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Abstract
Motivation: Chemical reaction networks (CRNs) play a pivotal role in diverse fields such as systems biology, biochemistry, chemical engineer
ing, and epidemiology. High-level definitions of CRNs enables to use various simulation approaches, including deterministic and stochastic 
methods, from the same model. However, existing Python tools for simulation of CRN typically wrap external C/Cþþ libraries for model defini
tion, translation into equations and/or numerically solving them, limiting their extensibility and integration with the broader Python ecosystem.
Results: In response, we developed Poincar�e and SimBio, two novel Python packages for simulation of dynamical systems and CRNs. Poincar�e 
serves as a foundation for dynamical systems modeling, while SimBio extends this functionality to CRNs, including support for the Systems 
Biology Markup Language (SBML). Poincar�e and SimBio are developed as pure Python packages enabling users to easily extend their simulation 
capabilities by writing new or leveraging other Python packages. Moreover, this does not compromise the performance, as code can be just-in- 
time compiled with Numba. Our benchmark tests using curated models from the BioModels repository demonstrate that these tools may 
provide a potentially superior performance advantage compared to other existing tools. In addition, to ensure a user-friendly experience, our 
packages use standard typed modern Python syntax that provides a seamless integration with integrated development environments. Our 
Python-centric approach significantly enhances code analysis, error detection, and refactoring capabilities, positioning Poincar�e and SimBio as 
valuable tools for the modeling community.
Availability and implementation: Poincar�e and SimBio are released under the MIT license. Their source code is available on GitHub (https:// 
github.com/maurosilber/poincare and https://github.com/hgrecco/simbio) and can be installed from PyPI or conda-forge.

1 Introduction
Chemical reaction networks (CRNs) are a fundamental con
cept of modeling in numerous fields including systems biol
ogy, biochemistry, chemical engineering and epidemiology. 
They comprised a set of chemical species or biological entities 
and a set of reactions that mediate transformations between 
them. These systems can be simulated through multiple 
approaches: deterministic ordinary differential equations 
(ODEs) to model macroscopic behavior, stochastic differen
tial equations (SDEs) to model microscopic fluctuations, and 
jump processes (Gillespie-like simulations) to account for the 
discreteness of populations. Instead of directly writing the 
equations for each of these formulations, which is error- 
prone and difficult to reuse, these models can be defined in a 
higher-level description that can be translated into equations 
for the different types of simulations and, then, solved 
numerically.

Several tools already exist to define, translate, and solve 
CRNs. BioSimulators.org (Shaikh et al. 2022), a registry of 

simulation tools, lists at least 15 softwares categorized under 
Python including COPASI (Hoops et al. 2006), Tellurium 
(Choi et al. 2018), and PySB (Lopez et al. 2013). COPASI is a 
standalone software with a graphical user interface (GUI) 
that is widely used for its user-friendly interface and compre
hensive features. It also includes Python bindings, BASICO 
(Bergmann 2023), that allow advanced scripting. Tellurium 
is a Python-based modeling environment that uses a Cþþ li
brary called libRoadRunner (Welsh et al. 2023) in the back
end to translate and solve models. PySB is a Python library 
that created a domain-specific language (DSL) using standard 
Python to define models, which are then translated to ODEs 
using a Perl library called BioNetGen (Harris et al. 2016).

One limitation of these tools is their extensibility from 
Python. As they wrap libraries in other languages for defin
ing, translating and/or solving models, these steps cannot be 
altered or easily inspected from Python. While they enable 
model definition and running simulations via Python scripts, 
they cannot fully leverage Python’s extensive package 
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ecosystem. For example, COPASI and Tellurium do not al
low the use of solvers defined in other Python packages, and 
adding new integrators requires working with Cþþ. In par
ticular, the step that translates into equations is not exposed 
by any of these tools. As such, it is not possible to apply cus
tom optimizations to the equations or use automatic differen
tiation packages such as JAX (Bradbury et al. 2018) to 
compute the model’s jacobian.

