
Vol.:(0123456789)

Cancer Immunology, Immunotherapy (2024) 73:197 
https://doi.org/10.1007/s00262-024-03782-7

RESEARCH

Genomic and transcriptomic profiles associated with response 
to eribulin and nivolumab combination in HER‑2‑negative metastatic 
breast cancer

Changhee Park1 · Koung Jin Suh1 · Se Hyun Kim1 · Kyung‑Hun Lee2 · Seock‑Ah Im2 · Min Hwan Kim3 · 
Joohyuk Sohn3 · Jae Ho Jeong4 · Kyung Hae Jung4 · Kyoung Eun Lee5 · Yeon Hee Park6 · Hee‑Jun Kim7 · 
Eun Kyung Cho8 · In Sil Choi9 · Seung‑Jae Noh10 · Inkyung Shin10 · Dae‑Yeon Cho10 · Jee Hyun Kim1

Received: 11 June 2024 / Accepted: 17 July 2024 / Published online: 6 August 2024 
© The Author(s) 2024

Abstract
Background Biomarkers for predicting response to the immunotherapy and chemotherapy combination in breast cancer 
patients are not established. In this study, we report exploratory genomic and transcriptomic analyses of pretreatment tumor 
tissues from patients enrolled in phase II clinical trial of a combination of eribulin and nivolumab for HER-2-negative meta-
static breast cancer (MBC) (KORNELIA trial, NCT04061863).
Methods We analyzed associations between tumor molecular profiles based on genomic (n = 76) and transcriptomic data 
(n = 58) and therapeutic efficacy. Patients who achieved progression-free survival (PFS) ≥ 6 months were defined as PFS6-
responders and PFS6-nonresponders otherwise.
Findings Analyses on tumor mutation burden (TMB) showed a tendency toward a favorable effect on efficacy, while sev-
eral analyses related to homologous recombination deficiency (HRD) indicated a potentially negative impact on efficacy. 
Patients harboring TP53 mutations showed significantly poor PFS6 rate and PFS, which correlated with the enrichment 
of cell cycle-related signatures in PFS6-nonresponders. High antigen presentation gene set enrichment scores (≥ median) 
were significantly associated with longer PFS. Naïve B-cell and plasma cell proportions were considerably higher in long 
responders (≥ 18 months).
Interpretation Genomic features including TMB, HRD, and TP53 mutations and transcriptomic features related to immune 
cell profiles and cell cycle may distinguish responders. Our findings provide insights for further exploring the combination 
regimen and its biomarkers in these tumors.
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Abbreviations
AP  Antigen presentation
CD  Combinatorial dual
CNV  Copy number variation
CI  Confidence interval
FFPE  Formalin-fixed: paraffin-embedded
FPKM  Fragments per kilobase of transcript per million 

mapped read
GO  Gene ontology
GSEA  Gene set enrichment analysis
HRD  Homologous recombination deficiency
HRpos  Hormone-positive breast cancer
HER-2  Human epidermal growth factor receptor-2
LST  Large-scale state transitions
LOH  Loss of heterozygosity
MBC  Metastatic breast cancer
MMR  Mismatch repair
Mut/Mb  Mutations/megabases
NGS  Next-generation sequencing
PD-L1  Programmed cell death ligand-1
PFS  Progression-free survival
PFS6  6-Month progression-free survival
RPK  Reads per kilobase
TMB  Tumor mutation burden
TNBC  Triple-negative breast cancer
TPM  Transcripts per million
TIL  Tumor-infiltrating lymphocytes
TAI  Telomeric-allelic imbalance
Sig25  Signature 25
UDI  Unique dual indexed
WES  Whole-exome sequencing
WTS  Whole-transcriptome sequencing

Introduction

Although breast cancers are thought to be less immune-
sensitive, clinical trials of chemotherapy combined with 
anti-programmed cell death 1 or anti-programmed cell death 
ligand-1 (PD-L1) immune checkpoint inhibitors atezoli-
zumab or pembrolizumab in triple-negative breast cancer 
(TNBC) have shown favorable efficacy, making these combi-
nations the standard of care for TNBC [1, 2]. These pioneer-
ing trials were followed by comprehensive investigations on 
immunotherapy combinations for breast cancer.

The combination of eribulin plus immune checkpoint 
inhibitors has received research attention. In preclinical stud-
ies, eribulin promoted antitumor-immune tumor microenvi-
ronments by remodeling the tumor vascular bed, decreasing 
tumor hypoxia, and inhibiting immune evasion [3]. As eribu-
lin has been approved for use in metastatic breast cancer 
(MBC) [4], it may be a good partner for immune checkpoint 
inhibitor combinations for breast cancers. The first clinical 

trial of eribulin plus pembrolizumab, reported by Tolaney 
et al. [5], demonstrated potential antitumor effects in patients 
with TNBC. Subsequent studies reported the results of a 
randomized clinical trial of eribulin plus pembrolizumab 
or placebo for hormone-positive breast cancer (HRpos), 
showing no outcome improvement in the pembrolizumab 
combination group [6]. We also performed the combination 
of eribulin plus nivolumab for HRpos and TNBC [7]. Nota-
bly, subset of TNBC and HRpos patients showed prolonged 
response to eribulin plus immune checkpoint inhibitors in 
these clinical trials.

To determine the subset of patients who would show 
prolonged response to the treatment is pivotal. However, 
previous clinical trials have shown that PD-L1 immuno-
histochemistry expression was not significantly associated 
with the effectiveness of the eribulin plus immunotherapy 
combination regimen [5–7]. Therefore, further biomarker 
analyses are required to identify potential responders. The 
exploratory biomarker analysis of a randomized clinical trial 
by Tolaney et al. [8] showed that subgroups of patients with 
HRpos might benefit from pembrolizumab combination 
therapy. In this study, patients with high tumor mutation 
burden (TMB), low tumor purity, high immune infiltration, 
high antigen presentation (AP) expression signatures, and 
low estrogen response expression signatures showed favora-
ble responses.

