
Systems biology

Poincar�e and SimBio: a versatile and extensible Python
ecosystem for modeling systems
Mauro Silberberg 1,2,3, Henning Hermjakob 3, Rahuman S. Malik-Sheriff 3,4,
Hern�an E. Grecco 1,2,�

1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de F�ısica, Buenos Aires 1426, Argentina
2CONICET – Universidad de Buenos Aires, Instituto de F�ısica de Buenos Aires (IFIBA), Buenos Aires 1426, Argentina
3European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD,
United Kingdom
4Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
�Corresponding author. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de F�ısica, Buenos Aires 1426, Argentina.
E-mail: hgrecco@df.uba.ar (H.E.G.)
Associate Editor: Pier Luigi Martelli

Abstract
Motivation: Chemical reaction networks (CRNs) play a pivotal role in diverse fields such as systems biology, biochemistry, chemical engineer
ing, and epidemiology. High-level definitions of CRNs enables to use various simulation approaches, including deterministic and stochastic
methods, from the same model. However, existing Python tools for simulation of CRN typically wrap external C/Cþþ libraries for model defini
tion, translation into equations and/or numerically solving them, limiting their extensibility and integration with the broader Python ecosystem.
Results: In response, we developed Poincar�e and SimBio, two novel Python packages for simulation of dynamical systems and CRNs. Poincar�e
serves as a foundation for dynamical systems modeling, while SimBio extends this functionality to CRNs, including support for the Systems
Biology Markup Language (SBML). Poincar�e and SimBio are developed as pure Python packages enabling users to easily extend their simulation
capabilities by writing new or leveraging other Python packages. Moreover, this does not compromise the performance, as code can be just-in-
time compiled with Numba. Our benchmark tests using curated models from the BioModels repository demonstrate that these tools may
provide a potentially superior performance advantage compared to other existing tools. In addition, to ensure a user-friendly experience, our
packages use standard typed modern Python syntax that provides a seamless integration with integrated development environments. Our
Python-centric approach significantly enhances code analysis, error detection, and refactoring capabilities, positioning Poincar�e and SimBio as
valuable tools for the modeling community.
Availability and implementation: Poincar�e and SimBio are released under the MIT license. Their source code is available on GitHub (https://
github.com/maurosilber/poincare and https://github.com/hgrecco/simbio) and can be installed from PyPI or conda-forge.

1 Introduction
Chemical reaction networks (CRNs) are a fundamental con
cept of modeling in numerous fields including systems biol
ogy, biochemistry, chemical engineering and epidemiology.
They comprised a set of chemical species or biological entities
and a set of reactions that mediate transformations between
them. These systems can be simulated through multiple
approaches: deterministic ordinary differential equations
(ODEs) to model macroscopic behavior, stochastic differen
tial equations (SDEs) to model microscopic fluctuations, and
jump processes (Gillespie-like simulations) to account for the
discreteness of populations. Instead of directly writing the
equations for each of these formulations, which is error-
prone and difficult to reuse, these models can be defined in a
higher-level description that can be translated into equations
for the different types of simulations and, then, solved
numerically.

Several tools already exist to define, translate, and solve
CRNs. BioSimulators.org (Shaikh et al. 2022), a registry of

simulation tools, lists at least 15 softwares categorized under
Python including COPASI (Hoops et al. 2006), Tellurium
(Choi et al. 2018), and PySB (Lopez et al. 2013). COPASI is a
standalone software with a graphical user interface (GUI)
that is widely used for its user-friendly interface and compre
hensive features. It also includes Python bindings, BASICO
(Bergmann 2023), that allow advanced scripting. Tellurium
is a Python-based modeling environment that uses a Cþþ li
brary called libRoadRunner (Welsh et al. 2023) in the back
end to translate and solve models. PySB is a Python library
that created a domain-specific language (DSL) using standard
Python to define models, which are then translated to ODEs
using a Perl library called BioNetGen (Harris et al. 2016).

