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Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer 
progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor 
vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and 
endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid 
cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory 
mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions 
aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor 
resistance to radio/chemotherapy and immunotherapy.
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Introduction

Angiogenesis, the formation of new blood vessels from pre-
existing ones, is a hallmark of cancer. Tumor angiogenesis 
is a pivotal process that promotes cancer growth, progres-
sion, and metastasis and induces therapy resistance [1]. 
Over the past few decades, considerable efforts have been 
directed towards understanding the molecular and cellular 
mechanisms that underlie tumor angiogenesis. These lead 
to the development of promising anti-angiogenic therapeu-
tic strategies that aim to inhibit overgrowth and sprouting 
of tumor endothelial cells (ECs). Beyond the traditional 

anti-angiogenic concept that focuses on vessel delivery 
function, recent advances have revealed that the interactions 
between the tumor vasculature and the immune system are 
critical for regulation of tumor vascularity and immunity [2, 
3]. The tumor microenvironment (TME) is a complex milieu 
composed of various non-neoplastic cell types, including 
ECs, stromal cells, and a diverse array of immune cells. The 
dynamic interplay between these cellular components in the 
vascular TME has significant implications for tumor devel-
opment, immune evasion and the efficacy of cancer thera-
pies, particularly immunotherapies. Therefore, development 
of efficient therapeutic strategies that reprogram the vascular 
TME will offer exciting opportunities for cytotoxic radio/
chemotherapy and T cell-based immunotherapy.

In this review, we discuss the emerging strategies for 
tumor vasculature-targeting therapy. We provide a compre-
hensive overview of the complex regulation of tumor angio-
genesis by myeloid cells, including macrophages, myeloid-
derived suppressor cells (MDSCs), and neutrophils within 
the TME. We discuss the impact of these immune cells on 
tumor angiogenesis. We highlight that myeloid cells interact 
with ECs to regulate tumor angiogenesis and create a spe-
cialized niche that induces immune evasion and promotes 
tumor growth, providing crucial targets for vasculature-
targeting therapy. These approaches may have the potential 
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to revolutionize cancer treatment, paving the way for more 
effective therapeutic strategies.

Tumor angiogenesis

Basic principle of aberrant tumor angiogenesis

Tumor angiogenesis is fundamental to cancer progression, 
metastasis, and therapy resistance. Tumor angiogenesis 
refers to the pathophysiological process where new blood 
vessels sprout from pre-existing ones to supply nutrients, 
oxygen, and cellular network for tumor growth [1, 4–7]. The 
intricate network of blood vessels also allows cancer cells 
to infiltrate the bloodstream and disseminate throughout the 
body, giving rise to metastasis. These collectively suggest 
anti-angiogenic therapy, a treatment that aims to inhibit 
EC overgrowth and sprouting, as a promising strategy for 
cancer treatment. Notably, the newly formed vessels are 
structurally and functionally abnormal—they are tortuous 
and leaky with a disorganized, haphazard architecture. This 
abnormal vasculature leads to a chaotic blood flow, which 
creates a heterogeneously hypoxic tumor microenvironment 
[8]. Such hostile conditions can foster cancer cells that are 
more aggressive and therapy resistant, further promoting 
tumor growth and metastasis. Furthermore, the abnormal 
vessels also form a barrier to the effective delivery of drugs 
to the tumor, thereby contributing to therapy resistance [9]. 

Vessel normalization has, therefore, joined anti-angiogenic 
treatment as promising strategies for solid tumor treatment.

Tumor angiogenesis is a complex process, subject to 
regulation by a balance between pro-angiogenic and anti-
angiogenic factors within a solid tumor [10, 11]. When the 
equilibrium tilts toward pro-angiogenic factors, ECs are 
stimulated to proliferate and migrate towards the tumor, 
forming new blood vessels. The presence of excessive pro-
angiogenic factors further stimulates vascular abnormalities 
[12, 13]. This imbalance drives both neovascularization and 
vascular aberrancy, serving as a critical therapeutic target for 
vessel normalization and cancer treatment. Finally, tumor 
ECs undergo genetic and metabolic alteration to acquire 
pro-tumor phenotypes including aberrant vessel structure 
and function, a rewired adhesome that reduces lympho-
cyte attachment, and local release of immunosuppressive 
molecules. Thus, anti-angiogenesis, vessel normalization, 
and endothelial programming serve as promising strategies 
for vasculature-targeting approaches for cancer treatment 
(Fig. 1).