Here, we describe an exploratory biomarker analysis 
using next-generation sequencing (NGS) of pretreatment 
tumor tissues to evaluate the genomic and transcriptomic 
profiles associated with the response to the eribulin and 
nivolumab combination in patients with human epidermal 
growth factor receptor-2 (HER-2) negative breast cancer. 
We aim to explore such potential biomarker to determine the 
subgroup of patients who would respond to the treatment, 
to provide insights for further exploring the combination 
regimen and its biomarkers in these tumors.

Materials and methods

Study design

This study was an exploratory biomarker analysis using pre-
treatment formalin-fixed, paraffin-embedded (FFPE) tumor 
tissues from patients enrolled in a phase II multicenter clini-
cal trial of eribulin plus nivolumab in patients with HER-
2-negative MBC (KORNELIA trial, ClinicalTrials.gov 
Identifier: NCT04061863) [7]. The inclusion and exclusion 
criteria are described detailed in the previous literature. 
Briefly, we included HER-2-negative advanced breast cancer 
treated with anthracycline and/or taxane, which may have 
been delivered in either the neoadjuvant, adjuvant, or meta-
static setting and experienced disease progression on or after 
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taxane-based chemotherapy in the metastatic setting. The 
patient must have had less than three prior lines of cytotoxic 
chemotherapy for metastatic disease. Endocrine therapy was 
not counted as a prior line of treatment. Patients who previ-
ously received eribulin or any immune checkpoint inhibitor 
were excluded. The primary and secondary objectives were 
the 6-month progression-free survival (PFS6) rate and PFS, 
respectively.

Clinical outcome parameters

For consistency with the previously published original trial, 
we focused on the primary objective of the trial: PFS6 rate, 
which is suggested as a surrogate endpoint in immune check-
point inhibitor trials [9]. We divided patients according to 
the PFS6 criterion; patients who achieved PFS ≥ 6 months 
were grouped as PFS6-responders, otherwise as PFS6-nonre-
sponders. For immune signature analysis, we also identified 
long responders as patients who achieved PFS ≥ 12 months.

DNA and RNA extraction

Genomic DNAs and total RNAs were extracted from FFPE 
specimen using the Allprep DNA/RNA FFPE kit (Qiagen) 
following the manufacturer’s instructions. Genomic DNAs 
were extracted from peripheral blood using QIAamp DNA 
Blood Mini Kit (Qiagen). Both concentration and quality of 
all the isolated DNA and RNA samples were measured and 
checked with Qubit (Thermo Fisher Scientific) and Tapesta-
tion 4150 (Agilent Technologies).

Whole‑exome sequencing

Whole-exome libraries were built up using Twist Core 
Exome kit (Twist Bioscience). Briefly, FFPE-DNA was frag-
mented to 250–350 bp using a Covaris M220 ultrasonica-
tor (Covaris). Hundred nanograms of fragmented DNA was 
end-repaired and dA-tailed using Twist Library Preparation 
kit following the manufacturer’s instructions. Libraries of 
gDNA extracted from blood were prepared in the same man-
ner using 50 ng input.

Twist combinatorial dual (CD) Index adapters or Twist 
Universal adapters were ligated to repaired fragments, and 
the ligated fragments were amplified using PCR. The ligated 
fragments with CD index adapters were amplified for 10 
PCR cycles. In the case of Universal adapter ligates, 7 PCR 
cycles were performed using Unique Dual Indexed (UDI) 
primer sets. Four to eight individual libraries were pooled 
to total mass of 1500 ng. The pool was hybridized at 60 °C 
for 4 h using Twist Human Core Exome panel. The exome 
library was amplified for 7 PCR cycles using KAPA HiFi 
HotStart ReadyMix (KAPA Biosystems).

The qualification and quantification estimations for each 
library were done after the last purification using Qubit 
assay (Thermo Fisher Scientific) and Tapestation system 
(Agilent Technologies). After normalization, the libraries 
were sequence on NextSeq 550Dx machines (Illumina) in 
paired-end 2 × 150 bp.

RNA sequencing

RNA libraries were prepared using Illumina TruSeq 
Stranded Total RNA Library Prep Gold kit (Illumina) fol-
lowing manufacturer’s instructions starting with 100 ng to 
1 ug total RNA. First, ribosomal RNAs were removed from 
total RNA before proceeding to the cDNA synthesis. rRNA-
depleted RNAs were fragmented and converted cDNA with 
reverse transcriptase. The resulting cDNAs were converted 
to double stranded cDNAs and subjected to end-repair, 
A-tailing, and adapter ligation. The constructed libraries 
were amplified using 15 cycles of PCR. Libraries were quan-
tified and qualified using Qubit (Thermo Fisher Scientific) 
and Tapestation 4150 (Agilent Technologies).

The libraries were sequenced by 150-bp paired-end reads 
on NovaSeq sequencer (Illumina).

WES data processing

Whole-exome sequencing data were generated for 76 paired 
(tumor-normal) samples using the NextSeq550Dx machine 
in 2 × 150 bp mode (300 cycles).More than 5 gigabases 
(Gbs) of raw output were generated for peripheral blood 
normal samples (median 6.63 Gbs, ~ 180x) and 10Gbs 
for tumor FFPE samples (median 10.5 Gbs, ~ 300x). Raw 
sequencing data were preprocessed using Cutadapt v2.8 to 
remove adapter sequences and trim low-quality reads with 
the default option except –minimum-length 30. Trimmed 
reads were then aligned to the human reference genome hg19 
using BWA-MEM (v0.7.17), and the aligned sequences were 
sorted using SAMtools (v1.10) and deduplicated to remove 
potential PCR artifacts using MarkDuplicates (GATK 
v4.1.4.0). In addition, WES reads were realigned and base 
quality scores were recalibrated according to GATK best 
practice to minimize erroneous variant calls.

RNA data processing

Total RNA sequencing was also performed on 58 tumor 
FFPE samples with in 2 × 150 bp mode (300 cycles). More 
than 50 million reads were generated for each of 58 tumor 
FFPE samples (median 77.1 million reads, 11.64 Gbs). Raw 
reads were aligned to the hg19 genome using STAR aligner 
(v2.7.1) with default parameters after removing adapter 
sequences and trimming low-quality reads. Preprocessing 
and removal of duplicates were performed as previously 
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described for whole-exome sequencing methods. Aligned 
reads were then counted using HTseq (v0.11.3), which 
analyses the expression levels of transcripts overlapping 
their exons for each gene. Using these read counts, we cal-
culate FPKM (Fragments Per Kilobase of transcript per Mil-
lion mapped reads) values for transcripts, which were log2 
transformed and normalized for comparison between cohort 
expression profiles.

