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Diagnostic utility of DNA methylation
analysis in genetically unsolved pediatric
epilepsies andCHD2episignature refinement
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Sequence-based genetic testing identifies causative variants in ~ 50% of indi-
viduals with developmental and epileptic encephalopathies (DEEs). Aberrant
changes in DNA methylation are implicated in various neurodevelopmental
disorders but remain unstudied in DEEs. We interrogate the diagnostic utility
of genome-wide DNA methylation array analysis on peripheral blood samples
from 582 individuals with genetically unsolved DEEs. We identify rare differ-
entially methylated regions (DMRs) and explanatory episignatures to uncover
causative and candidate genetic etiologies in 12 individuals. Using long-read
sequencing, we identify DNA variants underlying rare DMRs, including one
balanced translocation, three CG-rich repeat expansions, and four copy
number variants. We also identify pathogenic variants associated with epi-
signatures. Finally, we refine the CHD2 episignature using an 850K methyla-
tion array and bisulfite sequencing to investigate potential insights into CHD2
pathophysiology. Our study demonstrates the diagnostic yield of genome-
wide DNAmethylation analysis to identify causal and candidate variants as 2%
(12/582) for unsolved DEE cases.

The developmental and epileptic encephalopathies (DEEs) are the
most severe group of epilepsies, defined by frequent epileptiform
activity associated with developmental slowing or regression1. While
eachgenetic etiology is rare, withmore than 825 genes implicated2, the
cumulative incidence of DEEs overall is 1 in 590 children3. Currently, de
novo, X-linked, or recessively inherited pathogenic germline variants
are found in ~ 50% of individuals with DEEs who undergo genetic
testing4. These are identified by gene panels, exome sequencing (ES),
and now, genome sequencing (GS)5–7. A smaller subset is explained by
copy number variants (CNVs)8. Understanding the etiology guides
management, such as clinical trial participation, informs accurate
reproductive counseling, enables families to join gene-based support
groups, and facilitates the development of targeted therapies9–12. This,
in turn, improves outcomes but is not possible when the etiology is
unknown (“unsolved”)13–15.

Epigenetic modifications, which alter the DNA without inherently
changing the DNA nucleotide sequence, determine the etiology of
some individuals with neurodevelopmental disorders but have not yet

been studied in the DEEs. DNA methylation is an essential epigenetic
modification that regulates cellular gene expression by adding a
methyl (CH3) group to a DNA strand, typically at CpG sites. This can
occur through methylation of promoter CpGs, genomic imprinting,
and X-chromosome inactivation16. Rare epivariants, defined as rare
alterations in DNA methylation with or without identified underlying
DNA sequencealterations, contribute to humangenetic variation17, but
have also been shown to disrupt normalmethylation and transcription
to cause disease18,19. While DNAmethylation does not change the DNA
sequence itself, epivariants are often perpetrated by underlying in-cis
DNA changes, such as rare sequence variants, structural alterations,
and CG-rich repeat expansions17 that are difficult to identify by stan-
dard sequencing. One example is the methylation of CGG repeats in
the 5’ untranslated region (5’UTR) of FMR1 (MIM:309550) that
represses gene expression and causes Fragile X syndrome
(MIM:300624)20. Similarly, hypermethylation of the 5’UTR of Xylosyl-
transferase 1 (XYLT1, MIM:608124), leading to gene silencing, may
identify the “missing” allele in the recessive disease Baratela-Scott
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syndrome (BSS [MIM:615777])21. In both FragileX andBSS, the aberrant
methylation is due to the expansion of a CG-rich repeat that is difficult
to reliably detect using short-read sequencing. Rare epivariants, also
called rare differentially (hyper- and hypo-) methylated regions
(DMRs), are enriched in individuals with neurodevelopmental dis-
orders and congenital anomalies (ND-CA) compared to controls22.

In contrast to rare DMRs, which represent discrete genomic
regions with outlier methylation changes, genome-wide epigenetic
profiles identify a collection of distinct individual CpG sitemethylation
changes across the genome. These epigenetic profiles were first
implemented for cancer diagnostics with the introduction of the brain
tumor classifier in 201823. A growing number of rare diseases exhibit
methylation patterns, or “episignatures,” in the blood that are repro-
ducible among individuals with pathogenic variants within the same
protein domain, gene, or protein complex, yielding highly sensitive
and specific biomarkers24,25. Since episignatures in diagnostics of rare
neurodevelopmental disorders were first clinically validated and
implemented with the EpiSignTM assay in 201926, episignatures for
nearly 70 rare diseases have been published. Episignatures provide
strong evidence for genetic diagnosis, regardless of whether an
underlying pathogenic DNA variant is identified, and to resolve var-
iants of uncertain significance (VUS). Episignatures have been found
for neurodevelopmental disorders where epilepsy is part of the
phenotype25,27–30, but the diagnostic yield for DEEs has not been
determined. Furthermore, how these clinically relevant episignatures
might be harnessed to inform underlying disease biology and give
insights into potential distinct and overlapping pathogenic mechan-
isms among disorders is just beginning to be explored31.

Both rare DMRs and episignatures can be detected in peripheral
blood samples. Rare DMRs derived from individuals with ND-CA are
recapitulated across multiple tissue types, including blood and
fibroblasts22. Episignature classifiers for rare diseases are trained on data
obtained from blood-derived DNA and are, therefore, blood-specific.

Here, we assessed rare outlier DMRs and DNA methylation sig-
natures in peripheral blood-derived DNA from 582 individuals with
genetically unsolved DEEs (uDEEs, Fig. 1). We report our methylation
array data processing pipeline, MethylMiner32, which automates qual-
ity control, normalization, and implementation of an algorithm that
mines rare DNA methylation events17 in addition to interactive data
visualization. Using a combination of short- and long-read sequencing
(LRS), we identify variants underlying rare epivariants and epi-
signatures. Finally, we refine the robust episignature for the DEE gene
CHD2 (MIM:602119)25 to explore how clinically relevant episignatures
may give insights into underlying biology. For individuals with uDEEs,
we show that rare epivariants and episignatures uncover molecular
causes missed using standard sequence-based approaches.

Results
Discovery and validation of DMRs
To determine the ability of our analysis pipeline to robustly detect
rare, outlier DMRs, we included DNA from six positive controls with
genetic alterations: three individuals with heterozygous or homo-
zygous hypermethylation of XYLT1, and three individuals (two males
and one female) with hypermethylation of FMR1. The outlier DMR
analysis detected both rare DMRs (Supplementary Fig. 2, Supple-
mentary Data 3A). Additionally, we identified an XYLT1 heterozygous
hypermethylation carrier in our DEE cohort. Targeted X-chromosome
analysis in males identified complete methylation at the FMR1 locus in
both Fragile X males compared to the remaining cohort, all of which
were completely unmethylated at FMR1. FMR1 hypermethylation was
also higher (~ 75%) in the Fragile X female sample compared to the
other females with 25–50% methylation, likely due to random
X-inactivation. Thus, our methylation array analysis approach detects
outlier DMRs at known disease loci for the autosomes and sex
chromosomes.

Next, we assessed outlier DMRs in our cohort of 1194 individuals
(582 uDEEs) across 1226 array samples. We predicted n = 2184 total
DMRs for the autosomes, n = 49 DMRs for males on chromosome X,
n = 27 DMRs for females on chromosome X, and no DMRs on chro-
mosome Y (Supplementary Data 3B, D, F). After accounting for DMRs
overlapping across samples ( ≥ 50% probe overlap in the same direc-
tion of DNA methylation hyper- or hypo-methylation), we derived
n = 1545 unique DMRs for the autosomes (1009 hyper, 536 hypo),
n = 37 for males on chrX (26 hyper, 11 hypo), and n = 22 for females on
chrX (14 hyper, 8 hypo) (Supplementary Data 3C, E, G). Of the samples
with one or more outlier DMRs, the majority had only a single outlier
DMR (Supplementary Fig. 3).

To determine the robustness of our DMR calling algorithm, we (i)
assessed the reproducibility of DMRcalls in a subset of samples and (ii)
performed validation of DMRs using targeted EM-seq (Supplementary
Methods). Using replicate array data for 29 individuals, we found that
80%ofDMRswere replicated across different batches for an individual
(Supplementary Methods). We then used targeted EM-seq, a non-
bisulfite approach, to validate a subset of DMRs. We confirmed that
our positive control DMRs (XYLT1 and FMR1) could be detected in the
targeted EM-seq data (Supplementary Fig. 4). We then validated 29
outlier DMRsby targeted EM-seq in six individualswith uDEEs and four
familymembers (Supplementary Figs. 5, 6, and 12). In addition to DMR
validation, targeted EM-seq provides much higher resolution of the
extent of differential methylation than themethylation array (e.g. > 80
methylated CpG sites for the XYLT1 DMR by targeted EM-seq com-
pared to eight representative probes on array; Supplementary Data 4).
Thus, we detected and validated outlier DMRs at higher resolution
using an orthogonal approach.

Rare outlier DMRs in uDEEs
We narrowed down outlier DMR calls for individuals with uDEEs to
determine high-priority candidates for further study based on DMR
recurrence across multiple individuals, population frequency17, func-
tional annotations (Methods), andmanual inspection of DMRplots for
each DMR. We identified 12 individuals with uDEEs with one or more
rare, potentially disease-associated DMRs and performed follow-up
studies (Table 1, Supplementary Data 2A). One individual hadmultiple
DMRs due to a balanced translocation between chrX and chr13, four
individuals each had a DMR due to an expanded CG-rich repeat, and
seven individuals had DMRs due to underlying CNVs.