One limitation of these tools is their extensibility from
Python. As they wrap libraries in other languages for defin
ing, translating and/or solving models, these steps cannot be
altered or easily inspected from Python. While they enable
model definition and running simulations via Python scripts,
they cannot fully leverage Python’s extensive package

Received: 10 January 2024; Revised: 25 June 2024; Editorial Decision: 26 June 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(8), btae465
https://doi.org/10.1093/bioinformatics/btae465
Advance Access Publication Date: 30 July 2024
Original Paper

https://orcid.org/0000-0002-2402-1100
https://orcid.org/0000-0001-8479-0262
https://orcid.org/0000-0003-0705-9809
https://orcid.org/0000-0002-1165-4320
https://github.com/maurosilber/poincare
https://github.com/maurosilber/poincare
https://github.com/hgrecco/simbio

ecosystem. For example, COPASI and Tellurium do not al
low the use of solvers defined in other Python packages, and
adding new integrators requires working with Cþþ. In par
ticular, the step that translates into equations is not exposed
by any of these tools. As such, it is not possible to apply cus
tom optimizations to the equations or use automatic differen
tiation packages such as JAX (Bradbury et al. 2018) to
compute the model’s jacobian.

Another challenge is the way models are defined. Many
tools support the SBML (Hucka et al.) as an exchange for
mat, a de facto standard for CRNs that defines species,
parameters and reactions between species. As writing SBML
directly is impractical, Tellurium uses a DSL called Antimony
(Smith et al. 2009) for defining models. DSLs allows to reuse
the same code in different programming environments, but
are not recognized by default in integrated development envi
ronments (IDEs) and, therefore, they cannot provide syntax
highlighting, code completion, refactoring, and static analy
sis. For Antimony, an extension providing these capabilities
was developed for Visual Studio Code, but its maintenance
could be a demanding task for the systems biology commu
nity. In the case of PySB, using Python’s dynamic nature, it
developers designed a DSL within Python. To save key
strokes, it uses the global scope to create species and parame
ters, without explicitly assigning them to Python variables or
to the model, but this approach is not fully compatible with
IDEs, affecting the development experience.

To overcome these limitations, we developed poincar�e and
SimBio, open-source Python packages for defining, translating
and solving systems. Poincar�e allows one to define differential
equation systems using variables, parameters and constants,
and assigning rate equations to variables. For defining CRNs,
SimBio builds on top of poincar�e providing species and reac
tions that keep track of stoichiometries. Both are focused on
providing an ergonomic experience to end-users by integrating
well with IDEs and static analysis tools through the use of stan
dard modern Python syntax. Moreover, since they are coded in
pure Python, each step from model definition, translation to
equations or solving can be extended or debugged from
Python. Being the first-ever pure Python packages for systems
modeling, they offer extensive extensibility, from simple tasks
like reusing integrators defined in other packages, to complex
ones like altering the compilation process to leverage some
structure in the equations. For example, using a for-loop in the
compiled equations could improve the runtime performance if
there is some repetitive structure in the system, as happens in
spatial modeling. The models built using these packages can be
introspected to create other representations, such as graphs
connecting species and/or reactions, or tables with parameters
or equations. Furthermore, they have a modular architecture
with a clear separation of concerns, making it easier to main
tain or to contribute new code, which is beneficial for develop
ers and maintainers. We showcased the reliability of these tools
by benchmarking them against the simulation results from
other tools. We also highlighted the substantial performance
improvements our tools offer, as this is crucial for construction
and simulation of models of whole cells and organisms, which
necessitate the simulation of significantly large-scale models.

2 Results
Modular code architecture makes code reusable, extensible,
and easier to maintain. Therefore, we split the code into three

Python packages: symbolite, to create symbolic expressions;
poincar�e, to define dynamical systems; and simbio, to define
CRNs and interface with systems biology standards such as
SBML. These are pure Python packages with standard depen
dencies from the PyData scientific stack such as NumPy
(Harris et al. 2020) and pandas (McKinney 2010). They are
published in the Python package index (PyPI), where links to
the source code and documentation hosted in GitHub can be
found, and can be easily installed with pip install sim
bio, which installs symbolite and poincare as dependencies.

Symbolite is a lightweight symbolics package to create al
gebraic mathematical expressions. Unlike SymPy (Meurer
et al. 2017), a widely used Python library for symbolic math
ematics, it only provides the building of an expression tree
which can be inspected and compiled to various backends.
Symbolite is designed to facilitate the integration of new
backends. Currently, we have implementations for NumPy
(Harris et al. 2020); Numba (Lam et al. 2015), a just-in-time
(JIT) compiler to LLVM; SymPy (Meurer et al. 2017); and
JAX (Bradbury et al. 2018), a library that support automatic
differentiation and compilation to graphical processing units
(GPUs) and tensor processing units (TPUs).