We also used TPM (Transcripts Per Million) values for 
the following analysis. For TPM normalization, we followed 
the method of Wagner et al. [10]. Briefly, we first calculated 
the RPK (Reads Per Kilobase) values by dividing the raw 
HTseq counts by the length of each gene in kilobases. We 
then added all of the RPK values for whole transcriptome 
in the sample and divided it by 1,000,000 to get the scaling 
factor per million. Finally, we obtained TPM values for each 
transcript by dividing each RPK value by the scaling factor.

Variant calling

We utilized SomaticSeq software (v3.4.0), which improves 
the accuracy of somatic mutation calls by merging the results 
of multiple variant callers. In this study, we implemented 8 
variant callers: Mutect2 (v4.0.5), VarScan2 (v2.3.7), VarDict 
(v1.7.0), LoFreq (v2.1.3.1), Strelka (v2.9.5), JointSNVMix2 
(v0.7.5), SomaticSniper (v1.0.5), and MuSE (v1.0). Vari-
ants were annotated using Ensembl Variant Effect Predictor 
(VEP, v107) and the annotated information was parsed using 
an in-house Python script. Somatic variant calls satisfying 
filtering options described below were saved for further 
analysis; read depth from both normal and tumor is greater 
than 8, alternative reads supporting variants is greater than 
2, number of callers is greater than 2 (SomaticSeq call was 
also assumed to be one of the variant callers), and maxi-
mum allele frequency of the corresponding variant in eth-
nic groups among population databases, 1000 Genomes and 
gnomAD is less than 0.01.

Tumor purity‑adjusted copy number variation

For copy number variation (CNV) calling, CNVkit program 
was utilized with each tumor-normal paired BAM files as 
input. CNVkit created a reference (.cnn) using the matched 
normal BAM and calculated the copy number from tumor 
BAM taking into account both on- and off-target reads. As 
a result, copy ratios (.cnr) file and copy segments (.cns) 
file were obtained. In order to estimate tumor purity and 
subpopulations, we run THetA2 using the cns file and the 
mutect1 somatic variant (.vcf) results. THetA2 estimates the 
most likely decomposed fraction(s) of clonal and/or sub-
clonal tumor population. We simply added the estimated 
clonal/subclonal tumor fraction(s) as a represented tumor 
purity score per sample, then applied it to run CNVkit 

again (CNVkit’s call command) with the cns file and finally 
obtained tumor purity-adjusted copy number information. 
Copy number variation burden in a sample was defined as 
the number of amplified or deleted genes.

Genomic profile analysis

TMB was reported as mutations/megabases (Mut/Mb). As 
there is no standard cutoff for TMB to define TMB-high 
patients with breast cancer, we searched for cutoff values 
from previous clinical trials of immunotherapy for breast 
cancer [11]. We calculated the mean value of the TMB cut-
offs and estimated the TMB cutoff for TMB-high patients to 
be 8 muts/Mb. Patients with mismatch repair gene mutations 
were defined as those with pathogenic somatic or germline 
mutations in related genes, including MLH1, MLH2, MSH3, 
MSH6, and MUTYH.

A list of homologous recombination deficiency (HRD)-
related genes was constructed from a gene list from a previ-
ous clinical trial that evaluated the efficacy of olaparib for 
HRD prostate cancer [12] and from several other studies 
[13–15] describing the genes associated with HRD. HRD-
related genes included BRCA1, BRCA2, ATM, BRIP1, 
BARD1, CDK12, CHEK1, CHEK2, FANCA, FANCL, 
PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L, 
FANCD2, RAD50, and ERCC2.

Mutational Signature

We used the Mutalisk R package and COSMIC Mutational 
Signatures v2 to analyze the mutational signatures of tumor 
samples [16]. Using annotated and filtered VCF files as 
inputs, we obtained the decomposed fraction score for 30 
mutational signatures per sample and compared it with the 
samples from the cohort.

Homologous recombination deficiency

To measure the genomic instability caused by possible 
defects in DNA repair pathways, we analyzed the HRD score 
based on whole-exome sequencing (WES) data, which is the 
sum of three metrics of chromosome-level aberrations: loss 
of heterozygosity (LOH), telomeric-allelic imbalance (TAI), 
and large-scale state transitions (LST). Using the segmenta-
tion results from the Sequenza tool [17], HRD scores were 
generated using the scarHRD [18] R package (v0.1.1).

Transcriptomic profile analysis

PAM50 analysis was conducted as previously described 
[19], in which normalized expression data were extracted 
for the 50 genes of interest, and Spearman’s rank correlation 
values were calculated between samples and each PAM50 
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subtype centroid. Each sample was classified based on 
PAM50 classes of the most correlated subtypes.

We used transcripts per million normalized RNA 
sequencing data for gene ontology (GO) and gene set 
enrichment analyses. The GO analysis was performed using 
DAVID GO [20]. Benjamin p values were used for the analy-
sis. Gene set enrichment analysis and single-sample gene 
set enrichment analyses were performed using GSEA ver-
sion 4.0 [21]. The gene set used for gene set enrichment 
analysis was the hallmark gene set [22], immune-related sig-
natures from the literature on the immune landscape [23], 
and the AP gene set from the available literature [8]. To 
analyze tumor-infiltrating lymphocytes (TIL) in the tumor 
microenvironment based on RNA expression, we performed 
CIBERSORT analysis [24], which deconvolutes cell-type 
proportions from bulk RNA expression data. In principle, 
the IOBR [25] R package (deconvo_tme function) was used 
to obtain the relative proportion scores of 22 immune cell 
types per sample, using normalized fragments per kilobase 
of transcripts per million mapped read values as input.