Rare outlier DMR analysis detects hypermethylation of chr13
due to X;13 translocation
One female with the DEE syndrome, epilepsy of infancy withmigrating
focal seizures (EIMFS), had 26 rare outlier hypermethylated DMRs
across chr13 (Fig. 2A, Supplementary Fig. 7), none of which were pre-
sent in > 23,000 controls17. The DMRs were replicated on a second,
independentmethylation array from the same individual and validated
using targeted EM-seq (Supplementary Fig. 6). Methylation array
analysis of both parents revealed that all rare hypermethylated DMRs
occurred de novo in the proband (Fig. 2B). Whole-genome Oxford
Nanopore Technologies (ONT) long-read sequencing also confirmed
the hypermethylated DMRs and identified a balanced translocation
between chrX and chr13 (Fig. 2C), annotated as 46,XX,t(X;13)
(q28;q14.2). The translocation provides amechanismwhereby random
X-inactivation induces hypermethylation on the portion of chr13q
attached to the large piece of the X chromosome. The translocation
breakpoints were confirmed by PCR and Sanger sequencing of per-
ipheral blood-derived DNA as chrX:152,092,342 to chr13:47,005,269
and chr13:47,005,271 to chrX:152,092,344 (GRCh38/hg38). Parental
methylation studies and short-read GS confirmed that the transloca-
tion occurred de novo, and SNP analysis revealed that the haplotype
containing the translocation was paternally derived. The translocation
is likely causative in this individual given the de novo occurrence,
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absence of clearly pathogenic sequence variants by trio sequence
(Supplementary Data 5), and report of a similar translocation in a
female individual with intellectual disability and bilateral
retinoblastoma33.

Rare outlier DMR analysis detects hypermethylation caused by
underlying triplet repeat expansions
We detected two individuals with uDEEs and two control individuals
with hypermethylation spanning the 5’UTR and intron 1 of the Casein
kinase 1 isoform epsilon (CSNK1E, MIM:600863, Fig. 3A) gene. Although
present in one control and reported in 6/23,116 controls17, an individual
with DEE and probable haploinsufficiency due to a de novo splicing
variant (c.885+1G>A) in CSNK1E has been reported34, suggesting fur-
ther study is warranted to determine if variation in this gene causes DEE.
Segregation analysis revealed that the hypermethylation in oneproband
was maternally inherited (Family 1, Supplementary Fig. 8), whereas the
other arose de novo (Family 2). After validation of hypermethylation

with targeted EM-seq for both probands (Supplementary Fig. 5), long-
read sequencing of the proband (genome, ~ 1500–3000bp) andmother
(targeted, ~ 1500bp) from Family 1 and the proband from Family 2
(genome, ~ 1100–3200bp) confirmed thepresence of an expandedCGG
motif in both (Fig. 3C), as previously reported in individuals with
hypermethylation of CSNK1E at fragile site FRA22A and reduced
expression in lymphoblastoid cells17. Through GeneMatcher35, we iden-
tified Family 3 consisting of a proband with the same CSNK1E hyper-
methylated DMR and CGG repeat expansion (genome, ~ 1300–2100bp)
inherited from his mother (genome, ~ 270–3500bp), who is mildly
affected by learning, speech, and sleep difficulties (Supplementary
Phenotype data). Expression analysis in available fibroblasts from
Families 2 and 3 showed that individuals with CSNK1E hypermethylation
had decreased expression of CSNK1E compared to hypermethylation-
negative controls (Fig. 3B). Analysis using the OUTRIDER algorithm36

confirmed “drop-out” of CSNK1E (ENSG00000213923) expression
compared to publicly available fibroblast controls37 (Fig. 3B,
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Table 1 | Summary of epivariants and underlying DNA sequence alterations identified in this study

Location Gene Direction Underlying DNA sequence
alteration

Inheritance Probands (n)

chr13 chr13:multiple Hyper X;13 translocation (p) de novo 1

Xp22 BCLAF3 Hyper CGG repeat (c) de novo 1

22q13 CSNK1E Hyper CGG repeat (c) Inherited 2 + 1 match

12q13 DIP2B Hyper CGG repeat (c) Inherited 1

16p11.2 STX1B Hyper Deletion (p) Inherited 1 + 3 family

2p16 CFAP36/CCDC104 Hyper Tandem duplication (b) Inherited 1

2q37.3 chr2:multiple Hypo Deletion (b) Inherited 1

15q24 LINGO1 Hypo Deletion (b) Inherited 4

List of epivariation findings from screening cohort with uDEEs for rare outlier DNA methylation changes. Molecular findings are considered p=pathogenic, c=candidate, and b=benign.
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Supplementary Fig. 9). Thus, we report 3 individuals with uDEEs har-
boring inherited and de novo CSNK1E hypermethylation due to an
underlying repeat expansion (n=4 LRS) that leads to approximately
50% reduction in CSNK1E expression (n= 3 RNA-seq drop-out). No other
candidate gene variants for these 3 probands were found by trio GS
analysis. However, due to finding this abnormality in seemingly unaf-
fected individuals, one control and one mother (Family 1) in our cohort
and others17, furtherwork is required to determinewhether variations in
CSNK1E cause or contribute to the DEEs.

A male individual with uDEE displayed maternally inherited
hypermethylation of the DIP2B (MIM:611379) promoter region and
exon 1 (Supplementary Fig. 10), due to an underlying CGG-repeat
expansion (~ 1300–2300bp), previously characterized as fragile site
FRA12A38. Loss of DIP2B is associated with an autosomal dominant
neurodevelopmental disorder (NDD) with variable penetrance,
including a DIP2B repeat expansion in an individual with epilepsy38.

We detected a rare hypermethylated DMR on the X chromosome
in exon 1 of an uncharacterized gene (BCLAF3/CXorf23) in a male with
uDEE (Supplementary Fig. 10), that was absent in >23,000 unaffected
controls (> 8000 males)17. We validated hypermethylation using tar-
geted EM-seq (Supplementary Fig. 5), and ONT long-read sequencing
of the proband and hismother revealed a novel CGG repeat expansion
in the proband ( ~ 2500–3000bp, Supplementary Fig. 11) inherited
from his mother, who had a smaller expansion ( ~ 1700–1900 bp). LRS
and standardX-inactivation studies39 show that themother has skewed
X-inactivation (SupplementaryData 6) of the allele with the expansion,
which explains why outlier hypermethylation is not detected from her
methylation array data. There are no other candidate variants for the
proband’s DEE by trio GS. Collectively, these results highlight the
detection of repeat-expansion-associated loci based on outlier DMR
analysis of DNA methylation array in individuals with uDEEs.

Rare outlier DMR analysis detects copy number variants
Seven individuals displayed DMRs that were found to be due to
underlying CNVs. One individual with uDEE displayed hypermethyla-
tion of the promoter region and TSS of STX1B (MIM: 601485, Fig. 4A),
an established epilepsy gene known to cause generalized epilepsywith
febrile seizures plus (GEFs + ). Interestingly, the proband was indeed
amember of a family displaying GEFs+ and other epileptic phenotypes
(Fig. 4B, Supplementary Phenotype data, Supplementary Fig. 12). We
validated the methylation finding in the family members for which
blood DNA was available (n = 6 including proband) using targeted EM-
seq (Supplementary Fig. 12). Genome sequencing of the proband
revealed a 1784bpdeletion encompassing thepromoter, theTSS, exon
1, and part of intron 1 of STX1B. Importantly, the deletion encompasses
the TSS and the first 10 amino acids of the protein encoded in exon 1
(Fig. 4D). We determined the exact breakpoints of the deletion using
Sanger sequencing and segregated it among the family members
(Fig. 4C, Supplementary Fig. 13). The deletion was confirmed in the
proband and present in the affected sister, affected mother, and
affected maternal grandmother. The deletion was absent in the unaf-
fected brother and father. Altogether, DNA methylation analysis
uncovered a presumably deleterious deletion encompassing an
essential portion of STX1B gene as a likely pathogenic finding for this
family.

One individual with uDEE and one control had a ~ 10–15 hypo-
methylated DMRs along chr2 spanning ≥ 144 Kb (Supplementary
Fig. 14A). Short and long-read sequencing analysis revealed this “DMR”
was due to a homozygous ~ 182 Kb deletion encompassing outlier
DMRs (Supplementary Fig. 14C). Segregation testing found that the
proband inherited the deletion from both parents, who were hetero-
zygous carriers. The CNV was also found on DNA methylation array
using the R tool conumee40 (Supplementary Fig. 14B).

Four individuals with uDEEs and one control had a 686 bp hypo-
methylated DMR in intron 2 of the gene LINGO1 (MIM:609791). DNA

methylation array analysis for a proband’s mother found that the
hypomethylation was at least in part maternally inherited, and short
and long-read sequencing revealed that hypomethylation was caused
by an underlying ~ 4 Kb inherited deletion (Supplementary Fig. 15).

Another individual with uDEE had hypermethylation in the 5’UTR
of CFAP36/CCDC104 (Supplementary Fig. 16A, C), which was not pre-
sent in > 23,000 controls17. DNA methylation array analysis of both
parents indicated itwasmaternally inherited (Supplementary Fig. 16B),
and targeted ONT long-read sequencing revealed a ~ 500Kb tandem
duplication from chr2:55,034,228-55,536,971 (GRCh38/hg38, Supple-
mentary Fig. 16D). Collectively, these results indicate that outlier DNA
methylation can be due to underlying CNVs and that the 850K
methylation array may not have sufficient coverage to detect smaller
CNVs. Due to the high population frequencies and inheritance status in
the cases of the chr2 deletion, LINGO1 deletion, and CFAP36/CCDC104
tandem duplication, we determined they are unlikely to contribute to
the individuals’ phenotypes. However, these findings illuminate how
detected DNAmethylation changes are influenced by underlying DNA
variation and highlight a novel copy number alteration in STX1B as a
cause of GEFs+ and other related phenotypes in a family.

