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Background: Gestational diabetes mellitus (GDM) is a pregnancy-related diabetic condition that may cause serious
complications. However, its pathogenesis remains unclear. Placental damage due to GDM may lead to several health issues
that cannot be ignored. Thus, we aimed to identify the mechanisms underlying GDM by screening differentially expressed
genes (DEGs) related to vascular endothelial cells in the GDM databases and verify the expression of these DEGs in the
placentas of women afflicted by GDM.
Methods: We used GDM microarray datasets integrated from the Gene Expression Omnibus (GEO) database. Functional
annotation and protein–protein interaction (PPI) analyses were used to screen DEGs. Placental tissues from 20 pregnant
women with GDM and 20 healthy pregnant women were collected, and differential gene expression in the placental tissues was
verified via qRT-PCR, western blotting, and immunofluorescence.
Results: Bioinformatics analysis revealed three significant DEGs: SNAIL2, PAPP-A, and TGFβ1. These genes were all predicted to
be underexpressed in patients with GDM. The results of qRT-PCR, western blot, and immunofluorescence analyses indicated that
SNAIL2 and PAPP-A in the placenta tissue of patients with GDM were significantly underexpressed. However, TGFβ1 in the
placenta tissues of GDM was significantly overexpressed.
Conclusion: SNAIL2, TGFβ1, and PAPP-A may affect the placentas of pregnant women with GDM, warranting further
investigation.

Keywords: bioinformatics analysis; gestational diabetes mellitus; PAPP-A; SNAIL2; TGFβ1

Summary

• SNAIL2 and PAPP-A were significantly underex-
pressed while TGFβ1 was significantly overexpressed
in the placenta of pregnant women diagnosed with
GDM, warranting further investigation.

1. Introduction

Gestational diabetes mellitus (GDM) is defined as carbohy-
drate intolerance observed for the first time during preg-
nancy [1–3]. The prevalence of GDM, a common disorder
that manifests during pregnancy, is increasing worldwide

and has been attracting the attention of the scientific
community [4]. Its incidence rate in China is as high as
8.4%–18.9% [5]. Risk factors for GDM include maternal
weight and obesity, advanced age, history of GDM, and fam-
ily history of Type 2 diabetes [6, 7]. Poorly regulated blood
glucose levels of pregnant women not only increase the risk
of maternal pre-eclampsia (PE) and premature delivery but
also lead to spontaneous abortion, malformation, hypoxia,
and in severe cases, intrauterine death. Hyperglycemia often
leads to fetal macrosomia and increases the probability of
dystocia. Newborns are prone to complications, such as neo-
natal respiratory distress syndrome, hypoglycemia after
birth, and even death in severe cases [3]. GDM exerts an
adverse effect on long-term blood glucose and lipid levels
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of mothers and offspring, endangering life and health in
severe cases [8, 9]. GDM is a complex disease; hence, its
pathogenesis remains to be fully clarified and warrants fur-
ther investigation.

The placenta plays an essential role in the regulation of
metabolic function and material exchange between a preg-
nant woman and the fetus [10–14]. Continuously high glu-
cose levels and oxidative stress associated with GDM may
damage the placenta. This damage may cause placental dys-
function, which leads to many functional changes, such as
impaired regulation of vasodilation and vasoconstriction,
impeded or excessive angiogenesis, decreased barrier func-
tion, and increased inflammation [14, 15]. Some studies
have suggested that the functioning of placental vascular
endothelial cells is impaired in patients with GDM [16, 17]
and that changes in the insulin signaling pathway may lead
to endoplasmic reticulum stress [18, 19], aberrant angiogen-
esis [20, 21], and lipid metabolism [22–24]. PE is a common
complication of GDM, with risk factors similar to those of
GDM, including obesity and advanced age [25]. Moreover,
it has been established that both risk factors may cause
vascular endothelial cell dysfunction [26, 27].

With the rapid advancement of high-throughput micro-
array hybridization and sequencing technology, the amount
of publicly available data pertaining to various nucleic acid
sequences has increased rapidly. The Gene Expression
Omnibus (GEO) is currently the largest open gene expres-
sion database that can be used to obtain gene expression
profile data for most species. Therefore, screening genes
related to GDM and predicting and verifying their functions
via relevant databases may help elucidate the mechanism(s)
underlying GDM. We screened the differentially expressed
genes (DEGs) related to vascular endothelial cells in the
GDM database. In addition, we verified the expression of
these DEGs in the placenta. In the current study, our pur-
pose was to explore the cellular processes underlying GDM
in an attempt to identify new mechanisms.