External dataset

We used the genomic and transcriptomic datasets provided 
in the supplementary materials of a previous study [8], an 
exploratory biomarker analysis of a clinical trial for eribulin 
plus pembrolizumab or placebo for HRpos breast cancer. We 
conducted an identical analysis using an external dataset.

Statistical analysis

The Wilcoxon rank-sum test was used to compare the values 
between groups. Fisher’s exact test was used to compare 
response rates between groups. We used the log-rank test 
and showed the results using Kaplan–Meier curves to com-
pare survival between groups. The Cox proportional hazards 
model was used to evaluate the survival hazard ratios of the 
variables. Statistical significance was set at p < 0.05, and the 
significance tests were not corrected for multiple compari-
sons owing to the exploratory nature of this study. Statistical 
analyses of the clinical outcomes were performed using the 
R software (version 4.0.3).

Results

Clinical characteristics

Among the 90 patients included in the trial, WES and whole-
transcriptome sequencing (WTS) data were acquired from 
76 and 58 patients, respectively. In each WES and WTS 
cohort, the clinical characteristics and efficacies were com-
parable to those of the entire trial patient cohort (Table 1). 

In addition, neither PD-L1 nor TIL were associated with 
clinical outcomes in each cohort in terms of the PFS6 rate 
and PFS (Supplementary Figure 1).

Genomic profiles and outcomes

In total, 268 oncogenic somatic mutations were detected in 
the WES cohort (Supplementary Table 1). The most com-
mon genetic alterations were in TP53 (55 mutations), fol-
lowed by GNAQ (22 mutations), PIK3CA (20 mutations), 
KMT2C (13 mutations), and ESR1 (10 mutations). Only 
one patient had a germline BRCA2 truncating mutation; no 
patient had a germline BRCA1 mutation.

Patients with a TP53 mutation showed significantly poor 
PFS6 rates (28.3% vs. 56.5%, p = 0.037) and PFS (median 
PFS 6.9 months [95% confidence interval (CI) 5.6–14.6] vs. 
4.8 months [95% CI 3.0–5.6], p = 0.045, Fig. 1a). No other 
single gene mutations with a frequency of more than three 
were associated with the PFS6 rate or PFS (Supplementary 
Table 2).

Table 1  Patient characteristics

HRpos hormone-positive breast cancer, PD-L1 programmed cell 
death ligand 1, PFS6 6-month progression-free survival, TNBC tri-
ple-negative breast cancer, Tx treatment, WES whole-exome sequenc-
ing, WTS whole transcriptomic sequencing

WES cohort (n = 76) WTS cohort (n = 58)

Median age (range) 52.5 (31–71) 53 (31–71)
Subtype
 HRpos 40 (52.6%) 29 (50.0%)
 TNBC 36 (47.4%) 29 (50.0%)

Prior Line of Tx
 None 15 (19.7%) 10 (17.2%)
 1 38 (50.0%) 29 (50.0%)
 2 23 (30.3%) 19 (32.8%)

Prior cyclin-depend-
ent kinase 4/6 
inhibitor

 Yes 17 (22.4%) 14 (24.1%)
 No 59 (77.6%) 44 (75.9%)

Prior anthracycline
 Yes 50 (65.8%) 44 (75.9%)
 No 26 (34.2%) 14 (24.1%)

Prior taxanes
 Yes 72 (94.7%) 56 (96.6%)
 No 4 (5.3%) 2 (3.4%)

PFS6
 Responder 28 (36.8%) 20 (34.5%)
 Nonresponder 48 (63.2%) 38 (65.5%)

PD-L1 (SP142)
 Positive 16 (21.1%) 15 (25.9%)
 Negative 60 (78.9%) 43 (74.1%)
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TMB was associated with favorable outcomes

The median TMB in the WES cohort was 5.3 mut/Mb (rang-
ing from 1.6–200.3). The median TMB by subtypes was 
6.0 mut/Mb (range 1.9–93.5) for HRpos breast cancer and 
4.7 mut/Mb (range 1.6–200.3) for TNBC. PFS6-respond-
ers show no significantly different TMB values compared 
with PFS6-nonresponders (median TMB 6.6 vs. 5.1 mut/
Mb, p = 0.309, Fig. 1b). By using a TMB cutoff of 8 Mut/

Mb, TMB-high patients showed higher PFS compared 
with TMB-low patients without statistical significance 
(median PFS 8.0 months, 95% CI 5.6–14.6 for TMB-high 
and 4.3 months, 95% CI 3.0–5.6 for TMB-low, p = 0.07, 
Fig. 1c), with long responders in both TMB-high and TMB-
low groups. The tendency of PFS difference was observed 
in TNBC but not HRpos (Fig. 1d, e).

Eight patients harbored mutations in mismatch repair 
genes (MMR deficient patients), five had somatic mutations, 

Fig. 1  Tumor mutation burden and efficacy. a Kaplan–Meier curves 
showing the progression-free survival (PFS) according to TP53 muta-
tion status. The red line represents the mutant group, and the blue line 
denotes the wild-type group. Censored data are marked with vertical 
segments. The risk table is shown below the curves; the log-rank p 
value is shown. The right table presents the PFS6 rate according to 
TP53 mutation status. b Box plots illustrate the log value of tumor 
mutation burden (TMB) according to the PFS6 group; each dot 
represents a single patient. The p value is shown. c Kaplan–Meier 

curves showing the PFS according to TMB-high or TMB-low status. 
The red line represents the TMB-high group, and the blue line indi-
cates the TMB-low group. d, e The Kaplan–Meier curves show the 
PFS according to TMB-high or TMB-low among TNBC and HRpos 
patients, respectively. f The Kaplan–Meier curves show the PFS 
according to MMR status. Censored data are marked with vertical 
segments. The risk table is shown below the curves; the log-rank p 
value is shown. Patients who achieved PFS ≥ 6 months were defined 
as PFS6-responders and otherwise as PFS6-nonresponders
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and three had germline mutations. Although MMR defi-
cient patients tended to have higher PFS6 rates (50.0% vs. 
31.7%, p = 0.433) and PFS compared with other patients, 
the differences were not statistically significant (median PFS 
6.0 months, 95% CI 5.5–not available [NA] vs. 4.4 months, 
95% CI 3.0–5.6, p = 0.61; Fig. 1f).