2.1 Versatile modeling and simulation of dynamical
systems with Poincar�e
Poincare is a package to define and simulate dynamical sys
tems. Based on Python immutable dataclasses, it provides a
System class, where one can define Constants; which can
be numbers or refer to other constants; Parameters, which
can be numbers or time-dependent expressions; Variables,
which represent the state of the system and must be provided
with an initial condition; and create equations linking a varia
ble’s derivative with an expression (Fig. 1a). It also allows to
create an Independent variable to define nonautonomous
systems, and define higher-order systems by assigning an ini
tial condition to a Derivative (Fig. 1b).

Within the constraints imposed by Python’s current typing
and static analyzers, we define models utilizing Python (data)
classes such that we can benefit from IDEs’ autocomplete and
refactoring capabilities. This design offers several advantages:

1) The variable name to which a component is assigned
can be automatically saved in the component for intro
spection (i.e. Oscillator.x.name =¼ “x”).

2) It provides a namespace that allows to easily define mul
tiple independent models in the same script.

3) It allows IDEs to provide autocomplete and refactoring
capabilities (Oscillator.<TAB> shows x, v,
and eq).

4) It allows creation of instances that can be composed into
a bigger model (Fig. 1b).

For this last point, IDEs that support dataclass_trans
form (De Bonte and Traut 2021) can provide a tooltip with
the expected signature (Fig. 2). This requires the use of type
annotations, which play a more significant role in static type
checking as they can help to identify errors before running the
code. For instance, to parameterize the initial conditions of
variables we have to use a Constant. If we try to use a
Parameter, which could be a time-dependent expression, it
is flagged as a type error (Fig. 2).

To simulate a system, we created a Simulator instance
(Fig. 3) that translates the model into the right-hand side

2 Silberberg et al.

(RHS) equations and interfaces with solvers wrapping the
output in a pandas. DataFrame, which can be easily plot
ted with the standard plot method. Currently, it only sup
ports translating into first-order ODEs, but it would be
possible to add support for SDEs or delay differential equa
tions (DDEs). By default, it uses numpy as a backend, and
uses the LSODA solver from scipy. This can be easily
switched to other solvers or backends, such as numba.

2.2 Extensible definition of reaction networks
using SimBio
For the CRNs, our focus is on first-order differential equa
tions that describe the rate of change of species. SimBio sim
plifies the definition of these network models by introducing
Species, and RateLaw, a construct that converts reactant

species into product species taking into account the stoichi
ometry (Fig. 4). In addition, SimBio features MassAction, a
subclass of RateLaw, that intuitively incorporates reactants
and their stoichiometry into the rate law (Fig. 4).

Several commonly used reactions are predefined as
MassAction subclasses, such as MichaelisMenten
(SþE$ ES ! PþE) and its approximate form without the
intermediate species ES, and it is also simple to implement
used-defined ones as subclasses of RateLaw or
MassAction. In addition, SimBio supports importing mod
els from SBML, and downloading them directly from
BioModels (Malik-Sheriff et al. 2020) (Fig. 5). Work is in
progress to support exporting to SBML and add more SBML
features. Currently SBML unsupported features include alge
braic rules, constraints, events, reactions with the fast attrib
ute or with math stoichiometry, units and compartments
with size different from 1.

2.3 Reproducibility and performance
To evaluate SimBio’s reproducibility, we used the SBML test
suite (Hucka et al., 2017), which provides a set of SBML

Figure 1. Code and corresponding mathematical expressions for
different systems.

Figure 2. Screenshots of Visual Studio Code showing tooltips (solid blue
arrows) and highlighted type errors (dashed yellow arrows). Above, we
show that a, a Constant assigned with assign(…,
constant¼True), can be used for Variable b’s initial condition.
Instead, it is flagged as a type error (red underlining) when using c, a
Parameter, for Variable d’s initial condition, The IDE automatically
recognizes e as an Equation, and provides autocompletion of the
Model’s components. A tooltip is shown when composing models (solid
blue arrow, below), which show the expected variables and their default
values. The IDE highlights wrong names (z is not a name in Model) and
mismatched types (x is Variable and a must be a number or
a Constant).

Poincar�e and SimBio: a versatile and extensible Python ecosystem for modeling systems 3

models and the expected result of a simulation. Excluding
models that use SBML features not yet supported by SimBio,
every simulation returned correct results within the
solver tolerances.