Episignature screening validates pathogenicity of genetic diag-
noses and resolves variants of uncertain significance
We next performed episignature analysis, using the EpiSignTM v4
classifier, including 70 conditions associated with 96 genes/genomic
regions (Fig. 5). To validate our approach, we included several indivi-
duals with causal variants in episignature genes or CNVs and an indi-
vidual with a VUS. These included sixteen individuals with variants in
CHD2 (n = 15 pathogenic, n = 1 VUS) and one individual each with a
pathogenic variant in KDM5C, SETD1B, KMT2A, or SMARCA2 (Supple-
mentary Data 2B). We also included two individuals with CNVs,
including chr17p11.2 deletion and duplication. Fifteen of the indivi-
duals with variants in CHD2 were positive for the epileptic encepha-
lopathy of childhood (EEOC) episignature25, also known as the
developmental and epileptic encephalopathy 94 (DEE94) episignature.
However, one individual with a VUS in CHD2 was negative for the
episignature, and in combination with other clinical evidence the VUS
was reclassified as likely benign (Supplementary Phenotype data). The
individuals with variants in KDM5C (MIM:314690), SETD1B
(MIM:611055), KMT2A (MIM:159555), and SMARCA2 (MIM:600014)
were all positive for the episignatures associated with their disorders.
While these individuals were considered solved before episignature
screening, the findingwas used to support the genetic diagnosis of the
individual with a KDM5C variant.

Additionally, we identified two individuals with inconclusive
results for episignatures despite definitive genetic and clinical findings
for the associated syndromes. Inconclusive findings are caused by
methylation profiles that partially overlap existing signatures but are
not a definitive match. This included an individual with a 17p11.2
deletion inconclusive for the Smith-Magenis syndrome episignature
(SMS_del) and a female individual with a 17p11.2 duplication incon-
clusive for the Potocki-Lupski syndrome episignature (PTLS, Supple-
mentary Fig. 17). In each case, the inconclusive episignature finding is
concordant with the genetic diagnosis but yields an inconclusive result
potentially attributable to variability introduced by differential CNV
breakpoints. Because of this and other factors, inconclusive EpiSignTM

results are reported with the caveat that further follow-up or investi-
gationmaybewarranted if there is a clinical phenotype consistentwith
the inconclusive episignature in question.

Episignature screening solves genetically unsolved DEEs
We then tested our cohort of 582 individuals with uDEEs for 70 clini-
cally validated episignatures, leading to a likely diagnosis in five indi-
viduals (Table 2). All methylation variant pathogenicity (MVP) scores
for episignatures and detailed genomic variant information are in
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Fig. 4 | Rare outlier DMR analysis identifies copy number deletion in a family
with GEFs + . A DMR plot depicting outlier hypermethylation of the STX1B pro-
moter and TSS in a proband with uDEE detected through epivariation analysis.
BPedigree for the immediate familymembers indicating that the inheritanceof the
hypermethylation (red) and copy number deletion (detected through genome
sequencing of the proband shown in Fig. 3D) resides on the maternal side. The
arrow points to the proband. C Sanger sequencing validation of the copy number
deletion breakpoints in the proband, affected sister, mother, and maternal
grandmother. Inserted “CACC” sequence is present between the mapped break-
points. The father andunaffected brother hadno PCRproduct at the same reaction

conditions, indicating they did not harbor the deletion. Primer pairs with one
partner located within the deletion on each side of the breakpoint were used to
amplify the wild-type allele as a control (Supplementary Fig. 13). D IGV view of
genome sequencing data showing a 1784 bp heterozygous deletion encompassing
part of intron 1, exon 1, the TSS, and the promoter of STX1B. The reads are colored
by insertion size andpair orientation and viewed aspairs. The redpairs, which span
the breakpoints of the deletion, indicate that the insertion size is greater than
expected. The “CACC” insertion sequence is present in the soft clipped
bases (not shown).
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Supplementary Data 2C. Two unrelated individuals with uDEEs were
positive for the KBG syndrome episignature (KBGS_MRD23) caused by
pathogenic variants in ANKRD11 (Supplementary Figs. 18 and 19).
Exome or genome sequencing analysis revealed de novo pathogenic
stop-gain variants in both individuals, and phenotypes for each indi-
vidual are consistent with the diagnosis (Supplementary Phenotype
data). One proband had affected siblings and family members (n = 8,
Supplementary Fig. 19). However, none harbored the ANKRD11 epi-
signature and neither affected sibling harbored the variant, indicating
that there is likely a different explanation for this familial epilepsy. One
individual with uDEE was positive for the episignature associated with
SETD1B (Supplementary Fig. 20). Exome sequencing revealed a
pathogenic stop-gain variant in SETD1B. Another individual with uDEE
harbored the episignature for TET3 and had a maternally inherited
pathogenic stop-gain variant in TET3 on GS (Supplementary Fig. 21).
This remains the likely cause of the individual’sDEE as themother has a
milder phenotype including macrocephaly and learning difficulties
(Supplementary Phenotype data). One male individual with uDEE was
positive for the UBE2A episignature (Supplementary Fig. 22).
Through exome sequencing, we identified a predicted damaging
maternally inherited missense variant absent in gnomAD (c.376G >A,
p.Ala126Thr). Although the variant does not reach likely pathogenic
classification using existing ACMG criteria, the prediction scores
(REVEL =0.776, CADD= 26.4, and PolyPhen-2 = 1.00) support patho-
genicity; the variant is maternally inherited in an X-linked intellectual
disability disorder; and the individual shares multiple phenotypic

features with UBE2A disorder. Thus, the variant has been determined
to be the most likely genetic cause of disease. Another male individual
with uDEE was positive for the episignature for the SMS gene on
chromosome X (Supplementary Fig. 23). Through ES, we identified a
maternally inherited, likely pathogenicmissense variant (CADD= 24.2)
in the SMS gene.

Of the high-confidence episignature findings, only one individual
had an established genetic diagnosis in another gene. This individual
harbored a de novo variant in PTEN with a consistent phenotype of
macrocephaly and focal epilepsy but also had the episignature for
KDM2B. Further analysis identified a paternally inherited missense
variant in KDM2B. We performed methylation array analysis for the
unaffected father and found that he, too, harbored the KDM2B epi-
signature. This variant is predicted to be likely pathogenic (LP) by
ACMG criteria due to its putative effect on splicing regulation, though
assessment of this variant with SpliceAI predicts that it does not have a
high likelihood of affecting splicing (Δ score for Donor Gain:0.01).
When this criterion is taken away, the designation of LP is reduced to a
VUS; other computational predictors assess the impact to be uncertain
(REVEL =0.517). Thus, while it is unlikely that this KDM2B variant
explains the individual’s phenotype, it still represents an underlying
DNA change detected through episignature screening, and it remains
possible that it has a modifying effect on phenotype. Collectively, we
have identified positive episignatures and causal genetic etiologies in
five previously unsolved individuals with DEEs through episignature
screening.
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Fig. 5 | Summary methylation variant pathogenicity (MVP) score for all indi-
viduals positive for EpisignTM v4 episignature analysis. A Methylation Variant
Pathogenicity (MVP) score (between 0 and 1) was generated to represent the
confidence of prediction for the specific episignature on the EpiSignTM v4 clinical
classifier that the SVM was trained to detect. Each colored circle represents a

different individual and its associated MVP score for each of the episignatures on
the EpiSignTM v4 clinical classifier. Final classification for a specific EpiSignTM dis-
order includes a combination of MVP score, hierarchical clustering, and multi-
dimensional scaling (MDS) review.

Table 2 | Summary of episignatures and causative sequence variants identified in this study

Gene Signature MVP Genomic Variant (GRCh38/hg38) Consequence Inheritance

ANKRD11 KBGS/
MRD23

0.854 chr16:89,284,030G >A p.Arg838Ter (p) de novo

0.989 chr16:89,279,671 C > A p.Glu2291Ter (p) de novo

SETD1B IDDSELD 0.763 chr12:121,822,939C > T p.Arg1454Ter (p) Unknown

TET3 BEFAHRS 0.327 chr2:74,102,031 dup p.Thr1749HisfsTer5 (p) Inherited (mat)

UBE2A MRXSN 0.149 chrX:119,583,172G >A p.Ala126Thr (p) Inherited (mat)

SMS MRXSSR 0.319 chrX:21,972,570C >G p.Arg110Gly (p) Inherited (mat)

KDM2B KDM2B 0.982 chr12:121,520,986C >G p.Arg349Pro (u) Inherited (pat)

List of episignature findings from screening uDEEs. Methylation Variant Pathogenicity (MVP) scores shown. Molecular findings are considered p=pathogenic or u=variant of uncertain significance.
Inheritance is listed as de novo,mat maternal, pat paternal.