HRD tended to show poor outcomes

As HRD is an important feature of breast cancer and sus-
ceptibility to DNA-damaging agents in breast cancer is com-
mon [26], we analyzed whether there was any association 
between mutational signatures and the efficacy of eribulin 
and nivolumab. We found that signature 3 (Sig3), which is 
related to HRD tumors [27], was frequently observed in our 
cohort (Fig. 2a). PFS6-nonresponders tended to have higher 
Sig3 proportions compared with PFS6-responders without 
statistical significance (p = 0.148, Fig. 2b). This tendency 
was observed in HRpos but not in TNBC (p = 0.163 for 
HRpos and p = 0.927 for TNBC; Supplementary Figure 2a). 
The PFS analysis performed after selecting patients with the 
top 30% Sig3 proportion values showed significantly shorter 
PFS for the high signature 3 group (median PFS 2.6 months, 
95% CI 2.2–5.6 vs. 5.6 months, 95% CI 5.3–8.3, p = 0.008, 
Fig. 2c). PFS differences were observed in both HRpos and 
TNBC (Supplementary Figure 2b).

We investigated the HRD and outcomes by dividing the 
patients according to their HRD-related gene mutation sta-
tus (Fig. 2d). When MMR deficient patients were excluded, 
patients with somatic HRD-related gene mutations showed 
significantly lower PFS6 rates than other patients (Table 2). 
In addition, patients harboring somatic HRD-related gene 
mutations showed significantly shorter PFS compared with 
other patients (median PFS 3.5 months, 95% CI 2.2–NA 
vs. 5.5 months [95% CI 4.3–6.9], p = 0.02; Supplementary 
Figure 2c); these results were more evident after excluding 
MMR deficient patients (median PFS 2.6 months, 95% CI 
1.2–NA vs. 5.4 months, 95% CI 4.3–6.8, p = 0.005, Fig. 2e). 
This tendency was significant in HRpos and not in TNBC 
(p = 0.007 for HRpos and p = 0.18 for TNBC; Supplemen-
tary Figure 2d).

Next, we investigated the HRD score, which represents 
the degree of DNA damage caused by HRD. PFS6-non-
responders tended to have higher HRD scores than PFS6-
responders without statistical significance (median HRD 
score: 51 vs. 39.5, p = 0.171; Fig. 2f). When patients were 
divided into two groups by median HRD score, which was 
44, patients with high HRD scores showed lower PFS6 
rates (23.7% vs. 50.0%, p = 0.031) and significantly shorter 
PFS compared to patients with low HRD scores (median 
PFS 4.2 months, 95% CI 2.6–5.6 vs. 6.5 months, 95% CI 
5.3–14.3], p = 0.025, Fig.  2g). This tendency was also 
observed when we analyzed patients by subtype without 

statistical significance (p = 0.12 for HRpos and p = 0.37 for 
TNBC; Supplementary Figure 2e).

We applied the same gene list to a previously reported 
external genomic dataset from a clinical trial of eribulin plus 
pembrolizumab for HRpos by Keenan et al. [8] and observed 
that patients with and without HRD-related gene mutations 
showed similar PFS6 rates (38.5% vs. 35.7%, p = 1.0) and 
PFS (p = 0.33; Supplementary Figure 2f).

Mutational signature 25 was associated with poor clinical 
outcomes

To determine whether other mutational signatures were asso-
ciated with clinical outcomes, we compared other mutational 
signatures between PFS6-responders and PFS6-nonrespond-
ers. Among the signatures, signature 25 (Sig25) was more 
frequently observed in PFS6-nonresponders (22.9% in PFS6-
nonresponders and 3.6% in PFS6-responders, p = 0.047).

The Sig25 pattern, which was lacking in 64 patients, 
was identified in 12 patients, among whom 9 had prior sys-
temic treatments. Patients with Sig25 showed significantly 
shorter PFS compared with patients without it (median PFS 
3.7 months, 95% CI 2.6–NA vs. 5.6 months, 95% CI 4.5–6.9, 
p = 0.01; Fig. 3a). This tendency was observed in both sub-
types (p = 0.08 for HRpos and p = 0.2 for TNBC; Fig. 3b, c).

Copy number variations were not associated with clinical 
outcomes

The copy number variation (CNV) burden did not signifi-
cantly differ between PFS6-responders and PFS6-nonre-
sponders (p = 0.629; Supplementary Figure 3a); this was 
also consistent when the CNV burden was adjusted for 
tumor purity, although PFS6-responders tended to have a 
higher adjusted CNV burden (p = 0.330; Supplementary 
Figure 3b). When patients were divided into two groups by 
median CNV burden value, there was no significant PFS 
difference between groups (median PFS 5.6 months, 95% 
CI 4.8–10.3 for CNV burden high vs. 4.2 months, 95% 
CI 3.0–6.4 for CNV burden low, p = 0.29; Supplementary 
Figure 3c).

Transcriptomic profiles and outcomes

Breast cancer expression subtypes showed a nonsignificant 
association with clinical outcomes

When we divided the breast cancer expression subtypes 
(PAM50 subtype) according to expression features [28], we 
identified nine luminal A, 14 luminal B, 21 basal, 11 HER-
2, and three normal-like samples. The normal-like subtype 
had the highest PFS6 rate (66.7%), whereas the basal sub-
type had the lowest (19.0%). The PFS results showed similar 
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Fig. 2  Homologous recombination deficiency and efficacy. a Heat-
map showing the signature proportions in each patient. Each column 
represents a patient, and each row represents a mutational signature. 
On the upper side, each patient is marked according to the tumor sub-
type and the PFS6 group as the legend. In the heatmap, the degree of 
redness correlates with the proportion of the signature. b Box plots 
showing the proportion of signature 3 according to the PFS6 group. 
Each dot represents a patient. The p value is shown. c Kaplan–Meier 
curves showing the progression-free survival (PFS) according to high 
signature 3 or low signature 3. The red line represents the high sig-
nature 3 group, and the blue line denotes the low signature 3 group. 
Censored data are marked with vertical segments. The risk table is 
shown below the curves; the log-rank p value is shown. d Landscape 
plot showing the HRD-related gene mutation status in patients. Each 
column represents a patient, and each row represents a gene. On the 
upper side, each patient is marked according to the tumor subtype 
and the PFS6 group as the legend. The columns are ordered left to 