To evaluate SimBio’s performance, we selected SBML
models from the curated section of BioModels (Malik-Sheriff
et al. 2020). Among the first 250 models, we considered the
117 that used supported SBML features. We ran simulations
on a MacBook Air with M2 CPU using Python 3.11.8,
COPASI v4.42.284 (with BasiCO v0.58) with the LSODA
solver, RoadRunner v2.5.0 (with Tellurium v2.2.10) with the
comparable CVODE solver, and SimBio v0.3.2 with the
LSODA solver. For SimBio, we considered three variants:
NumPy (v1.26.4) backend and scipy (v1.12.0)’s LSODA
solver, Numba (v0.59.0) backend and scipy’s LSODA solver,
Numba backend and numbalsoda’s (v0.3.5) LSODA solver.
In all cases, we used a relative tolerance of 10–6 and absolute
tolerances of 10–9. We measured two simulation stages: an
initial cold run that includes the reading of the SBML model
and subsequent warm runs.

For COPASI and Tellurium, we noted that its runtime
depended on the number of intermediate evaluation points
returned to the user (Fig. 6, left). We speculate that this is due
to memory allocation and data transfer in the Python bind
ings, as the number of total function evaluations (i.e. includ
ing those performed by the integrator stepper) is around
3000 and therefore much larger than most part of the x-axis.

Figure 3. Simulation of the Oscillator system from Fig. 1b. The output
is a pandas. DataFrame with a column for each variable and the time as
index. It is inspected and plotted with the pandas methods.

Figure 4. A reaction system for species A and B with initial conditions 1
and 0, respectively. A single reaction transforming 2A into B is saved in
variable r. The rate 1 is specified directly for RateLaw, and is proportional
to the reactants for MassAction.

Figure 5. Creation of a model from a local SBML file or from one
uploaded to BioModels.

4 Silberberg et al.

For SimBio, its NumPy backend can be orders of magnitude
slower than both COPASI and RoadRunner (Fig. 6, right).
Nevertheless, switching to the numba backend, which JIT
compiles the RHS equations, puts it on par with them.
Another speed-up in the runtime can be had by switching the
LSODA scipy solver for a more efficient numbalsoda im
plementation that avoids calling into the Python interpreter
between each of the integration steps. A user might have to
consider the trade-off between compilation and run times, as
the compilation of the RHS code might take longer than the
runtime itself, and not be worth it for running the model only
once. For the models considered, amortizing the compilation
time required from 2 upto 200 runs.

3 Discussion
In this article, we introduced a suite of Python packages
we developed for defining and simulating dynamical systems
and CRNs. These packages are deeply integrated with IDEs,
enabling code analysis tools to identify errors prior to
execution and assist in refactoring and code completion.
We adopted standard modern Python syntax to ensure
seamless IDE integration, supported by the extensive
Python community.

Our approach differs from previous tools in that both the
model definition and its compilation into an ODE function
are entirely Python-based. This approach simplifies the devel
opment of various simulation methods, including perfor
mance enhancements that exploit specific model structures.
Importantly, being Python-based does not compromise per
formance compared to C/Cþþ tools, as the RHS functions
can be JIT compiled using Numba.

The inclusion of SBML support facilitates the effortless re
use of models created by the systems biology community,
along with the vast collection of public models hosted in the
BioModels repository. The modular architecture of these
packages facilitates their reuse, enhancement, and extension
by the wider Python community. Therefore, it should be also
easy to integrate with existing infrastructure such a
BioSimulators.org (Shaikh et al. 2022), or combine with
other packages like SimService (Sego 2024) to build more
complex simulations. For instance, an individual from out
side the systems biology field could contribute a stochastic in
tegrator to poincar�e, which would then be available in
SimBio. This clear separation of concerns also makes the
packages more comprehensible, lowering the barrier for

contributing improvements or new features. Such an architec
ture ensures their maintainability and ongoing development
well into the future.

Conflict of interest
None declared.

Funding
This work was supported in part by funds from the Agencia
IþDþi [PICT-2018-01516]; Universidad de Buenos Aires
[UBAINT Doctoral, REREC-2023-593-E-UBA-REC]; and
EMBL core funding.

Data availability
Source code repositories, example, and documentation for
these packages can be found at https://github.com/mauro
silber/poincare and https://github.com/hgrecco/simbio.

References
Bergmann FT. BASICO: a simplified Python interface to COPASI. JOSS

2023;8:5553. https://doi.org/10.21105/joss.05553.
Bradbury J, Frostig R, Hawkins P et al. JAX: Composable

Transformations of PythonþNumPy Programs. 2018. http://
github.com/google/jax.

Choi K, Medley JK, K€onig M et al. Tellurium: an extensible python-based
modeling environment for systems and synthetic biology. Biosystems
2018;171:74–9. https://doi.org/10.1016/j.biosystems.2018.07.006.

De Bonte E, Traut E. PEP 681—Data Class Transforms. 2021. https://
peps.python.org/pep-0681/.