Another challenge is the way models are defined. Many 
tools support the SBML (Hucka et al.) as an exchange for
mat, a de facto standard for CRNs that defines species, 
parameters and reactions between species. As writing SBML 
directly is impractical, Tellurium uses a DSL called Antimony 
(Smith et al. 2009) for defining models. DSLs allows to reuse 
the same code in different programming environments, but 
are not recognized by default in integrated development envi
ronments (IDEs) and, therefore, they cannot provide syntax 
highlighting, code completion, refactoring, and static analy
sis. For Antimony, an extension providing these capabilities 
was developed for Visual Studio Code, but its maintenance 
could be a demanding task for the systems biology commu
nity. In the case of PySB, using Python’s dynamic nature, it 
developers designed a DSL within Python. To save key
strokes, it uses the global scope to create species and parame
ters, without explicitly assigning them to Python variables or 
to the model, but this approach is not fully compatible with 
IDEs, affecting the development experience.

To overcome these limitations, we developed poincar�e and 
SimBio, open-source Python packages for defining, translating 
and solving systems. Poincar�e allows one to define differential 
equation systems using variables, parameters and constants, 
and assigning rate equations to variables. For defining CRNs, 
SimBio builds on top of poincar�e providing species and reac
tions that keep track of stoichiometries. Both are focused on 
providing an ergonomic experience to end-users by integrating 
well with IDEs and static analysis tools through the use of stan
dard modern Python syntax. Moreover, since they are coded in 
pure Python, each step from model definition, translation to 
equations or solving can be extended or debugged from 
Python. Being the first-ever pure Python packages for systems 
modeling, they offer extensive extensibility, from simple tasks 
like reusing integrators defined in other packages, to complex 
ones like altering the compilation process to leverage some 
structure in the equations. For example, using a for-loop in the 
compiled equations could improve the runtime performance if 
there is some repetitive structure in the system, as happens in 
spatial modeling. The models built using these packages can be 
introspected to create other representations, such as graphs 
connecting species and/or reactions, or tables with parameters 
or equations. Furthermore, they have a modular architecture 
with a clear separation of concerns, making it easier to main
tain or to contribute new code, which is beneficial for develop
ers and maintainers. We showcased the reliability of these tools 
by benchmarking them against the simulation results from 
other tools. We also highlighted the substantial performance 
improvements our tools offer, as this is crucial for construction 
and simulation of models of whole cells and organisms, which 
necessitate the simulation of significantly large-scale models.

2 Results
Modular code architecture makes code reusable, extensible, 
and easier to maintain. Therefore, we split the code into three 

Python packages: symbolite, to create symbolic expressions; 
poincar�e, to define dynamical systems; and simbio, to define 
CRNs and interface with systems biology standards such as 
SBML. These are pure Python packages with standard depen
dencies from the PyData scientific stack such as NumPy 
(Harris et al. 2020) and pandas (McKinney 2010). They are 
published in the Python package index (PyPI), where links to 
the source code and documentation hosted in GitHub can be 
found, and can be easily installed with pip install sim
bio, which installs symbolite and poincare as dependencies.

Symbolite is a lightweight symbolics package to create al
gebraic mathematical expressions. Unlike SymPy (Meurer 
et al. 2017), a widely used Python library for symbolic math
ematics, it only provides the building of an expression tree 
which can be inspected and compiled to various backends. 
Symbolite is designed to facilitate the integration of new 
backends. Currently, we have implementations for NumPy 
(Harris et al. 2020); Numba (Lam et al. 2015), a just-in-time 
(JIT) compiler to LLVM; SymPy (Meurer et al. 2017); and 
JAX (Bradbury et al. 2018), a library that support automatic 
differentiation and compilation to graphical processing units 
(GPUs) and tensor processing units (TPUs).

2.1 Versatile modeling and simulation of dynamical 
systems with Poincar�e
Poincare is a package to define and simulate dynamical sys
tems. Based on Python immutable dataclasses, it provides a 
System class, where one can define Constants; which can 
be numbers or refer to other constants; Parameters, which 
can be numbers or time-dependent expressions; Variables, 
which represent the state of the system and must be provided 
with an initial condition; and create equations linking a varia
ble’s derivative with an expression (Fig. 1a). It also allows to 
create an Independent variable to define nonautonomous 
systems, and define higher-order systems by assigning an ini
tial condition to a Derivative (Fig. 1b).

Within the constraints imposed by Python’s current typing 
and static analyzers, we define models utilizing Python (data) 
classes such that we can benefit from IDEs’ autocomplete and 
refactoring capabilities. This design offers several advantages:

1) The variable name to which a component is assigned 
can be automatically saved in the component for intro
spection (i.e. Oscillator.x.name =¼ “x”). 

2) It provides a namespace that allows to easily define mul
tiple independent models in the same script. 