Article https://doi.org/10.1038/s41467-024-50159-6

Nature Communications |         (2024) 15:6524 8



An additional 40 individuals with DEEs (n = 32 unsolved, n = 8
solved) and nine controls had inconclusive results for episignatures,
consistent with the rate of inconclusive results in previous studies41. Of
the individuals with DEEs, 4/40 were run across multiple methylation
array batches. Three individuals did not reproduce their inconclusive
episignature result in the other sample(s). While one individual’s
inconclusive result did replicate across the different batches, no
pathogenic variants were found by GS in the associated genes(s). Of all
the individuals with available sequencing data (n = 27), none harbored
pathogenic variants in the genes associatedwith episignature findings.
While some had overlapping clinical features, most were discordant
with the described phenotypes for their inconclusive episignature
finding. Additional follow-up will be required to determine whether
these inconclusive results are due to array artifacts or have underlying
biological or disease-associated meaning. If technical artifacts are
ruled out, an inconclusive result may be caused by episignatures in
other genes that are yet tobedefined and trained against for specificity
of the classifier.

Redefining the CHD2 episignature on the 850K EPIC array
While episignatures are proven to be clinically useful for diagnosis,
little work has been done to investigate how episignatures may inform
disease biology by studying DMRs that may impact gene expression.
Here, we performed refinement and in-depth analysis of the epi-
signature for the DEE gene CHD2. The CHD2 episignature was origin-
ally derived using overlapping 450K and 850KDNAmethylation array
probes representing individual CpG sites in n = 9 individuals with
pathogenic CHD2 variants25. We refer to this signature as the CHD2
450K episignature (Fig. 6A upper, Supplementary Fig. 24A, Supple-
mentary Data 7). Here, we refine the CHD2 episignature exclusively on
850K EPIC methylation array probes with data from a cohort of n = 29
individuals with pathogenic CHD2 variants (Fig. 6A lower, Supple-
mentary Fig. 24B, Supplementary Data 7). We refer to this signature as
the CHD2 850K episignature. Of the 200 probes included in the CHD2
850K episignature, 79/200 are specific to the 850K EPIC array.

Comparison of the CHD2 episignature to 55 other clinically
validated episignatures
We then compared theCHD2450K and 850K episignatures to 55 other
NDD episignatures (57 total including CHD2)31 by examining shared
probes (Fig. 6B, Supplementary Fig. 25), Euclidean clustering (Fig. 6C),
probe mean methylation differences (Supplementary Fig. 26), and
functional annotations (Supplementary Fig. 27). As expected, the CHD2
850K episignature shares themost probe overlap with the CHD2 450K
episignature (86/200 or 43%, Fig. 6B, Supplementary Fig. 25). Euclidean
clustering was used to examine the relatedness of the episignatures by
probe overlap and directionality. The CHD2 850K episignature shares
the closest branchpoint with the MRXSCJ episignature for KDM5C of
which it shares 7% of its top 500 DMPs. Collectively, both 450K and
850K episignatures do not share immediate branches (other than the
primary branchpoint) withmany other episignatures. Thismay indicate
different sets of predominant pathways underlying CHD2 pathophy-
siology compared to the other episignatures. Additionally, the CHD2
850K episignature represents more hypermethylated regions than the
CHD2 450K episignature, as depicted by the mean methylation dif-
ferences in Fig. 6C and Supplementary Fig. 26. We also performed
functional annotation of episignature probes for CpG characteristics
and gene regions in relation to the 55 other NDD episignatures (Sup-
plementary Fig. 27). We found that both CHD2 850K and 450K DMPs
map to predominately the coding regions of genes (46% and 41%,
respectively) with a significant difference in the distribution of DMPs in
these regions compared with the background probe distribution
(P < 9.06 × 10−69 and P < 2.02 × 10−79, respectively). Though the CHD2
850K episignature represents a higher portion of interCGI (interCpG
island) regions compared with the 450K episignature (43% vs. 31%,

respectively), both are enriched in interCGI regions relative to back-
ground probe distribution (P < 2.26 × 10−121 and P < 9.17 × 10−144).

The CHD2 episignature is associated with differentially methy-
lated regions
Since CHD2 encodes a chromatin remodeler that has been shown to
regulate gene expression42,43, we investigated whether individual epi-
signature probes are contained within larger DMRs between cases and
controls. DMRs could potentially provide a link to downstream gene
expression. We first investigated DMRs in an unbiased genome-wide
manner by calling DMRs from the 850K DNA methylation array data
(n = 16 CHD2, n = 18 controls) using bumphunter44 and DMRcate45. We
predicted 1684 DMRs from bumphunter and 963 DMRs from
DMRcate. These DMRs were intersected, requiring an overlap in the
same direction (hyper/hypo) of at least 50 bp, to derive a high-
confidenceDMR list of 712 overlapping regions (349 hyper, 363 hypo).
Representative images of these DMRs are shown in Supplementary
Fig. 28. These DMRs directly coincide with 86/200 (43%) CHD2 450K
episignature probes and an increased 90/200 (45%) CHD2 850K epi-
signature probes (Supplementary Fig. 29, Supplementary Data 8).
Thus, the CHD2 episignature is characterized by DMRs, and this
overlap increases by four probes for the CHD2 850K episignature.

Increased CpG resolution and genomic coverage of differen-
tially methylated regions using whole genome-bisulfite
sequencing
Due to limited genomic coverage, DNA methylation arrays can be
skewed in their representation of CpGs across the genome, as evi-
denced by their tendency to bias gene set analyses46. To better
understand the DMR landscape of CHD2 and investigate DMRs at
higher CpG resolution, we performed whole-genome bisulfite
sequencing (WGBS) with coverage of > 20,000,000 CpGs on three
CHD2 trios and one singleton. We derived 11,019 DMRs from DSS47,
4078 DMRs from DMRcate48, and 3655 DMRs that overlap between
both callers (2420 hyper and 1235 hypo). To determine the robustness
of this approach, we manually inspected DMRs with a methylation
difference of at least 20% (n = 207 DMRs, 146 hyper, 61 hypo) by
examining the reads in all three trios in IGV and confirmed 169/207
DMRs, yielding a true call rate of 81.6%. Representative DMRs called
fromWGBS are shown in Supplementary Fig. 30. We then investigated
the overlap of episignature probes with the WGBS DMRs with a
methylation difference of at least 5% and found direct overlap with 76/
200 (38%) CHD2 450K episignature probes and an increased 94/200
(47%) CHD2 850K episignature probes (Fig. 6D, Supplementary
Fig. 29). Thus, considering the increased genomic coverage afforded
by WGBS and increased DMRs, it is unsurprising that a higher pro-
portion of CHD2 850K episignature probes overlap with DMRs (Sup-
plementary Fig. 29, Supplementary Data 8). Notably, for nearly all
probes found within DMRs, those DMRs could be better visualized
from the WGBS data due to the lack of probe coverage on the array.
Thus, we have confirmed using an orthogonal approach with higher
CpG coverage that the CHD2 episignature is characterized by DMRs.

We further investigated DMR calls by functionally annotating
them using the annotatr49. We first examined the representation of
CpG islands, CpG shores, CpG shelves, and interCpG Island (interCGI)
regions for DMRs (Supplementary Fig. 31). We find that most DMRs
called exclusively from WGBS are located at interCGI regions com-
pared to DMRs called from the array or overlap of both, likely due to
the bias of gene-enriched regions on the array compared with
increased genomic coverage of WGBS. We also annotated DMRs with
gene annotations (Supplementary Fig. 32) and found similar patterns
across DMRs called by the 850K array, WGBS, or both, especially for
DMRs calledwith amethylationdifferenceof at least 5%betweenCHD2
and controls.When compared to three independent sets (Rep-1, Rep-2,
Rep-3, Supplementary Data 9) of randomly generated regions of
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comparable number (n = 4767) and length (n = 50-3100 bp) repre-
senting background, the combined CHD2 episignature probes and
DMRs (n = 4767) are enriched in gene regulatory regions (enhancers,
promoters, and bivalent regions), transcription factor binding sites
(TFBS), and DNase sites (Fig. 7B, C, D, Supplementary Data 10).

AlthoughCHD2episignature andDMR insights are limited to theblood
in our study, this work supports further investigations into CHD2
methylation of brain-relevant tissue types, such as cultured neurons,
brain organoids or, when available, post-mortem tissue. Notably, we
show how the global CHD2 episignature is characterized by DMRs
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C Tree and leaf visualization of Euclidean clustering of episignatures. Tree and leaf
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using the median value of each probe within a group. A leaf node represents a
cohort, with node sizes illustrating relative scales of the number of selected DMPs
for the respective cohort, and node colors are indicative of the global mean
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(red). D Circular karyotype plot showing overlap of CHD2 450K episignature
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lation and blue denotes hypomethylation. The purple tracks depict coverage
of the 450K array probes (inner), 850K EPIC array probes (middle), and WGBS
reads (outer). Refer to Supplementary Fig. 33 for linear karyotype DMR plots
for chr1-22.
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(Fig. 7A, Supplementary Fig. 33) enriched in functional regions, and
therefore, poised to affect underlying disease biology.

Discussion
A major challenge in rare disease genetics is determining molecular
causes in unsolved cases. Even if ES or comprehensive GS of trios
identifies all de novo and recessively inherited coding and noncoding
variants, prioritizing and functionally interpreting candidate variants is
challenging. In the case of the DEEs, this difficulty is further com-
pounded by immense phenotypic and genetic heterogeneity. Genome-
wide DNA methylation analysis represents an innovative approach to
discovering genetic etiologies by investigating rare DMRs and screening
for DNA methylation signatures. Notably, rare DMRs and episignatures
can be assessed with cost-effective, high-throughput DNA methylation
arrays using blood-derived DNA. Here, we performed genome-wide
DNA methylation analysis on 582 individuals with uDEEs and identified
causal or candidate etiologies in 12 individuals: six from rare DMR
analysis (Table 1) and six from episignature screening (Table 2). Thus,
the diagnostic yield of genome-wide methylation analysis in individuals
with uDEEs is 2%, similar to the added diagnostic yield of GS after ES or
gene panel50,51. A study of unsolved ND-CA showed a similar 2-3%
increase in diagnostic yield using episignature analysis52.