Harris CR, Millman KJ, van der Walt SJ et al. Array programming with
NumPy. Nature 2020;585:357–62. https://doi.org/10.1038/
s41586-020-2649-2.

Harris LA, Hogg JS, Tapia J-J et al. BioNetGen 2.2: advances in rule-
based modeling. Bioinformatics 2016;32:3366–8. https://doi.org/
10.1093/bioinformatics/btw469.

Hoops S, Sahle S, Gauges R et al. COPASI—a COmplex PAthway
SImulator. Bioinformatics 2006;22:3067–74. https://doi.org/10.
1093/bioinformatics/btl485.

Hucka, M, Smith, L, Bergmann, F, Keating, SM. SBML Test Suite re
lease 3.3.0, Zenodo, 2017.

Hucka M, Bergmann F, Chaouiya C et al. The Systems Biology Markup
Language (SBML): Language Specification for Level 3 Version 2
Core Release 2. Journal of Integrative Bioinformatics 2019;16
(2): 20190021.

Figure 6. Performance of different softwares to solve models from the curated section of BioModels. (left) Run time for the model BIOMD3 as a function
of the number of output points. (right) Run time for different models for 300 output points, using the geometric mean of the different softwares to order
them. Each point corresponds to the median of 20 runs, with a negligible error-bar given by the interquartile range.

Poincar�e and SimBio: a versatile and extensible Python ecosystem for modeling systems 5

https://github.com/maurosilber/poincare
https://github.com/maurosilber/poincare
https://github.com/hgrecco/simbio
https://doi.org/10.21105/joss.05553
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1016/j.biosystems.2018.07.006
https://peps.python.org/pep-0681/
https://peps.python.org/pep-0681/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1093/bioinformatics/btw469
https://doi.org/10.1093/bioinformatics/btw469
https://doi.org/10.1093/bioinformatics/btl485
https://doi.org/10.1093/bioinformatics/btl485

Lam SK, Pitrou A, Seibert S. Numba: A LLVM-based Python JIT com
piler. In: Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM ’15, New York, NY, USA:
Association for Computing Machinery, 2015, 1–6. https://doi.org/
10.1145/2833157.2833162.

Lopez CF, Muhlich JL, Bachman JA et al. Programming biological
models in Python using PySB. Mol Syst Biol 2013;9:646. https://doi.
org/10.1038/msb.2013.1.

Malik-Sheriff RS, Glont M, Nguyen TVN et al. BioModels—15
years of sharing computational models in life science. Nucleic
Acids Res 2020;48:D407–15. https://doi.org/10.1093/
nar/gkz1055.

McKinney W. Data structures for statistical computing in Python. In:
Proceedings of the 9th Python in Science Conference, 2010, 56–61.
https://doi.org/10.25080/Majora-92bf1922-00a.

Meurer A, Smith CP, Paprocki M et al. SymPy: symbolic computing in
Python. PeerJ Computer Science 2017;3:e103. https://doi.org/10.
7717/peerj-cs.103.

Sego TJ. SimService: a lightweight library for building simulation serv
ices in Python. Bioinformatics 2024;40:btae009. https://doi.org/10.
1093/bioinformatics/btae009.

Shaikh B, Smith LP, Vasilescu D et al. BioSimulators: a Central registry of
simulation engines and services for recommending specific tools. Nucleic
Acids Res 2022;50:W108–14. https://doi.org/10.1093/nar/gkac331.

Smith LP, Bergmann FT, Chandran D et al. Antimony: a modular
model definition language. Bioinformatics 2009;25:2452–4. https://
doi.org/10.1093/bioinformatics/btp401.

Welsh C, Xu J, Smith L et al. libRoadRunner 2.0: a high performance
SBML simulation and analysis library. Bioinformatics2023;39:
btac770. https://doi.org/10.1093/bioinformatics/btac770.

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–6
https://doi.org/10.1093/bioinformatics/btae465
Original Paper

6 Silberberg et al.

https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1038/msb.2013.1
https://doi.org/10.1038/msb.2013.1
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1093/bioinformatics/btae009
https://doi.org/10.1093/bioinformatics/btae009
https://doi.org/10.1093/nar/gkac331
https://doi.org/10.1093/bioinformatics/btp401
https://doi.org/10.1093/bioinformatics/btp401
https://doi.org/10.1093/bioinformatics/btac770

	Active Content List
	1 Introduction
	2 Results
	3 Discussion
	Conflict of interest
	Funding
	Data availability
	References