right by PFS from the longest to the shortest. The red marks indicate 
patients harboring somatic gene mutations, while the grey marks 
indicate patients harboring germline gene mutations. e Kaplan–
Meier curves show the progression-free survival (PFS) according to 
HRD-related gene mutation status. The red line represents patients 
with a somatic mutation, and the blue line represents those without 
a somatic mutation in the HRD-related genes. Censored data are 
marked with vertical segments. The risk table is shown below the 
curves. The log-rank p value is shown. f Box plots showing the HRD 
score according to the PFS6 group. Each dot represents a patient; the 
p value is shown. g Kaplan–Meier curves showing the PFS according 
to HRD scores. The red line represents the high HRD score group, 
and the blue line indicates the low HRD score group. Censored data 
are marked with vertical segments. The risk table is shown below 
the curves; the log-rank p value is shown. Patients who achieved 
PFS ≥ 6  months were defined as PFS6-responders and otherwise as 
PFS6-nonresponders
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trends to the PFS6 rate results, although differences between 
subtypes were not statistically significant (p = 0.26; Fig. 4).

Cell cycle‑related signatures were associated with poor 
outcomes

We observed 336 and 788 upregulated genes in PFS6-
responders and PFS6-nonresponders, respectively. Using 
GO analysis, we found that the term most enriched by 
genes upregulated in PFS6-responders was angiogenesis; 
however, it was not significant according to the Benjamin p 
value (p = 0.12). Genes upregulated in PFS6-nonresponders 
were enriched in biological terms involved in the cell cycle 
and DNA repair or damage (Fig. 5a). Among these terms, 
cell cycle and mitotic biological processes were consistently 
enriched in PFS6-nonresponders when the analyses were 
performed within each subtype (Fig. 5b).

We then used gene set enrichment analysis to determine 
whether cell cycle pathways were significantly enriched 
in PFS6-nonresponders. Hallmark E2F targets and G2M 
checkpoint pathways were consistently enriched in PFS6-
nonresponders among the whole cohort, HRpos, and TNBC 
patients (Fig. 5c; Supplementary Figure 4a, b). When gene 
set enrichment analysis using the external dataset was per-
formed after dividing patients according to the PFS6 status, 
we also observed a tendency to enrich hallmark E2F tar-
gets and G2M checkpoint pathways in PFS6-nonresponders 
(Fig. 5d). We estimated the enrichment score of the E2F 
pathway signature in each cohort sample using single-sam-
ple gene set enrichment analysis. We found that patients with 

Table 2  PFS6 rate according to HRD-related gene mutation status

HRD-gene mutation status PFS6 rate p value

All patients
 Somatic mutation 0.142
  Yes 11.1% (1/9)
  No 40.3% (27/67)

 Germline mutation 0.551
  Yes 66.7% (2/3)
  No 35.6% (27/73)

 Somatic/germline mutation 0.518
  Yes 25.0% (3/12)
  No 39.1% (25/64)

Excluding MMR defect patients
 Somatic mutation 0.046
  Yes 0% (0/7)
  No 39.3% (24/61)

 Germline mutation 1.0
  Yes 50.0% (1/2)
  No 34.8% (23/66)

 Somatic/germline mutation 0.144
  Yes 11.1% (1/9)
  No 39.0% (23/59)

Fig. 3  Mutational signature 25 and PFS. a Kaplan–Meier curves 
showing PFS according to Sig25 in the whole WES cohort and b 
HRpos and c TNBC, respectively. The red line represents the patients 
with signature 25, and the blue line denotes the patients without sig-

nature 25 group. Censored data are marked with vertical segments. 
The risk table is shown below the curves; the log-rank p value is 
shown
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high E2F pathway signature scores (≥ median value) showed 
significantly shorter PFS compared to patients with low E2F 
pathway signature scores (median PFS 4.8 months, 95% CI 
2.6–5.6 vs. 5.8 months, 95% CI 4.3–12.9, p = 0.03, Fig. 5e). 
These trends were consistent when each subtype was ana-
lyzed (Supplementary Figure 4c, d). These results seemed 
to be associated with TP53 mutations, as patients harboring 
TP53 mutations had significantly higher E2F target enrich-
ment scores (p = 0.006; Fig. 5f).

B‑cell infiltration and AP gene set enrichment were 
associated with favorable outcomes

As immune-related genes are often highly expressed in 
tumors from immunotherapy responders, we examined 
immune-related signatures to determine whether any of 
these signatures were significantly associated with effi-
cacy. However, major immune-related expression signa-
tures from previous literature [23] did not differ between 
PFS6-responders and PFS6-nonresponders (Supplemen-
tary Figure 5a). None of the TIL subsets significantly dif-
fered between PFS6-responders and PFS6-nonresponders 
(Fig. 6a, Supplementary Figure 5b). As a proportion of 
PFS6-responders might have responded to eribulin but 

not to nivolumab, we further defined long responders 
(PFS ≥ 18  months) and compared the immune-related 
signatures and TIL profiles of such patients with those 
of other patients. Although none of the immune-related 
signatures significantly differed between long responders 
and other patients, the proportions of naïve B-cells and 
plasma cells were significantly higher in tumors from long 
responders (Fig. 6b, Supplementary Figure 5c). Among 
these two cell subtypes, patients with a higher proportion 
of naïve B-cells (≥ median value) showed significantly 
longer PFS (median PFS 5.6 months [95% CI 4.0–8.3] vs. 
4.2 months [95% CI 2.6–5.6], p = 0.043, Fig. 6c).

Naïve B-cells are involved in the AP process, and we 
hypothesize that this result aligns with a previous study 
that suggested that upregulated AP gene set expression was 
associated with the response to eribulin plus immunother-
apy [8]. AP gene set enrichment scores were high in PFS6-
responders, although the differences were not statistically 
significant (Fig. 6d). In addition, when the patients were 
divided according to the AP gene set enrichment scores, 
patients with high scores (≥ median value) showed signifi-
cantly longer PFS compared with other patients (median 
PFS 5.6 months [95% CI 5.3–12.9] vs. 4.2 months [95% CI 
2.6–5.6], p = 0.008, Fig. 6e).