2. Methods

2.1. Chip Data Screening and Acquisition. We collated
GDM-related chip data that had been uploaded to the
GEO database of the National Center for Biotechnology
Information (NCBI) before October 2021, through PubMed,
using “gestational diabetes mellitus” and “placenta” as
keywords, and setting “Homo sapiens” as the species. In
summary, the chip data were screened according to the
requirements of this study, and the gene chips related to
GDM were screened according to expression profiling by
the array.

2.2. Screening of DEGs. Collected datasets were screened and
analyzed using the online analysis software, GEO2R, pro-
vided by the GEO database. DEGs in each database were
screened using p < 0 05 and logFC > 1 5 as criteria; upregu-
lation and downregulation of gene expression were deter-
mined according to the positive and negative value of
logFC, respectively. Further, the differential genes highly

related to the function of vascular endothelial cells were
screened by consulting the literature.

2.3. Functional Annotation and Enrichment Analysis.
DAVID (http://david.ncifcrf.gov/) was used to conduct Gene
Ontology (GO)—and Kyoto Encyclopedia of Genes and
Genomes (KEGGs)—pathway-related analyses of screened
DEGs. GO includes three categories: biological processes,
cellular components, and molecular functions. It categorizes
DEGs according to their molecular functions and biological
processes. KEGG mainly focuses on the functional enrich-
ment of signaling pathways involving DEGs. A protein–pro-
tein interaction (PPI) network was constructed and analyzed
using DEGs inputted into STRING (http://string.embl.de/).
COREMINE (http://www.coremine.com/medical) was used
to conduct a literature co-occurrence analysis using “gesta-
tional diabetes mellitus,” “preeclampsia,” and DEGs.

2.4. Patients’ Samples and Tissue Preparation. Singleton
pregnant women who had undergone cesarean sections
and been closely followed up postpartum at Shengjing Hos-
pital, affiliated with China Medical University, were enrolled
in this study from December 2020 to August 2021 (Table 1).
GDM was diagnosed using an oral glucose tolerance test
(OGTT). All subjects were orally administrated 75 g of glu-
cose, and blood glucose levels were measured at 0, 1, and
2h. Those with fasting blood glucose > 5 1mmol/L, 1 h post-
prandial blood glucose > 10 0mmol/L, or 2 h postprandial
blood glucose > 8 5mmol/L were categorized as suffering
from GDM. Based on the results of the OGTT, which
involved administering 75 g of glucose during pregnancy,
the participating women were divided into two groups as
follows: a normal glucose tolerance group (n = 20) and a
GDM group (n = 20). None of the study participants had a
history of pregestational Type 1 or Type 2 diabetes, hyper-
thyroidism, Cushing’s syndrome, pancreatitis, other diseases
affecting blood glucose levels, or pregnancy-related compli-
cations, such as PE or severe heart and liver damage. All
experimental procedures were approved by the Medical
Ethics Committee of Shengjing Hospital, affiliated with
China Medical University (2021PS338K). Informed consent
was obtained from all participants. Placental tissue with a
size of 1 cm3 was collected from the maternal surface of the
placenta 2–3 cm away from the umbilical cord and frozen
in liquid nitrogen to extract total RNA and protein.

Table 1: Primer sequence.

Gene Sequence (5′–3′) Primer
length (bp)

GAPDH.F AGGTCGGTGTGAACGGATTTG 21

GAPDH.R GGGGTCGTTGATGGCAACA 19

TGFβ1.F GGCCAGATCCTGTCCAAGC 22

TGFβ1.R GTGGGTTTCCACCATTAGCAC 21

PAPP-A.F ACAAAGACCCACGCTACTTTTT 22

PAPP-A.R CATGAACTGCCCATCATAGGTG 22

SNAIL2.F CGAACTGGACACACATACAGTG 22

SNAIL2.R CTGAGGATCTCTGGTTGTGGT 21
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Figure 1: Continued.
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2.5. Detection of Differential Gene Expression in Placenta by
qRT-PCR. Total RNAs from the placenta were isolated using
the TRIzol reagent (Thermo, Massachusetts, USA). The

expression levels of DEGs were detected via qRT-PCR using
a HiFiScript cDNA Synthesis Kit and an SYBR Mixture
(CWBIO, Beijing, China), according to the manufacturer’s
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Figure 1: Function and pathway analyses for DEGs. (a) TGFβ1, PAPP-A, and SNAIL2 were predicted to be underexpressed in data analysis.
(b) Heat map of DEGs. (c) Significant pathways associated with DEGs. (d) Gene Ontology annotation of DEGs. (e) PPI network of DEGs.
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instructions. Primers were synthesized by GENEWIZ
WEEK (Suzhou, China). Each sample was analyzed in tripli-
cate. All data calculations are based on GAPDH as internal
reference to calculate relative expression. Data from more
than three biological replicates were subjected to final quan-
titation and statistical analysis using the 2-△△Ct method. The
primer sequences used for qRT-PCR analysis are listed in
Table 1.