Wehaveperformed rare outlierDMRanalysis ofmethylation array
data for a cohort of individuals with uDEEs and uncovered various
underlying DNA variants using ONT long-read sequencing. These
include aX;13 translocation, CGG repeat expansions, and copy number
variants.We first validated a subset of outlier DMRs using targeted EM-
seq enriched for 3.98MCpGs, a highly effective bisulfite-free, enzyme-
based conversion method for detecting CpG methylation by sequen-
cing. Targeted EM-seq has several advantages to bisulfite-based array
approaches, including minimizing DNA damage, lowering input
requirements (picograms of DNA), and detecting more CpGs53. We
found that all DMRs were confirmed using the EM-seq approach, and
the greater number of CpGs detected compared to the methylation
array afforded higher resolution to interpret DMRs. Future high-
throughput DNA methylation analyses could consider using EM-seq
for validation or discovery.

We report an individual with 26 outlier hypermethylation events
along chr13q detected through the rare DMR analysis. Using ONT
whole-genome long-read sequencing, we identified a de novo X;13
translocation showing that the hypermethylation identified the likely
cause of disease. This discovery was enabled without the need for live
cellular material, which is typically required by classical cytogenetics
approaches. This childpassed away at 7-months-old due to the severity
of the disease, and this approach provided a diagnosis postmortem
using banked genomic material.

We also found that several individuals displayed hypermethyla-
tion of loci associated with known or novel CG-rich repeat expansions.
These regions include the 5’UTR and intron 1 of the epilepsy candidate
gene CSNK1E, the 5’UTR of the neurodevelopmental disorder gene
DIP2B, and the 5’UTR of the uncharacterized gene BCLAF3. We report
the occurrence of hypermethylation, a CGG repeat expansion, and
reduced expression of CSNK1E among three unrelated individuals with
uDEEs and amildly affectedmother.CSNK1Ehasbeen implicated in the
circadian rhythm54,55, and variation causes a familial advanced sleep
phase syndrome (FASPS)56. Variation also produces a rapid eye
movement phenotype in a knockout mouse model57. Interestingly, all
our probands with DEEs and the mildly affected mother with CSNK1E
hypermethylation and a repeat expansion report sleep-related phe-
notypes (Supplementary Phenotype data). Our results indicate that
there is an enrichment of CSNK1E hypermethylation in individuals with
DEE compared to controls in our cohort combined with those pre-
viously reported17 (Fisher’s Exact P = 0.0276), suggesting that further
studies to determine if CSNK1E variation contributes to DEEs are
warranted.

One male proband with uDEE displayed de novo outlier hyper-
methylation in a region annotated as intergenic on the GRCh37/hg19
genome build and at the 5’UTR of BCLAF3 on the GRCh38/hg38 gen-
ome build. Using ONT long-read sequencing, we discovered a novel
CGG repeat expansion in exon 1 of BCLAF3 in this proband inherited
from his unaffected mother. The mother’s long-read data displayed
skewed X-inactivation against the expanded allele. Skewed
X-inactivationmay explain why themother does not have a detectable
DNA methylation abnormality at this locus and could provide a
mechanism for her to circumvent any functional consequences of the
BCLAF3 abnormality. While BCLAF3 has been previously predicted to
be a potential disorder-associated gene on chrX58, little is known about
its function or disease associations. Thus, further work is needed to
investigatewhether this abnormality ispresent inother individuals and
if loss of this gene on chrX in males could cause a DEE.

Seven individuals displayed DMRs due to underlying CNVs, one of
whichwe found to be likely pathogenic. Hypermethylation of the STX1B
TSS and promoter from a proband with uDEE revealed a 1784 bp het-
erozygous deletion in GS ~ 65 bp away, which was confirmed to be
present in an affected sister, affected mother, and affected grand-
mother. This deletion encompasses the promoter region, the TSS, exon
1, and part of intron 1 of STX1B, resulting in probable loss of function.
Importantly, the deletion is unlikely to be detected through standard
microarray approaches due to its small size and may escape gene
panels and exome sequencing, which would not detect the non-coding
portions. DNA methylation served as a signpost of the cause of this
family’s epilepsy and led to the identification of a pathogenic variant.

We performed episignature screening of our uDEE cohort using
the EpiSignTM v4 classifier, which contains 90 episignatures repre-
senting 70 disorders encompassing 96 genes/genomic regions. We
found seven individuals with uDEEs harbored positive episignatures
concordant with their phenotypes. We reviewed or reanalyzed avail-
able or newly generated ES or GS data and identified pathogenic var-
iants in the episignature-associated genes in 6/7 individuals. In the
individual with a pathogenic SETD1B variant, the fatherwas unavailable
for genetic testing to segregate the sequence variant. Thus, the posi-
tive episignature finding provided supportive information for genetic
diagnosis in lieu of inheritance data. Episignatures can serve to screen
for disorders that have broad, overlapping phenotypes and identify
individuals who may not have the classical features of specific neuro-
developmental syndromes or DEEs. For instance, most DEEs have a
phenotypic spectrum, so individuals with different etiology, develop-
mental trajectories, or subtle dysmorphic features may escape diag-
nosis until a molecular etiology is found.

The top 27most implicated genetic causes of DEEs explain 80% of
DEEs7. However, only 1/27 genes (CHD2) has a clinically validated epi-
signature. LikeCHD2, 58/59 genes with robust episignatures localize to
the nucleus and are associated with DNA binding, transcriptional
regulation, and histone interactions. Since DNA methylation occurs in
the nucleus,most genes for which episignatures have been derived are
directly or indirectly involved in the epigenetic and transcriptional
machinery. Whereas the top 27 DEE genes are associated with a range
of cellular processes5, only a minority are associated with direct DNA
interactions, and only 10 of the top 27 most frequent DEE genes are
annotated to localize to the nucleus at least partially. The only gene
with a clinically validated episignature not involved in any nuclear
activity is SLC32A1, which encodes solute carrier family 32 member 1
(SLC32A1, MIM:616440) responsible for inhibitory neurotransmission,
and variants in this gene cause a DEE59. Unfortunately, SLC32A1 is not
among the most common ~60 DEE genes. Therefore, the diagnostic
utility of episignatures for DEEs would increase when we can con-
fidently derive episignatures for more DEE genes, such as ion channel,
synaptic transmission, and metabolic genes.

Episignature derivation is further complicated by the existence of
variant-specific episignatures that exist for a subgroup of variants

Article https://doi.org/10.1038/s41467-024-50159-6

Nature Communications |         (2024) 15:6524 11



within a gene (e.g.SMARCA229,60) or a set of common genes
within similar pathways (e.g.Coffin-Siris syndrome episignature,
due to variants in ARID1A (MIM: 603024), ARID1B (MIM:614556),
SMARCB1 (MIM:601607), and SMARCA4 (MIM:603254), and SOX11
(MIM:600898)60. Thus, there is not only a need to derive episignatures
formore epilepsy-related genes but also to analyze variants for testing
based on variant type (i.e. missense, nonsense) and protein domain,

which may segregate with phenotypes. For instance, our cohort
included two females with solved DEEs and pathogenic truncating
variants in the SMC1A gene located on chromosome X. Neither had a
positive episignature for SMC1A for Cornelia de Lange syndrome
(CdLS), which is usually due to missense or in-frame small indels
proposed to have a dominant negative effect. Truncating, loss-of-
function variants, however, are found exclusively in girls with DEEs.
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The difference in underlying disease mechanism likely impacts the
composition of the distinct probe sets contained within the epi-
signatures. Discordant or unusual findings like this example under-
score additional considerations when deriving and interpreting
episignatures. We came across five individuals reported asmale whose
methylation pattern on the X chromosome suggested two X chro-
mosomes. Of 2/5 of these individuals who had LRS, a genotype of XXY
was confirmed, which is consistent with a diagnosis of Klinefelter
syndrome. More unexpected and incidental findings will arise as a
greater number of episignatures are derived, and methylation testing
becomes more routine.

Episignatures for many epilepsy-related genes are currently in
development. As more episignatures are clinically validated, re-
analysis of previously generated methylation array data from
unsolved individuals will identify pathogenic findings, akin to re-
analysis of exome sequencing data for new epilepsy genes years after
initial sequencing was performed61. We found that episignature ana-
lysis was useful for clarifying VUSs, including an individual annotated
as solved for CHD2 displaying a VUS, which was re-assessed as benign
based on a negative CHD2 episignature result. We anticipate that
episignatures will also be useful for interpreting the impact of non-
coding variants.

There are additional considerations when determining the utility
of DNAmethylation analysis for themolecular diagnosis of individuals
with DEEs. Firstly, the diagnostic utility will vary depending on when
the individual receives the test relative to other genetic testing mod-
alities. In our study, we analyzed DNA from individuals with DEEs who
had remained unsolved after undergoing extensive genetic testing,
including gene panels, microarrays, exome, and genome sequencing.
As DNA methylation testing becomes increasingly accessible to newly
diagnosed individuals with DEEs and as the number of epilepsy-
relevant genes with robust episignatures grows, the utility of DNA
methylation analysis in uDEEs may increase and guide which regions
should be sequenced to identify causal variants.

