, with the additional constraint that 453 

noise ions did not exceed the precursor m/z. Electronic noise m/z values were randomly sampled from a 454 

uniform distribution ranging from 0 to the precursor ion m/z. If the calculated number of noise ions was not 455 

an integer, it was rounded up to the nearest integer to ensure that at least one noise ion was generated for each 456 

spectrum. The improvement in MS/MS entropy similarity scores was defined as the difference in entropy 457 

similarity between the 500 pmol reference spectra and the contaminated raw spectra or the 500 pmol reference 458 

spectra and the denoised spectra. The spectral entropy was calculated based on the 500 pmol reference spectra 459 

as the ground truth. 460 

 461 

Acquiring and annotating HILIC-MS/MS data from plasma of AD patients using Orbitrap Exploris 240 and 462 

Orbitrap Astral mass analyzers with Denoising Search 463 

The dataset comprised a subset of 20 plasma samples from an Alzheimer’s patients exposome cohort, as part 464 

of an exploratory study coordinated by Duke University under Prof. Rima Kaddurah-Daouk. Samples 465 

underwent analysis using both the Orbitrap Exploris 240 and Orbitrap Astral systems (Thermo Scientific, San 466 

Jose). The same hydrophilic interaction liquid chromatography (HILIC) method was employed for both 467 

systems, employing a Waters ACQUITY Premier BEH Amide Column (1.7 µm, 2.1 mm x 50 mm). Gradient 468 

elution used a biphasic system consisting of (a) water and (B) 95% acetonitrile, both buffered with 10 mM 469 

ammonium formate and 0.125% formic acid. The gradient started at 100% phase B, reducing to 30% over 470 

2.05 minutes, followed by an equilibration period back to 100% B over 0.65 minutes at 0.8 ml/min. For mass 471 

spectrometry, the Exploris 240 Orbitrap was set to perform an MS1 full scan (60-900 m/z range, 60,000 472 

resolution, 1e6 AGC target, maximum injection time 100 ms) and a top-2 data-dependent MS/MS acquisition 473 

(DDA) (15,000 resolution, 1e5 AGC target, maximum injection time 10 ms, isolation window 1 m/z, 474 

normalized collision energies of 30-50-80%). The Astral system similarly conducted full scan MS1 (60-900 475 

m/z range, 60,000 resolution, 1e6 AGC target, maximum injection time 100 ms) and MS/MS scans (15,000 476 

resolution, 1% of 1e5 AGC target, maximum injection time 10 ms, isolation window 1 m/z, normalized 477 

collision energy of 40%). Cycle time was 0.2 msec, which in Astral was equivalent to approximately top-35 478 

DDA-MS/MS. Electrospray ionization settings: spray voltage 3500 v (+), sheath gas 60 arbitrary units, 479 

axillary gas 20 arbitrary units, sweep gas 1 arbitrary unit, ion transfer tube temperature 350 °C, vaporizer 480 

temperature 400 °C, RF lens 50%. Plasma samples were extracted by a biphasic solution of 481 

MTBE/methanol/water as previously published41, and aliquots were dried and resuspended in 100 µL of 482 

ACN:water (80:20) containing 30 isotope-labeled internal standards. 3 µl was injected. Pooled quality control 483 

samples, including reference material NIST SRM1950 plasma and blank quality controls, were analyzed to 484 

assess quantitative robustness and selectivity. Feature detection and alignment were performed using MS-485 

DIAL (version 4.9.2). Compound annotations were performed using combined repositories of NIST23, 486 

Massbank.us, and GNPS libraries. Candidate spectra for identity search using entropy similarity and 487 

Denoising Search were restricted to a precursor ion mass tolerance of 10 mDa. Compound superclass 488 

information was assigned using the ClassyFire algorithm42.  489 

 490 

Data availability 491 

NIST Tandem Mass Spectral Library, 2023 release (NIST23) spectra are commercial available and 492 

can be purchased from multiple vendors. MassBank of North America database (Massbank.us) 493 

spectra can be freely downloaded from Massbank.us (https://massbank.us/). The metabolome 494 

https://massbank.us/
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dataset of Alzheimer’s Disease samples and the experimental data from the chemical dilution 495 

series can be requested from the authors. Source data are provided with this paper. 496 

Code availability 497 
The code for calculating spectral denoising and denoising search can be found at GitHub 498 

(https://github.com/FanzhouKong/spectral_denoising). 499 
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