2.6. Detection of Differential Gene Expression in Placenta by
Western Blot. Extracted proteins were boiled in sodium
dodecyl sulfate-polyacrylamide gel electrophoresis protein
loading buffer (Beyotime, Shanghai, China). Thirty micro-
grams of protein was run on a 5%–8% gradient polyacryl-
amide gel and transferred to PVDF membranes (Millipore,
Billerica, MA, USA).

The membranes were sliced and incubated with mouse
anti-SNAIL2 monoclonal antibody (Abcepta, San Diego, USA,
1 : 500), rabbit anti-TGFβ1 polyclonal antibody (Abcepta,
San Diego, USA, 1 : 500), rabbit anti-PAPP-A polyclonal
antibody (Abcam, Cambridge, MA, USA, 1 : 1000), or rabbit
anti-β-tubulin polyclonal antibody (Proteintech, Rosemont,
USA), overnight at 4°C. Next, the membranes were incubated
with horseradish peroxidase (HRP)-conjugated goat anti-
rabbit IgG or goat anti-mouse IgG (Elabscience, Wuhan,
China, 1 : 5000) for 2h at 37°C. The membranes were then
incubated with ECL reagents for 5min (Millipore, Billerica,
MA, USA) and exposed to X-ray film (Kodak, USA); β-tubu-
lin was used as the loading control. The experiment was
repeated at least thrice. Optical densities of the bands were
analyzed using a gel image-processing system (Gel-Pro Ana-
lyzer software). Protein level was represented as the relative
ratio of DEG signals to β-tubulin signals.

2.7. Detection of Differential Gene Expression in the Placenta
by Immunofluorescence. Each specimen was placed on a wax
block and sliced into 5μM slices using a slicer, which were
then unfolded in a warm water dish. Next, the expanded tis-
sue slices were moved onto a glass slide, placed in a 60°C
incubator for 4 h, and dried. The slices were then dewaxed
in water, subjected to antigen repair, and blocked using goat
serum. Next, the slices were incubated overnight (at 4°C)
with CD31 rabbit antibody (Abcepta, San Diego, USA,
1 : 50) and other DEG antibodies as described previously.

After washing thrice, the cells were incubated with Alexa Fluor
488 labeled goat anti-rabbit IgG (H+L) (Beyotime, China,
1 : 400) and Cy3 labeled goat anti-mouse IgG (H+L) (Beyo-
time, China, 1 : 400) for 1h. The sections were washed again
with PBS and incubated with DAPI (Solarbo, China, 1 : 500)
for 10min. Finally, the sections were washed thrice with
PBS, observed, and photographed under a microscope.

2.8. Statistical Analyses. Data are presented as means ±
standard deviations (SDs); SDs are represented by error bars.
Comparisons between the two groups (paired and unpaired)
were performed using a two-tailed Student’s t-test. One-way
analysis of variance (ANOVA) and Tukey’s post hoc test
were used for comparisons involving more than two groups.
Statistical significance was set at p < 0 05. All statistical anal-
yses were performed using SPSS software (version 16.0).

3. Results

3.1. Data Collection. A total of 879 eligible datasets in the
GEO database were screened. After screening, one set of
microarray data that met our standards was selected as fol-
lows: GSE87295 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE87295).

GSE87295, which contains human umbilical vein endothe-
lial cell transcriptome sequencing data using the GPL10558
platform, was submitted by Ajith et al. The GDM group con-
sisted of five pregnant women with GDM (n = 5) while the
normal group consisted of five pregnant women without
GDM.

3.2. Screening of DEGs. The GEO2R software tool provided
by the GEO database was used to screen DEGs in the
GSE87295 dataset. Thus, 49 DEGs were screened in the
HUVEC group, using p < 0 05 and logFC > 1 5 as criteria.
The DEGs in the database were mainly located in the extra-
cellular and matrix regions. Their main molecular functions
included protein and glial binding, which in turn are associ-
ated with the biological processes of cell adhesion and angio-
genesis. Moreover, the KEGG pathways were not enriched,
similar to the DEGs in the other two groups, which may
be related to the small number of DEGs. Different genes in
each group were enriched, as shown in Figures 1 and 2.