DNA methylation information can be readily assessed from both
ONT long-read sequencing and PacBio long-read sequencing data.
Therefore, when long-read sequencing becomes more available, there
is potential for an “all-in-one” approach to genetic testing whereby
individuals can simultaneously be assessed for sequence variants,
structural abnormalities, and rareDNAmethylation changes.While it is
advantageous to study rare DMRs and their potential underlying DNA
defects using the same technology, applying episignatures to long-
read sequencing data is uncertain andmay require new computational
approaches to re-derive and validate episignatures on each platform.
As long-read sequencing produces far more data than arrays
( > 20,000,000 CpGs versus ~ 850,000 CpGs), this will offer an
opportunity to interrogateDNAmethylationmorebroadly and deeply.

As advances in sequencing technologies allow DNA methylation
datasets to get larger, there will be a need to analyze comparative data

from controls to generate population-level reference information. For
our DMR analysis, we leveraged 450K DNA methylation array outlier
DMR calls generated from peripheral blood-derived DNA for > 23,000
control individuals17. Where possible, we used these data to approx-
imate population frequencies for the DMRs we derived. However, this
reference information is not available for 850K exclusive DMRs or
whole-genome sequencingDMRs. Thus, interpreting DNAmethylation
data for uDEEs and other unsolved genetic disorders will improve as
we understand more of the methylome, including regions that were
only recently resolved on the T2T genome build62, using appropriate
reference datasets from diverse populations.

While episignatures provide a robust readout of the genetic
etiology, they are composed of individual array probes representing
singular CpG sites that might not contribute to understanding the
underlying disease mechanism. Given that CHD2 is the most frequent
DEE gene with a robust episignature and has a biological role as a
chromatin remodeler, we were interested to use the episignature to
understand how DNA methylation relates to underlying CHD2 patho-
physiology. First, we re-defined the episignature on exclusively 850K
array probes with an increased sample size from n = 9 to n = 29 indi-
viduals with CHD2 pathogenic variants. Using DNA methylation array
and WGBS, we show that the CHD2 episignature is associated with
DMRs between cases and controls. In a recent study, investigators
derived DMRs for individuals with pathogenic HNRNPU (MIM:617391)
variants versus controls in methylation array data from peripheral
blood-derivedDNA and reported 19DMRs calledwithDMRcate (Fisher
P <0.01, betacutoff = 0.05, minCpG= 5)63. The comparative number of
DMRs we derived for CHD2 versus control methylation array data
under the sameconditions usingDMRcate is 474DMRs. This increased
number of DMRs may represent the inherent function of CHD2 as a
chromatin remodeler that interacts directly with the DNA, whereas
HNRNPU forms complexes with RNA. Furthermore, a subset of CHD2
episignature probes overlap with DMRs in the TSS/5’UTR of devel-
opmentally relevant genes and might regulate expression (Supple-
mentary Data 8). For instance, a cluster of hypermethylated
episignature probes for the CHD2 450K and 850K episignatures are
contained within a larger hypermethylated DMR in the TSS and 5’UTR
of HOXA4 (Fig. 7A). However, HOXA4 is not expressed in the blood,
and, therefore, would not be expected to be impacted by differential
methylation. Thus, we have shown that CHD2 is associated with DMRs
in the blood that correspond with the episignature and are enriched in
functional regions (enhancers, promoters, bivalent regions, TFBS, and
DNase sites). Our work suggests that future studies should investigate
theCHD2episignature in disease-relevant tissue typeswhereDMRs are
likely to contribute directly to gene dysregulation and disease
pathogenesis.

Here, we have utilized various DNA methylation analyses to
identify causative and candidate etiologies in 2% of our cohort of 582
individuals with uDEEs. While DNA methylation does not explain the

Fig. 7 | The CHD2 Episignature is associated with DMRs enriched in regulatory
regions. A Karyotype plots depict direct overlap of multiple CHD2 episignature
probes with DMRs (left=hypermethylated region, right=hypomethylated region)
called from WGBS (n = 4 CHD2 vs. n = 6 unaffected controls). For each karyotype
plot, the three grey tracks (upper panel above chromosome) depict individual red
(hyper) or blue (hypo) dots for WGBS DMRs (upper), CHD2 850 K episignature
probes (middle) and CHD2 450K episignature probes (lower). The scale denotes
the methylation difference between CHD2 relative to controls. Three purple tracks
(lower panel below chromosome) depict the coverage for the 450K array probes
(lines, upper), 850K array probes (lines, middle), and WGBS reads (distribution,
lower). The coverage track for the WGBS was taken from a representative sample
after inspecting the average coverage values across all the samples. “Zoomed” in
karyotype plots of the boxed regions of probes clustering around for HOXA4
(hyper) and ZNF577 (hypo) are shown above or below the karyotype plots. Gene
annotations are noted as within 200bp or 1,500 bp of the transcription start site

(TSS200, TSS1500), the 5’ untranslated region (5’UTR), or gene body (Body). For
both examples,multipleepisignatureprobesmap toDMRs.BEnrichment (values in
Supplementary Data 10) of CHD2 episignature probes and DMRs (n = 4767 from
array and WGBS, Supplementary Data 8) in various regulatory regions (bivalent
regions, enhancers, and promoters) annotated with GREEN-DB99 compared to
randomly generated genomic regions (Replicate-1, Replicate-2, and Replicate-3,
Supplementary Data 9) of equal number (n = 4767 regions each) and varying,
comparable sizes (50–3100bp in length). Fisher’s Exact P values were calculated
using two-sided Fisher’s Exact tests to determine the significance of enrichment. In
all cases of CHD2 vs. Replicate-X, Fisher P < 2.2e-16. Counts of the regions annotated
displaying enrichment in CHD2 are shown in the upper bar plot, and relative pro-
portions are shown in the lower plot. Transcription factor binding sites (TFBS)
annotation counts are plotted in C. (Fisher P < 2.2e−16). DNase sites annotation
counts are plotted in D. (Fisher P < 2.2e−16).
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majority of DEEs, methylation array yield is comparable to the current
added utility of GS50,51 and remains a low-cost approach that can detect
missed genetic etiologies and propose new molecular candidates.
Importantly, this yield is expected to increase over time as we inter-
rogate the functional consequences of rare DMRs and better under-
stand which genes and pathways exhibit episignatures, including
unraveling inconclusive episignature results.Wehave also investigated
the episignature for the DEE gene CHD2 in-depth and have provided
evidence that the CHD2 episignature is associated with DMRs. DMRs
are enriched in functional regions and may affect gene expression,
especially in disease-relevant tissue types. Furthermore, CHD2 epi-
signatures and associated DMRs may have potential as a biomarker
readout for therapeutic testing, as the DNA methylation might
potentially be reversed with targeted treatment. Thus, our work
highlights the impact of investigating DNA methylation in DEEs, both
for the genetic diagnosis of unsolved cases and to augment our
understanding of underlying disease function toward the future
development of targeted therapies.

Methods
Cohorts
Our cohorts consist of 593 affected individuals (43% female) with
uDEEs and 475 healthy controls (47% female) (Fig. 1B, Supplementary
Data 1A, Supplementary Methods). An additional 148 analytical con-
trols (60% female) were included for validation. Individuals with DEEs
were recruited from investigators’ research and clinical programs64,65.
Methylation array data for healthy controls were drawn from a public
database66 (n = 111), an internal institutional database (SJLIFE, n = 335),
and unaffected parents or siblings (n = 29) of probands with DEEs
(Supplementary Methods). Eight family members with epilepsy were
studied to identify familialmethylation patterns (shared rareDMRs or
episignatures). Analytical controls, including i) six individuals each
with a disease-associated rare DMR, ii) 26 individuals with a patho-
genic variant in a gene or CNV associatedwith an episignature, and iii)
116 individuals with a pathogenic variant in a gene without a known
episignature, were used to validate positive and negative rare DMR
and episignature findings in the DEE cohort. After quality control and
normalization (described below), there were 582 remaining indivi-
duals with uDEEs (43% female) who had undergone extensive mole-
cular testing: 79% (458 individuals) had a gene panel, 51% (298
individuals) microarray or karyotype analysis, 75% (435 individuals)
ES, and 40% (232 individuals) GS. Collectively, 97% (562 individuals)
had at least one sequence-based investigation (gene panel, ES, or GS).
There were also 461 healthy controls (47% female), 143 analytical
controls (57% female), and eight affected family members for DNA
methylation analysis. This study was approved by the Institutional
Review Board (IRB) of St. Jude Children’s Research Hospital (SJCRH).
Written informed consent was provided by parents or legal guardians
of individuals with DEEs with local IRB approval from SJCRH, Austin
Health (Australia), the University of Washington (UW), and the
National Institutes of Health (NIH). For any photographs shown in the
supplement, we affirm that the patients and representatives have
consented to open-access publication and have seen the photos in the
context of the publication.

Methylation array
All data were from peripheral blood-derived DNA, except for five
analytical control samples used for outlier DMR analysis: saliva-
derived DNA from one female individual with BSS and her mother
(carrier) and lymphoblastoid cell line (LCL)-derived DNA from three
individuals, including two males and one female, with Fragile X syn-
drome (Coriell). These samples were used as positive controls to
validate the outlier analysis, and then removed from the final
analysis to minimize potential cell type differences. DNA was extrac-
ted from peripheral blood samples using standard protocols, with

approximately 250–500 ng of DNA bisulfite converted. The Illumina
Infinium MethylationEPIC v1.0 (850K array) bead chip arrays (pro-
cessed according to the manufacturer’s protocol) interrogate
> 850,000 individual CpG sites, including CpG islands, promoter
regions, gene bodies, FANTOM5 enhancers, and proximal ENCODE
regulatory elements67.