Fig. 4  PAM50 subtype and efficacy. On the left, Kaplan–Meier 
curves for PFS according to PAM50 subtypes are shown. Each color 
represents each PAM50 subtype as annotated in the legend. Cen-
sored data are marked with vertical segments. The risk table is shown 

below the curves; the log-rank p value is shown. On the right, a table 
summarizing PFS6 rates according to PAM50 subtypes are shown, 
with p values by Fisher’s exact test in the bottom
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Multivariate analysis of molecular profiles 
associated with clinical outcomes

We performed a multivariate Cox proportional hazard 
analysis of patients with DNA and RNA data, using 
potential biomarkers associated with PFS in patients who 

received eribulin plus nivolumab (Table 3). In the multi-
variate analysis, high TMB (hazard ratio HR 0.45, 95% 
CI 0.21–0.94, p = 0.033) and high AP gene set enrichment 
scores (hazard ratio 0.46, 95% CI 0.23–0.93, p = 0.031) 

Fig. 5  Transcriptomic comparisons between PFS6-responders and 
PFS6-nonresponders. a Enriched gene ontology terms in PFS6-non-
responders. b Enriched gene ontology terms in PFS6-nonresponders 
of HRpos (yellow) and TNBC (purple), respectively. c Gene set 
enrichment analysis results comparing PFS6-responders and PFS6-
nonresponders in the whole WTS cohort, showing E2F target and 
G2M checkpoint pathways being significantly enriched in PFS6-
nonresponders. d Gene set enrichment analysis results comparing 
PFS6-responders and PFS6-nonresponders in the external dataset, 
showing E2F target and G2M checkpoint pathways being signifi-

cantly enriched in PFS6-nonresponders. e Kaplan–Meier curves show 
the progression-free survival (PFS) according to E2F target enrich-
ment scores. The red line represents the high E2F target enrichment 
score group, and the blue line denotes the low E2F target enrichment 
score group. The censored data are marked with vertical segments. 
The risk table is shown below the curves; the log-rank p value is 
shown. Patients who achieved PFS ≥ 6 months were defined as PFS6-
responders and otherwise as PFS6-nonresponders. f Boxplot showing 
E2F targets enrichment scores according to TP53 mutation status. 
Each dot represents a patient. The p value is shown



 Cancer Immunology, Immunotherapy (2024) 73:197197 Page 12 of 16

Fig. 6  Immune-related gene signatures and the outcome. a Heatmap 
shows the estimation of abundance of each cell types by CIBER-
SORT analysis. Each column represents each patient, and each row 
represents each cell type. In the upper side, each patient is marked 
according to the tumor subtype and the PFS6 group as the legend. 
In the heatmap, the degree of redness correlates the estimation. b 
Box plots showing the naïve B-cell and plasma cell infiltration pro-
portions according to the long response groups. Each dot represents 
each patient. The p value is shown. c The Kaplan–Meier curves show 
progression-free survival (PFS) according to naïve B-cell infiltra-
tion. The red line represents the high naïve B-cell infiltration group, 
and the blue line denotes the low naïve B-cell infiltration group. 

Censored data are marked with vertical segments. The risk table is 
shown below the curves; the log-rank p value is shown. d The box 
plots show the antigen presentation (AP) gene set enrichment scores 
according to the PFS6 group. Each dot represents a patient; the p 
value is shown. e Kaplan–Meier curves show the PFS according to 
AP gene set enrichment scores. The red line represents the high AP 
gene set enrichment score group, and the blue line indicates the low 
AP gene set enrichment score group. The censored data are marked 
with vertical segments. The risk table is shown below the curves; the 
log-rank p value is shown. Patients who achieved PFS ≥ 6  months 
were defined as PFS6-responders and otherwise as PFS6-nonrespond-
ers
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were associated with longer PFS, while somatic HRD-
related gene mutations were associated with shorter PFS 
(hazard ratio 2.62, 95% CI 1.08–6.40, p = 0.034).

Discussion

Here, we described the genomic and transcriptomic profiles 
related to the efficacy of eribulin plus nivolumab in patients 
with HER-2-negative breast cancer from pretreatment tumor 
tissues. Our results suggest that high TMB and AP gene set 
enrichment is associated with good efficacy, whereas HRD, 
Sig25, and high E2F signature are associated with poor effi-
cacy. Although the eribulin plus immunotherapy combina-
tion regimen requires further evaluation for use in real-world 
clinical practice, the associations identified herein may have 
implications for the use of immunotherapy combination in 
these tumors.

TMB and MMR defects are closely related to each other, 
and both are related to immunotherapy in various types of 
cancer [29, 30]. TMB is associated with the good efficacy 
of eribulin plus immunotherapy [8], and similar results were 
observed in our trial cohort. However, the exact cutoff for 
high TMB in breast cancer remains to be elucidated [11]. 
Relatively low TMB in breast cancer compared to other 
immunogenic cancers suggests that a lower TMB cutoff may 
be appropriate, as in our study [31].

HRD causes impaired DNA repair and aberrant DNA 
fragmentation, contributing to increased neoantigens and 

activating innate immunity via the cGAS-STING pathway 
[32]. Therefore, it was hypothesized that HRD might serve 
as an immunotherapy biomarker. However, a recent TCGA 
analysis showed that most cancer types displaying HRD had 
immunologically cold tumors [33]. A clinical trial of immu-
notherapy for ovarian cancer showed an objective response 
rate of only 6–22%, regardless of HRD status [34]. These 
results imply that the use of HRD as a biomarker for immu-
nogenicity is complicated. Although the detailed mechanism 
remains elusive, one of the hypotheses for HRD not act-
ing as immunogenic is that DNA changes caused by HRD, 
which consist of LOH, TAI, and LST, are larger-scale DNA 
changes compared to single nucleotide variants and mis-
matches [18]. Therefore, DNA changes induced by HRD 
may act similarly to the CNV burden, which inversely cor-
relates with immunogenicity [35]. Furthermore, the chronic 
activation of the cGAS-STING pathway can induce an 
immunosuppressive tumor microenvironment [36]. There-
fore, using the HRD status as a biomarker for clinical trials 
using immunotherapy requires caution, as the status seems 
more complex than that of TMB.