3.3. PPI Network of DEGs, Literature Co-Occurrence, and
Key Gene Screening. Preliminary construction of the PPI
network and the literature co-occurrence network of DEGs
enabled us to select DEGs in the GSE87295 dataset and
determine the relationship between GDM and important
DEGs. We used “gestational diabetes mellitus,” “preeclamp-
sia,” and key DEGs for literature co-occurrence analysis.
Angiogenesis, which is mostly observed in the placenta, is
an important biological process associated with these genes.
Literature-based comparisons and initial data analyses were
used to select key genes. Having given due consideration to
all aspects, we selected SNAIL2, TGFβ1, and PAPP-A as
the key genes.

3.4. Detection of Differential Gene Expression in Placenta.
There were no significant differences between the general

Table 2: Basic characteristics of subjects.

Clinical parameters Control (N = 20) GDM (N = 20)
Mean of age (Y) 31 238 ± 2 300 30 826 ± 2 741
Mean of height (cm) 164 00 ± 4 889 161 913 ± 4 430
Mean of weight (kg) 75 286 ± 7 927 75 752 ± 6 410
Prepregnancy BMI (kg/m2) 22 275 ± 2 582 22 930 ± 3 813
Pregnancy weeks 36 762 ± 3 897 36 304 ± 2 653
The number of abortions 0 905 ± 0 831 0 609 ± 0 722
Basic systolic BP (mmHg) 76 905 ± 6 610 78 348 ± 6 997
Basic diastolic BP (mmHg) 118 810 ± 8 600 118 826 ± 6 719
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data of pregnant women in the GDM and control groups
(Table 2).

Subsequently, qRT-PCR indicated that the expression
levels of TGFβ1 in the GDM group were higher than those
in the control group, while the expression levels of PAPP-
A and SNAIL2 in the GDM group were lower than those
in the control group (p < 0 05).

Western blot results demonstrated that expression levels
of TGFβ1 in the GDM group were higher than those in the
control group, while the expression levels of PAPP-A and
SNAIL2 in the GDM group were lower than those in the
control group (p < 0 05).

Our immunofluorescence results also confirmed that the
expression levels of TGFβ1 in the GDM group were higher
than those in the control group, while the expression levels
of PAPP-A and SNAIL2 in the GDM group were lower than
those in the control group (p < 0 05).

The results are shown in Figures 3 and 4.

4. Discussion

GDM is a condition commonly observed in pregnancies
during clinical practice. The incidence of GDM differs
according to region and age group; however, its exact path-
ogenesis remains unclear. Evidently, its pathogenesis is asso-
ciated with an increase in the number of gestational weeks,
which causes anti-insulin-like substances, such as placental
lactogen, estrogen, progesterone, cortisol, and placental
insulin enzymes, to accumulate during midpregnancy and
late pregnancy, causing insulin sensitivity of affected women
to keep declining with increasing gestational weeks, resulting

in an increase in their blood glucose levels [19]. We screened
the differential genes (TGFβ1, SNAIL2, and PAPP-A) by
bioinformatics analysis of datasets combined with literature
retrieval of differential genes and keywords such as GDM,
vascular function, and endothelial cells.

SNAIL2, which encodes a transcription factor with a
zinc finger structure, acts as a key regulator of epithelial–
mesenchymal transformation (EMT). SMAD-interacting
protein-1 competitively binds to E-box in the promoter
region of the gene encoding E-cadherin. SNAIL2 transforms
epithelial cells into mesenchymal cells by directly inhibiting
the expression of E-cadherin, which promotes EMT [28].
SNAIL2 has previously been described as a factor involved
in cancer. It has been found that different mechanisms of
E-calcium mucin inactivation occur in most breast cancer
tumors. A significantly negative correlation was observed
between high SNAIL expression and decreased or downreg-
ulated E-cadherin expression. Our results indicated that
SNAIL2 expression in the GDM placenta is decreased, indi-
cating that EMT in the placenta is inhibited during GDM,
which in turn impacts the proliferation of trophoblasts into
vascular endothelial cells and affects the function of vascular
endothelial cells.