Of 1224 individuals included, three individuals were run in tripli-
cate, and 29 were run in duplicate to produce a total of 1259 blood-
derived DNA methylation array samples before quality control and
processing. Each sample consisted of data for > 850,000 probes that
were rigorously quality-controlled for the removal of outlier samples
as opposed to outlier regions of interest. All data were combined and
loaded into the R package minfi68 for quality control and normal-
ization. Samples judged to be of poor quality ( > 1% of probes that
failed) and samples that were deemed outliers based on manual
inspection of the principal component analysis (PC1 and PC2), using β
values for probes located on chromosome (chr) 1, were removed
(Supplementary Fig. 1). Individual CpG probes that failed (detection
p >0.01) in > 10% of samples were removed; also, probes overlapping
with common SNPs and those previously reported as cross-reactive
were removed67,69. Since samples were run in multiple batches and at
different institutions, we visually examined the PCA plot for batch
effects. The only batch effect observed was on PC1 between the SJLIFE
unaffected control cohort and the rest of the samples analyzed
(including both cases and controls). We used the R package SVA70 for
batch correction using the ComBat method and confirmed the elim-
ination of the batch effect (Supplementary Fig. 1, Supplementary
Data 1B)71. We estimated blood cell type composition for six cell types
(CD8T, CD4T, NK, B-cell, monocytes, and granulocytes) from β values
for each sample72. Samples containing outlier cellular fractions defined
as ≥ 99th percentile + 2% or ≤ 1st percentile − 2% for at least two of the
six cell types were also removed. Methylation array intensity values on
the sex chromosomes (X, Y) were used to infer the sample sex and
compared to the clinically reported sex. Samples with sex mismatches
were removed. Samples were separated into inferred sex (males and
females) for all downstream analyses of sex chromosomes. Quality
control and filtering left 1226 samples across 1194 individuals (26
individuals in duplicate and three individuals in triplicate across bat-
ches) assayed by the 850K array and 793,009 probes (775,431 auto-
somal probes and 17,578 sex chromosome probes) (Supplementary
Data 1C).

Identification and annotation of rare epivariants
To identify outlier DMRs, we used a sliding window approach as pre-
viously described17. In brief, this algorithm employs user-defined
quantile thresholds to determine outlier β values across multiple CpG
sites. Per 1 Kb window, at least three consecutive CpG sites must
exhibit outlier β values in the same direction (hyper or hypo) for a
sample compared to the rest of the cohort to be considered an outlier
DMR.We considered β values above the 99.25th percentile plus 0.15 as
hypermethylated, and those below the 0.75th percentile minus 0.15 as
hypomethylated for analysis of the autosomes (chr1-chr22). Since
samples were split into inferred sex (males and females) for analysis of
the sex chromosomes, the stringencywas adjusted accordingly to 99th
plus 0.15 for hypermethylated and 1st percentile minus 0.15 for
hypomethylated. Samples with over 100 rare DMRs on the autosomes
during the initial analysis (n = 7) were removed from the final analysis
as this is thought to be artifactual and may interfere with real signal.
DMRs were then annotated to inform functional interpretation using
HOMER73 and including overlap with UCSC RefSeq gene bodies and
promoter regions, defined as ± 2 Kb of the transcription start sites
(TSS), known CpG islands (CGIs), repetitive-element information
(RepeatMasker and SimpleRepeats), imprinting control centers74,
CTCF-binding sites75, gene molecular function information73, OMIM
phenotype76, average brain expression using bulk RNA-seq data from
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the GTEx Portal, and in-house epilepsy- and candidate-gene lists to
prioritize candidates but not as exclusion criteria. Additionally, a
recent study delineated the rare DMR landscape in the human popu-
lation by examining 450K methylation array data from > 23,000
individuals17. Regions from those data were checked against our DMRs
where possible to determine the frequency at which each DMR occurs
in the population. Based on this annotation information, DMRs were
prioritized by four features: (1) a low or negligible population fre-
quency; (2) a well-annotated genomic location, such as in or
near known epilepsy and candidate genes; (3) recurrence in multiple
individuals; and (4) manual inspection of DMRs, including flanking
regions.

Development of a DNA methylation array analysis and visuali-
zation pipeline
We developed MethylMiner, a methylation array analysis pipeline tai-
lored toward discovering rare epivariants with interactive data visua-
lization. The pipeline requires standard input files, raw signal.idat files
containing each sample’s green and red channels, and a metadata
sheet including sample names, sentrix IDs, reported sample sex, and
sample group (if applicable). In brief, the pipeline performs quality
control and normalization as described to derive output files, includ-
ing quality control reports, β values, M-values, and bigWig files for
quick and convenient visualization in the integrative genomics viewer
(IGV)77. The pipeline then performs the outlier DMR analysis (using
scripts derived from the GitHub repository: https://github.com/
AndyMSSMLab/Methylation_script) based on user-defined quantile
thresholds and outputs the DMRs and annotations into a tabulated
sheet. This annotated list of DMRs is then used as input for the inter-
active data visualization in JupyterDash, which allows users to interact
with plots for quality control metrics, DMR annotations, and DMR
genomic tracks. Static DMR plots, like those displayed throughout this
manuscript, were created using the <AndyMSSMLab/Methylation_-
script/blob/main/plotDMR.R> script. The MethylMiner pipeline is
hosted on our GitHub page (https://github.com/stjude-biohackathon/
MethylMiner).

Validation of outlier DMRs using enzymatic methyl-sequencing
We performed targeted Enzymatic Methyl-sequencing (targeted EM-
seq) enriched with the Twist Human methylome panel targeting
3.98M CpGs through 123Mb of genomic content. Targeted EM-seq of
peripheral blood-derived DNA was used to validate a subset of outlier
DMRs, including n = 2 positive control DMRs (XYLT1 and FMR1) and
n = 29 DMRs-of-interest called amongst n = 6 individuals with uDEEs
and n = 4 family members. EM-seq library preparation, target enrich-
ment, and sequencing were performed using standard protocols53.
Reads were processed using the “nf-core/methyseq” pipeline with the
‘--emseq’ flag. For detailed EM-seq methods, please refer to Supple-
mentary Methods.

Identification of structural variants with long-read sequencing
We used both targeted and whole-genome LRS on the ONT platform
to validate rare DMRs and identify candidate disease-causing variants
at or near the site of interest (Supplementary Data 2A). Targeted LRS
using the “read-until” function was performed on an ONT GridION
using a single R9.4.1 flowcell as described previously78. At least
100 Kb of sequence was added to either side of the target region for
capture. Libraries for GSwere prepared using the ligation sequencing
kit (SQK-LSK110) following the manufacturer’s instructions, then
loaded onto a single flowcell (FLO-PRO110, R9.4.1) on a PromethION
and run for 72 h with one wash and reload. All data were base called
using Guppy 6.3.2 (ONT) with the superior model including 5mC
methylation. Reads were aligned to GRCh38/hg38 using minimap279,
SNP and indel variants were called using Clair380, structural variants
were called using Sniffles81, SVIM82, and CuteSV83, and phasing was

performed using LongPhase84. Aligned and phased bam files were
visualized in IGV77.

Episignature testing
Data were blinded and submitted to the clinical bioinformatics
laboratory [Molecular Diagnostics Laboratory, London Health Sci-
ences Centre (LHSC), Western University, London, Canada] through a
secure file transfer protocol and stored on encrypted servers. The
data analysis pipeline was adapted from previously described
methods25 as summarized in Fig. 1A. Importantly, probes with a
detection p-value > 0.01, probes located on the X and Y chromosomes,
probes that contained SNPs at the CpG interrogation or single-
nucleotide extension sites, and probes that are known to cross-react
with other genomic locationswere removed67,69. DNAmethylation data
for each sample were compared to clinically validated DNA methyla-
tion signatures for all disorders which are part of the EpiSignTM v4
clinical test85. The reference database EpiSignTM Knowledge Database
(EKD) includes thousands of clinical, peripheral blood DNA methyla-
tion profiles from disorder-specific reference and normal controls
(general population samples of various ages and racial backgrounds).
Individual DNA methylation data for each individual were compared
with the EKD using the support vector machine (SVM) based classifi-
cation algorithm for EpiSignTM disorders. A Methylation Variant
Pathogenicity (MVP) score between0 and 1was generated to represent
the confidence of prediction for the specific disorder the SVM was
trained to detect. Conversion of SVM decision values to these scores
was carried out according to the Platt scaling method86.

Classification for a specific EpiSignTM disorder included a combi-
nation of MVP score, hierarchical clustering, multidimensional scaling
(MDS) of an individual’s methylation data relative to the disorder-
specific EpiSignTM probe sets and controls. MVP score assessment had
a scale with thresholds of > 0.5 for positive, < 0.1 negative, 0.1–0.5
inconclusive or moderate confidence. A detailed description of this
analytics protocol was described previously25,87. Possible types of
results included: positive (matching an EpiSignTM disorder), negative
(not matching any EpiSignTM disorder), and inconclusive (described in
detail in results).

Exome and genome sequencing
If sequencing data were already available for the individual on a col-
laborative research basis, these data were reviewed. If the data were
unavailable, ES or GSwas performed on peripheral blood-derived DNA
using standard Illumina short-read sequencing techniques and bioin-
formatic approaches (Supplementary Methods). We validated poten-
tially pathogenic variants with Sanger sequencing and confirmed
sample identity and relatedness (e.g. trios) using Powerplex Short-
Tandem Repeat (STR) Identification analysis.