3) It allows IDEs to provide autocomplete and refactoring 
capabilities (Oscillator.<TAB> shows x, v, 
and eq). 

4) It allows creation of instances that can be composed into 
a bigger model (Fig. 1b). 

For this last point, IDEs that support dataclass_trans
form (De Bonte and Traut 2021) can provide a tooltip with 
the expected signature (Fig. 2). This requires the use of type 
annotations, which play a more significant role in static type 
checking as they can help to identify errors before running the 
code. For instance, to parameterize the initial conditions of 
variables we have to use a Constant. If we try to use a 
Parameter, which could be a time-dependent expression, it 
is flagged as a type error (Fig. 2).

To simulate a system, we created a Simulator instance 
(Fig. 3) that translates the model into the right-hand side 
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(RHS) equations and interfaces with solvers wrapping the 
output in a pandas. DataFrame, which can be easily plot
ted with the standard plot method. Currently, it only sup
ports translating into first-order ODEs, but it would be 
possible to add support for SDEs or delay differential equa
tions (DDEs). By default, it uses numpy as a backend, and 
uses the LSODA solver from scipy. This can be easily 
switched to other solvers or backends, such as numba.

2.2 Extensible definition of reaction networks 
using SimBio
For the CRNs, our focus is on first-order differential equa
tions that describe the rate of change of species. SimBio sim
plifies the definition of these network models by introducing 
Species, and RateLaw, a construct that converts reactant 

species into product species taking into account the stoichi
ometry (Fig. 4). In addition, SimBio features MassAction, a 
subclass of RateLaw, that intuitively incorporates reactants 
and their stoichiometry into the rate law (Fig. 4).

Several commonly used reactions are predefined as 
MassAction subclasses, such as MichaelisMenten 
(SþE$ ES ! PþE) and its approximate form without the 
intermediate species ES, and it is also simple to implement 
used-defined ones as subclasses of RateLaw or 
MassAction. In addition, SimBio supports importing mod
els from SBML, and downloading them directly from 
BioModels (Malik-Sheriff et al. 2020) (Fig. 5). Work is in 
progress to support exporting to SBML and add more SBML 
features. Currently SBML unsupported features include alge
braic rules, constraints, events, reactions with the fast attrib
ute or with math stoichiometry, units and compartments 
with size different from 1.

2.3 Reproducibility and performance
To evaluate SimBio’s reproducibility, we used the SBML test 
suite (Hucka et al., 2017), which provides a set of SBML 

Figure 1. Code and corresponding mathematical expressions for 
different systems.

Figure 2. Screenshots of Visual Studio Code showing tooltips (solid blue 
arrows) and highlighted type errors (dashed yellow arrows). Above, we 
show that a, a Constant assigned with assign(…, 
constant¼True), can be used for Variable b’s initial condition. 
Instead, it is flagged as a type error (red underlining) when using c, a 
Parameter, for Variable d’s initial condition, The IDE automatically 
recognizes e as an Equation, and provides autocompletion of the 
Model’s components. A tooltip is shown when composing models (solid 
blue arrow, below), which show the expected variables and their default 
values. The IDE highlights wrong names (z is not a name in Model) and 
mismatched types (x is Variable and a must be a number or 
a Constant).
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models and the expected result of a simulation. Excluding 
models that use SBML features not yet supported by SimBio, 
every simulation returned correct results within the 
solver tolerances.

To evaluate SimBio’s performance, we selected SBML 
models from the curated section of BioModels (Malik-Sheriff 
et al. 2020). Among the first 250 models, we considered the 
117 that used supported SBML features. We ran simulations 
on a MacBook Air with M2 CPU using Python 3.11.8, 
COPASI v4.42.284 (with BasiCO v0.58) with the LSODA 
solver, RoadRunner v2.5.0 (with Tellurium v2.2.10) with the 
comparable CVODE solver, and SimBio v0.3.2 with the 
LSODA solver. For SimBio, we considered three variants: 
NumPy (v1.26.4) backend and scipy (v1.12.0)’s LSODA 
solver, Numba (v0.59.0) backend and scipy’s LSODA solver, 
Numba backend and numbalsoda’s (v0.3.5) LSODA solver. 
In all cases, we used a relative tolerance of 10–6 and absolute 
tolerances of 10–9. We measured two simulation stages: an 
initial cold run that includes the reading of the SBML model 
and subsequent warm runs.