The TGF-β family is involved in many biological pro-
cesses, such as cell proliferation, differentiation, and death
[29]. TGFβ1 enables the pancreas to maintain homeostasis
and also plays a physiological role similar to that of insulin.
It is a key cytokine involved in insulin resistance and obesity
[9] and is differentially expressed in the human endome-
trium and placenta [29, 30]. Our results showed that TGFβ1
expression was upregulated in the placenta of GDM patients.
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Figure 3: Detection of DEG expression in the placenta (n = 20). (a) Western blot analysis of the DEG levels in the placentas of GDM
patients or normal patients. The DEG levels were quantified as shown. (b) qPCR analysis of DEG levels in the placentas of GDM or
normal patients; bars = 20mm. All data are presented as means ± SEM of 20 replicates; ∗p < 0 05, ∗∗p < 0 01 compared with the
indicated group.
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TGFβ1, an important factor that promotes endothelial cell
differentiation during angiogenesis, may be one of the mech-
anisms underlying “hypervascularization” of the placenta of
GDM patients.

PAPP-A is mainly located near actin filaments in the
cytoplasm. PAPP-A, an actin-binding protein, promotes
actin crosslinking [31–33] via globular actin polymerization
and participates in the regulation of cytoskeletal rearrange-
ment [34]. Its function is associated with cell migration
and angiogenesis [35, 36]. Studies have indicated that
PAPP-A may promote the elongation of vascular endothelial
cells. The PI3K Akt and mTORC1 pathways are also
associated with vascular endothelial growth factor A [37].
However, our study indicated that the change in PAPP-A
expression was not significant, which finding contradicts
the results of Varberg et al. [34]. The reason for this discrep-
ancy warrants further exploration.

Bioinformatic data mining allows relevant gene chips
and sequencing data to be screened and analyzed along dif-
ferent research directions, thereby providing novel insights

into the diagnosis and treatment of clinically important dis-
eases, as well as preliminary research aimed at these diseases,
and related research of Du et al. and Sun et al. in the field of
placental dysfunction in GDM stands out [38, 39].

In this study, we screened transcriptome datasets of
patients with GDM and analyzed DEGs. These DEGs and
proteins were mainly located in the extracellular spaces
and regions. Their main molecular functions were described
as polymerization, platelet-derived growth factor, hyaluronic
acid, and transforming growth factor β. These proteins are
primarily involved in cell adhesion and angiogenesis. KEGG
pathway analysis showed that the DEGs were mainly
involved in ECM receptor interactions, adhesion, and the
PI3K Akt pathway, among others. Among them, SNAIL2,
TGFβ1, and PAPP-A were predicted to be underexpressed
in GDM and play an important role as key genes in the
GDM network. Concurrently, western blotting and qRT-
PCR also demonstrated that SNAIL2, TGFβ1, and PAPP-A
were differentially expressed between GDM patients and
healthy pregnant women. This may be related to the younger
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Figure 4: Detection of DEG expression in the placenta via immunofluorescence. (a) Immunofluorescence double staining of PAPP-A and
CD31 in the paraffin sections of two groups. (b) Immunofluorescence double staining of TGFβ1 and CD31 in paraffin sections of two
groups. (c) Immunofluorescence double staining of SNAIL2 and CD31 in the paraffin sections of two groups. (d) Fluorescence intensity
analysis of DEG levels in the placentas from two groups; bars = 20mm. All data are presented as means + SEM of 20 replicates; ∗p < 0 05,
∗∗p < 0 01 compared with the indicated group.
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phenotypes of vascular endothelial cells and is worthy of
future attention. Our verification of these DEGs indicated
that the expression and prediction of SNAIL2 were identical.

Therefore, SNAIL2, TGFβ1, and PAPP-A, which are sig-
nificantly differentially expressed in the placenta of patients
with GDM, may play an important role in the occurrence
and development of GDM, via the exertion of adverse effects
on the proliferation of vascular endothelial cells and the
adhesion and proliferation of smooth muscle cells. Although
some preliminary findings have been made in this study, and
the expression of differential genes has been preliminarily
verified by tissue verification, we also have to admit that
there are some limitations in the study. The lack of further
functional verification and mechanism research may limit
the accurate explanation of the biological significance of dif-
ferential genes. Therefore, the future research still needs to
be further expanded, including carrying out functional
experiments and exploring potential mechanisms. We hope
that the discussion of these limitations will attract more
researchers’ attention and promote the in-depth exploration
and understanding of this field. Through continuous efforts,
we believe that we can more comprehensively reveal the
mechanism of differential genes in the process of vascular
dysfunction in GDM and provide more in-depth theoretical
support for the diagnosis and treatment of vascular compli-
cations in GDM.
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