RNA-sequencing and gene expression analysis
RNAwas extracted using theQuick-RNAMiniprep Kit (ZymoResearch)
from dermal fibroblasts established from skin punch biopsies for
Family 2 (n = 2) and Family 3 (n = 3) described in the results. RNA-seq
was performed using standard Illumina short-read sequencing prac-
tices (Supplementary Methods), and the reads were processed using
the “nfcore/rnaseq” pipeline. Removal of the adapter sequences was
performed using Trim Galore!, and low-quality reads were eliminated
with FastQC88. Subsequently, reads were aligned to a reference gen-
ome using the STAR aligner89. Gene expression quantification was
performed using Salmon90, which estimates transcript abundance. To
determine gene “dropout,” the OUTRIDER algorithm36 was applied to
RNA-seq data for Family 2 (proband and mother), Family 3 (proband
and father), and Family 3 (mother and father) against a publicly avail-
able dataset of n = 139 fibroblast samples37. PCA displayed no batch
groupings, and genes with Fragments Per Kilobase of transcript per
Million mapped reads (FPKM) < 1 were removed as lowly expressed
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genes. Results were considered significant if they had a padj < 0.05 and
a z-score cutoff of ± 2.

Refinement of a CHD2 episignature
A total of 17 females and 12 males with genetic variants in CHD2 and
clinical features consistent with CHD2-epileptic encephalopathy of
childhood (EEOC) were included in this expanded 850K cohort. The
detailed list of genetic variants classified as pathogenic or likely
pathogenic according to the American College of Medical Genetics
guidelines is in Supplementary Data 2B. All samples and records were
deidentified.

Details of the methylation data analysis and episignature refine-
ment are as previously described25,52,60,91. Briefly, methylation signal
intensities were imported into R 4.1.3 for analysis. Normalization was
performed by the Illumina normalization method with background
correction using minfi68. Probes located on X and Y chromosomes,
known SNPs, or probes that cross-react were excluded67,69. Samples
containing failed probes of more than 5% (p >0.1, calculated by the
minfi package) were also removed. The genome-wide methylation
density of all sampleswas examined, andprincipal component analysis
(PCA) was performed to visualize the overall data structure of the
batches and to identify outlier samples. All 29 samples passed and
were used for probe selection. The MatchIt package was used to ran-
domly select controls, whichwerematched for age, sex, and array type
from the EKD at the LHSC, as previously described in refs. 25,92. The
methylation level of each probe was calculated as the ratio of methy-
lated signal intensity over the sum of methylated and unmethylated
signal intensities (β-values), ranging between 0 (completely unme-
thylated) and 1 (fully methylated). β-values were then converted to
M-values by logit transformation using the formula log2(β/(1-β)) to
perform linear regression modeling, which was used to identify the
differentially methylated probes (DMPs), via the R package limma93.
The analysis was also adjusted for blood cell-type compositions, using
the Houseman algorithm94. The estimated blood cell proportions were
added to the model matrix of the linear models as confounding vari-
ables. The generated p-values were moderated using the eBayes
function in the limma package and were corrected for multiple testing
using the Benjamini and Hochberg (BH) method.

Following this, probe selection was performed in three steps.
Firstly, 1000 probes were selected, which had the highest product of
methylation difference means between case and control samples and
the negative of the logarithm of multiple-testing corrected p values
derived from the linear modeling. Secondly, a receiver’s operating
characteristic (ROC) curve analysis was performed, and 200 probes
with the highest area under the ROC curve (AUC)were retained. Lastly,
probes having pair-wise Pearson’s correlation coefficient greater than
0.85 within case and control samples separately were removed (none
of the selected 200 probes met this criteria). This resulted in the
identification of 200 DMPs. These probes were used for the con-
struction of a hierarchical clustering model using Ward’s method on
Euclidean distance, as well as a MDS model by scaling of the pairwise
Euclidean distances between samples.

Functional annotation and correlation of the CHD2 episignature
Functional annotation and episignature cohort comparisons were
performed according to our publishedmethods87. Briefly, to assess the
percentage of DMPs shared between the CHD2 episignature and other
neurodevelopmental conditions on the EpiSign™ clinical classifier,
heatmaps and circos plots were produced. Heatmaps were plotted
using the R package pheatmap (version 1.0.12) and circos plots using
the R package circlize (version 0.4.15)95. To determine the genomic
location of the DMPs, probes were annotated in relation to CGIs and
genes using the R package annotatr49 with AnnotationHub and anno-
tations hg19_cpgs, hg19_basicgenes, hg19_genes_intergenic, and
hg19_genes_intronexonboundaries. CGI annotations included CGI

shores from0–2 Kb on either side of CGIs, CGI shelves from 2–4Kb on
either side of CGIs, and inter-CGI regions encompassing all remaining
regions. A chi-squared goodness of fit test was performed in R to
investigate the significance between background DMP annotation
distribution and the CHD2 cohort annotation distribution. P values
were obtained for both annotation categories (gene and CGIs). To
assess the relationship between the expanded 850K onlyCHD2 cohort
and other EpiSign™ disorders, the distance and similarities between
cohorts were analyzed using clustering methods and visualized on a
tree and leaf plot. This assessed the top 500 DMPs for each cohort,
ranked by p-value. For cohorts with less than 500DMPs, all DMPs were
used. Tree and leaf plots, generated using the R package
TreeAndLeaf96, illustrated additional information, including global
mean methylation difference and total number of DMPs identified for
each cohort.

Whole-genome bisulfite sequencing
Genomic peripheral blood-derived DNA from n = 3 CHD2 trios (pro-
band and parents) and n = 1 CHD2 singleton (proband) (total
n = 10 samples) were bisulfite-converted and then underwent WGBS
using standard Illumina short-read sequencing processing methods
(Supplementary Methods). Reads were trimmed by Trim Galore! and
aligned to the GRCh38/hg38 human genome reference using
BSMAP2.74. Themethylation ratios fromBSAMPmapping results were
extracted using methratio.py. Duplicated reads were removed and
CpG methylation from both strands was combined. The methylation
ratios were also corrected according to the C/T SNP information esti-
mated by the G/A counts on reverse strand.

DMR calling of DNA methylation array and WGBS
We performed DMR analysis on Illumina 850K EPIC methylation array
data for 16 individuals with DEEs harboring pathogenic variants in
CHD2 compared to 18 controls. The data were normalized using the
minfi package’s functional normalization algorithm97, and we
employed two independent R packages to call DMRs, bumphunter44

and DMRcate45. DMRs were defined as those passing a significance
threshold of p < 0.05 for bumphunter and Fisher’s multiple compar-
ison P <0.05 for DMRcate. A minimum of three CpGs and mean
methylation difference between CHD2 and controls of at least 5% was
also required (bumphunter “cutoff” and DMRcate “betacutoff”= 0.05)
in either the hyper or hypo direction. For bumphunter, smoothing was
used, and the number of permutations for each condition was set to
B = 1000. For DMRcate, default settings were used, and the Gaussian
kernel bandwidth for smoothed-function estimation was set to
λ = 1000,meaning that significant CpGs further than 1000 nucleotides
were in separate DMRs.

The methylCall data from WGBS, which consists of the total
number of reads covered for each CpG site and the number of
methylated C’s at each CpG site, was used for calling DMRs between
four individualswith DEEs caused by pathogenic CHD2 variants and six
unaffected parents. Firstly, CpG sites with less than 10X coverage and
those on the sex chromosomes were removed. DMRswere called from
WGBS methylCall data using two independent R packages, DMRcate48

and DSS47. DMRcate identifies and ranks the most differentially
methylated regions across the genome, while DSS detects differen-
tially methylated loci or regions fromWGBS. For DMRcate, the scaling
factor for bandwidth “C” was set to 50, as recommended for WGBS.
DSS was run with default parameters. DMRs were defined by each
algorithm (with smoothing) as regions of aminimumof five CpGs with
significance (Fisher’s multiple comparison P value < 0.05) and mini-
mum methylation differences of 5% in either the hyper or hypo
direction (DSS “delta” and DMRcate “betacutoff”=0.05) between cases
and controls.

The genomic locations of output DMR calls were intersected
between both callers requiring a minimum overlap of 50bp in the
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same direction to reduce the false positive rate. This resulted in high-
confidence lists of DMRs predicted by two independent callers
each for array (bumphunter and DMRcate) and WGBS (DMRcate and
DSS). The methylation difference between CHD2 and control was
averaged between both callers for the final DMR list. DMRs were seg-
mented by mean methylation difference between CHD2 and control
(5%, 10%, 15%, and 20%) for visualization and annotation with CpG
elements (islands, shores, shelves) and gene regions (1–5 Kb upstream
TSS, promoters as < 1 Kb upstream TSS, 5’UTRs, exons, introns, and
3’UTRs) using annotator49. To get adequate CpG element counting (i.e.
a DMR spanning both a shore and shelf would not get counted twice),
CpG annotations were adjusted for DMR size by calculating repre-
sentation across CpG elements as a fraction of the total DMR length.
Details for in-depth annotation and enrichment calculation of CHD2
epsignature probes and DMRs for regulatory elements (bivalent
regions, enhancers, promoters, TFBS, and DNase sites) may be found
in Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Methylation array data for individuals with uDEEs and those with
pathogenic variants inCHD2whohavegiven consent for data sharing is
available through the Gene Expression Omnibus (GSE269416). Addi-
tional data requests can be directed to H.C.M.

Code availability
The methylation array analysis pipeline used in part of this study for
epivariant detection can be accessed on GitHub: https://github.com/
stjude-biohackathon/MethylMiner. Further bash and shell scripts cre-
ated for this manuscript and used in the analysis may be found on the
Mefford Laboratory GitHub: https://github.com/MeffordLab/2024_
GenomeWideMethylationPaper. EpiSignTM is proprietary commercial
software and is not publicly available.
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