For COPASI and Tellurium, we noted that its runtime 
depended on the number of intermediate evaluation points 
returned to the user (Fig. 6, left). We speculate that this is due 
to memory allocation and data transfer in the Python bind
ings, as the number of total function evaluations (i.e. includ
ing those performed by the integrator stepper) is around 
3000 and therefore much larger than most part of the x-axis. 

Figure 3. Simulation of the Oscillator system from Fig. 1b. The output 
is a pandas. DataFrame with a column for each variable and the time as 
index. It is inspected and plotted with the pandas methods.

Figure 4. A reaction system for species A and B with initial conditions 1 
and 0, respectively. A single reaction transforming 2A into B is saved in 
variable r. The rate 1 is specified directly for RateLaw, and is proportional 
to the reactants for MassAction.

Figure 5. Creation of a model from a local SBML file or from one 
uploaded to BioModels.
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For SimBio, its NumPy backend can be orders of magnitude 
slower than both COPASI and RoadRunner (Fig. 6, right). 
Nevertheless, switching to the numba backend, which JIT 
compiles the RHS equations, puts it on par with them. 
Another speed-up in the runtime can be had by switching the 
LSODA scipy solver for a more efficient numbalsoda im
plementation that avoids calling into the Python interpreter 
between each of the integration steps. A user might have to 
consider the trade-off between compilation and run times, as 
the compilation of the RHS code might take longer than the 
runtime itself, and not be worth it for running the model only 
once. For the models considered, amortizing the compilation 
time required from 2 upto 200 runs.

3 Discussion
In this article, we introduced a suite of Python packages 
we developed for defining and simulating dynamical systems 
and CRNs. These packages are deeply integrated with IDEs, 
enabling code analysis tools to identify errors prior to 
execution and assist in refactoring and code completion. 
We adopted standard modern Python syntax to ensure 
seamless IDE integration, supported by the extensive 
Python community.

Our approach differs from previous tools in that both the 
model definition and its compilation into an ODE function 
are entirely Python-based. This approach simplifies the devel
opment of various simulation methods, including perfor
mance enhancements that exploit specific model structures. 
Importantly, being Python-based does not compromise per
formance compared to C/Cþþ tools, as the RHS functions 
can be JIT compiled using Numba.

The inclusion of SBML support facilitates the effortless re
use of models created by the systems biology community, 
along with the vast collection of public models hosted in the 
BioModels repository. The modular architecture of these 
packages facilitates their reuse, enhancement, and extension 
by the wider Python community. Therefore, it should be also 
easy to integrate with existing infrastructure such a 
BioSimulators.org (Shaikh et al. 2022), or combine with 
other packages like SimService (Sego 2024) to build more 
complex simulations. For instance, an individual from out
side the systems biology field could contribute a stochastic in
tegrator to poincar�e, which would then be available in 
SimBio. This clear separation of concerns also makes the 
packages more comprehensible, lowering the barrier for 

contributing improvements or new features. Such an architec
ture ensures their maintainability and ongoing development 
well into the future.

Conflict of interest
None declared.

Funding
This work was supported in part by funds from the Agencia 
IþDþi [PICT-2018-01516]; Universidad de Buenos Aires 
[UBAINT Doctoral, REREC-2023-593-E-UBA-REC]; and 
EMBL core funding.

Data availability
Source code repositories, example, and documentation for 
these packages can be found at https://github.com/mauro 
silber/poincare and https://github.com/hgrecco/simbio.

References
Bergmann FT. BASICO: a simplified Python interface to COPASI. JOSS 

2023;8:5553. https://doi.org/10.21105/joss.05553.
Bradbury J, Frostig R, Hawkins P et al. JAX: Composable 

Transformations of PythonþNumPy Programs. 2018. http:// 
github.com/google/jax.

Choi K, Medley JK, K€onig M et al. Tellurium: an extensible python-based 
modeling environment for systems and synthetic biology. Biosystems 
2018;171:74–9. https://doi.org/10.1016/j.biosystems.2018.07.006.

De Bonte E, Traut E. PEP 681—Data Class Transforms. 2021. https:// 
peps.python.org/pep-0681/.

Harris CR, Millman KJ, van der Walt SJ et al. Array programming with 
NumPy. Nature 2020;585:357–62. https://doi.org/10.1038/ 
s41586-020-2649-2.