We found that Sig25 expression was associated with poor 
efficacy. Sig25 was first detected in Hodgkin’s lymphoma 
cell lines from patients who underwent chemotherapy 
[27, 37]. As both Hodgkin’s lymphoma and breast cancer 
treatments often involve anthracyclines, which are DNA-
intercalating agents, the signature may be associated with 
DNA damage caused by anthracyclines. Most patients with 
Sig25 in our cohort had received prior systemic treatment. 

Table 3  Cox proportional 
hazard analysis of biomarkers 
for PFS

CI confidence interval, HR hazard ratio

Feature Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Subtype
 HRpos Reference Reference
 TNBC 1.26 (0.72–2.20) 0.427 1.72 (0.88–3.36) 0.114

TMB group
 Low Reference Reference
 High 0.52 (0.26–1.03) 0.061 0.45 (0.21–0.94) 0.033

Somatic HRD-related gene status
 Wild type Reference Reference
 Mutated 2.52 (1.15–5.53) 0.022 2.62 (1.08–6.40) 0.034

Signature 25
 Low Reference Reference
 High 2.64 (1.13–6.19) 0.025 2.01 (0.83–4.90) 0.124

E2F target enrichment score
 Low Reference Reference
 High 1.87 (1.05–3.31) 0.033 1.43 (0.74–2.74) 0.284

AP gene set enrichment score
 Low Reference Reference
 High 0.46 (0.26–0.83) 0.009 0.46 (0.23–0.93) 0.031
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However, little is known about Sig25 expression. Therefore, 
further studies on the features related to Sig25 generation 
and their effect on the efficacy of the combination regimen 
are required.

The clinical relevance of TP53 mutations in breast cancer 
is not well established [38]. Nevertheless, TP53 mutations 
were associated with cell cycle-related signatures, and both 
were associated with poor efficacy in our study. While it is 
unclear whether an enhanced cell cycle is associated with 
resistance to immune checkpoint inhibitors [39, 40] based 
on our study, further studies focused on the development of 
biomarkers for the cell cycle, especially the E2F target gene, 
may provide additional information on resistance to chemo-
therapy and immunotherapy in patients with breast cancer.

We found that B-cell infiltration and enrichment of the 
AP gene set were associated with favorable outcomes, 
consistently with the biomarker analysis of eribulin plus 
pembrolizumab for HRpos [8]. Nonetheless, none of the 
T-cell subtype infiltrations or interferon-related signatures 
were associated with the outcomes. These results sup-
port the importance of MHC-II in BC immunotherapy of 
breast cancer [8]. In a previous study, highly naïve B-cell 
and memory B-cell signatures based on single-cell RNA 
sequencing of tumor-infiltrated B cells in breast cancers 
showed significantly prolonged survival [41]. Even though 
the relationships between TIL, tumor microenvironment, 
and tumor cells are extremely complex, pretreatment tumor 
biopsy samples could not represent all the features of the 
heterogeneous immune tumor microenvironment [42]. Thus, 
further studies with single-cell and spatial transcriptomics 
are warranted to dissect the immune microenvironment and 
determine biomarkers for the combination regimen. In addi-
tion, temporal changes in the tumor microenvironment after 
immunotherapy administration could be effective biomark-
ers for combination regimens. We collected temporal blood 
samples to evaluate biomarkers such as T cells and cytokines 
and intend to conduct further investigations.

The findings from genomic and transcriptomic profiles 
suggest that multiple factors influence treatment outcomes, 
rather than a single biomarker. Therefore, it is important to 
consider the complex associations and interactions between 
biomarkers and treatment outcomes. However, in real-world 
clinical practice, such comprehensive analyses are often not 
feasible, and obtaining sufficient biopsy samples of tumor 
tissues can be challenging. Further studies should focus on 
determining what to evaluate among the biomarkers for pre-
dicting the response to combination treatments, taking into 
account our study results. Additionally, noninvasive bio-
markers, such as nuclear medicine imaging to target tumor 
microenvironment components, may be utilized based on 
our findings on expression profiles [43, 44].

This study has some limitations. First, this study is an 
exploratory analysis with a largely descriptive nature. 

Findings in our study that contrast with previous knowl-
edge must be interpreted carefully, especially those from 
the HRD analysis, as there are likely many hidden vari-
ables affecting how HRD status influences the efficacy of 
the combination regimen. Second, the use of a combination 
regimen and the lack of a control arm make it difficult to 
unequivocally identify which effects are attributable to the 
treatments. The combination with chemotherapy could have 
either augmented or diminished the effects of immunother-
apy and vice versa. However, as combination regimens are 
becoming more prevalent when using immunotherapy, stud-
ies evaluating the biomarkers for the combination regimen 
are necessary to effectively measure the combined clinical 
and biological effects of each medication. Third, the tissues 
used in this study were obtained from stored tumor FFPE tis-
sues, not fresh ones. Nucleic acids, especially RNAs, could 
have been degraded in the FFPE tissues; therefore, there 
could have been biases. Further analysis of fresh tissues is 
required to determine the biomarkers for combination regi-
mens. Fourth, there was a lack of sufficient validation using 
external datasets. Therefore, it is necessary to confirm our 
findings in other cohorts.

In conclusion, we presented the genomic and transcrip-
tomic profiles linked to the combination of eribulin and 
nivolumab, along with several points requiring further inves-
tigation and clarification. Specifically, TMB and AP gene set 
enrichment were associated with favorable efficacies while 
HRD, Sig25, and cell cycle related signatures were associ-
ated with poor efficacies. Our study underscores the com-
plexity of using biomarkers like HRD, and the importance 
of cell cycle and B-cell-related markers. The need for fur-
ther research, particularly with additional cohorts, is empha-
sized to validate these preliminary findings and enhance the 
understanding of combination treatment in HER-2-negative 
breast cancer.
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