Harris LA, Hogg JS, Tapia J-J et al. BioNetGen 2.2: advances in rule- 
based modeling. Bioinformatics 2016;32:3366–8. https://doi.org/ 
10.1093/bioinformatics/btw469.

Hoops S, Sahle S, Gauges R et al. COPASI—a COmplex PAthway 
SImulator. Bioinformatics 2006;22:3067–74. https://doi.org/10. 
1093/bioinformatics/btl485.

Hucka, M, Smith, L, Bergmann, F, Keating, SM. SBML Test Suite re
lease 3.3.0, Zenodo, 2017.

Hucka M, Bergmann F, Chaouiya C et al. The Systems Biology Markup 
Language (SBML): Language Specification for Level 3 Version 2 
Core Release 2. Journal of Integrative Bioinformatics 2019;16 
(2): 20190021.

Figure 6. Performance of different softwares to solve models from the curated section of BioModels. (left) Run time for the model BIOMD3 as a function 
of the number of output points. (right) Run time for different models for 300 output points, using the geometric mean of the different softwares to order 
them. Each point corresponds to the median of 20 runs, with a negligible error-bar given by the interquartile range.

Poincar�e and SimBio: a versatile and extensible Python ecosystem for modeling systems                                                                                     5 

https://github.com/maurosilber/poincare
https://github.com/maurosilber/poincare
https://github.com/hgrecco/simbio
https://doi.org/10.21105/joss.05553
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1016/j.biosystems.2018.07.006
https://peps.python.org/pep-0681/
https://peps.python.org/pep-0681/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1093/bioinformatics/btw469
https://doi.org/10.1093/bioinformatics/btw469
https://doi.org/10.1093/bioinformatics/btl485
https://doi.org/10.1093/bioinformatics/btl485


Lam SK, Pitrou A, Seibert S. Numba: A LLVM-based Python JIT com
piler. In: Proceedings of the Second Workshop on the LLVM 
Compiler Infrastructure in HPC, LLVM ’15, New York, NY, USA: 
Association for Computing Machinery, 2015, 1–6. https://doi.org/ 
10.1145/2833157.2833162.

Lopez CF, Muhlich JL, Bachman JA et al. Programming biological 
models in Python using PySB. Mol Syst Biol 2013;9:646. https://doi. 
org/10.1038/msb.2013.1.

Malik-Sheriff RS, Glont M, Nguyen TVN et al. BioModels—15 
years of sharing computational models in life science. Nucleic 
Acids Res 2020;48:D407–15. https://doi.org/10.1093/ 
nar/gkz1055.

McKinney W. Data structures for statistical computing in Python. In: 
Proceedings of the 9th Python in Science Conference, 2010, 56–61. 
https://doi.org/10.25080/Majora-92bf1922-00a.

Meurer A, Smith CP, Paprocki M et al. SymPy: symbolic computing in 
Python. PeerJ Computer Science 2017;3:e103. https://doi.org/10. 
7717/peerj-cs.103.

Sego TJ. SimService: a lightweight library for building simulation serv
ices in Python. Bioinformatics 2024;40:btae009. https://doi.org/10. 
1093/bioinformatics/btae009.

Shaikh B, Smith LP, Vasilescu D et al. BioSimulators: a Central registry of 
simulation engines and services for recommending specific tools. Nucleic 
Acids Res 2022;50:W108–14. https://doi.org/10.1093/nar/gkac331.

Smith LP, Bergmann FT, Chandran D et al. Antimony: a modular 
model definition language. Bioinformatics 2009;25:2452–4. https:// 
doi.org/10.1093/bioinformatics/btp401.

Welsh C, Xu J, Smith L et al. libRoadRunner 2.0: a high performance 
SBML simulation and analysis library. Bioinformatics2023;39: 
btac770. https://doi.org/10.1093/bioinformatics/btac770.

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–6
https://doi.org/10.1093/bioinformatics/btae465
Original Paper

6                                                                                                                                                                                                                             Silberberg et al. 

https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1038/msb.2013.1
https://doi.org/10.1038/msb.2013.1
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1093/bioinformatics/btae009
https://doi.org/10.1093/bioinformatics/btae009
https://doi.org/10.1093/nar/gkac331
https://doi.org/10.1093/bioinformatics/btp401
https://doi.org/10.1093/bioinformatics/btp401
https://doi.org/10.1093/bioinformatics/btac770

	Active Content List
	1 Introduction
	2 Results
	3 Discussion
	Conflict of interest
	Funding
	Data availability
	References