Anti‑angiogenic therapy

Anti‑VEGF/VEGFR

Anti-angiogenic therapy represents a promising strategy 
for cancer treatment by inhibiting the formation of new 
blood vessels that nourish tumors, thus depriving them of 
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Purpose: Shut off oxygen and 
                nutrient delivery
Strategy: Block EC growth and 
                migration to eradicate 
                tumor vasculature
Targets:   Pro-angiogenic factors,
                e.g., VEGF, ANG-1/2

Purpose: Enhance tumor perfusion and 
                oxygenation
Strategy: Inhibit vessel abnormalities to 
                normalize vascular structure
Targets:   Pro-angiogenic factors and pathways,
                e.g., VEGF, Rgs5, R-Ras

Purpose: Reshape the vascular TME
Strategy: Reprogram tumor ECs to normalize vessel 
                and niche functions, to rewire EC adhesome 
                and to reverse EC immunosuppression  
Targets:   Altered kinase, transcriptional factors, epigenetic 
                regulators, and metabolic enzymes in ECs, 
                e.g., c-Met, PDGFR, PAK4, HDAC, DNMT, 
                PFKB3, PHGDH, FASN

Fig. 1   Therapeutic strategies for vasculature-targeting anti-cancer treatment. Therapeutic strategies targeting tumor vasculature have emerged as 
transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming



335Angiogenesis (2024) 27:333–349	

essential oxygen and nutrients for growth. Numerous anti-
angiogenic agents targeting pro-angiogenic factors, such as 
vascular endothelial growth factor (VEGF, i.e., VEGF-A), 
fibroblast growth factors (FGF), and epidermal growth 
factor (EGF), have been extensively explored [14–16]. 
Among the most widely used anti-angiogenic agents are 
the monoclonal antibodies and tyrosine kinase inhibitors 
(TKIs) that target VEGF and the VEGF downstream kinases, 
respectively. VEGF plays a crucial role in both physiological 
and pathological angiogenesis [4]. In tumors, overexpression 
of VEGF, mainly driven by hypoxia-inducible factor 
(HIF)-1α, promotes abnormal blood vessel growth and acts 
as a vascular permeability factor [17]. VEGF usually binds 
to the tyrosine kinase receptor VEGFR2, in collaboration 
with neuropilin-1 and VEGFR3, and interacts with other 
modulating pathways such as Notch, angiopoietin/Tie2, 
and ephrin/Eph to facilitate vessel growth [18–22]. A 
number of anti-angiogenic agents have been approved by 
FDA for treating cancer, highlighting their role in current 
oncology therapeutics. For instance, bevacizumab (Avastin), 
a humanized monoclonal antibody that blocks VEGF, is a 
notable example of an anti-angiogenic agent demonstrating 
anti-tumor results in colon and kidney cancers [23]. 
Additionally, small-molecule pharmacological inhibitors 
of VEGF receptor tyrosine kinase, such as sunitinib and 
sorafenib, also offer a promising opportunity to cancer 
therapy [24, 25]. However, the overall efficacy of these anti-
angiogenic therapies is often limited and does not produce 
long-term benefits in patients with most other cancer 
types, such as glioblastoma [26–30].Both intrinsic and 
acquired mechanisms contribute to tumor resistance to anti-
angiogenic therapy, driven by the existence of redundant 
angiogenic pathways and the adaptive mechanisms that 
lead tumor cells to survive an avascular and hypoxic TME, 
respectively [6, 28].

Inhibition of vascular maturation

Inhibition of vascular maturation, a key aspect of functional 
vascularity, represents another therapeutic strategy for can-
cer. The EC growth factor signaling pathways composed of 
angiopoietin (Ang)-1/2 and their receptor, Tie2, play a criti-
cal role in this process. Ang-1, mainly secreted by pericytes 
and smooth muscle cells, promotes vascular remodeling 
and stabilization. Ang-1 overexpression is often observed 
in tumor vasculature, which enhances EC proliferation and 
pericyte-mediated vascular maturation, and increased vas-
cular functions intensify the malignancy of various cancers 
[31]. Conversely, Ang-2 can induce angiogenesis and desta-
bilize vasculature by binding to Tie2 and integrin receptors 
[32]. Given the role of angiopoietins in vascular biology, 
antibodies targeting these angiopoietins and dual inhibitors 

of Ang-2 and VEGF show promising results in various 
malignancies [20].

Targeting the development pathways of ECs

Tumor angiogenesis is tightly controlled by EC 
differentiation and growth. This process can be triggered by 
hypoxia [33], Notch [34], and Wnt signaling pathways [35]. 
Hypoxia, typically resulting from rapid tumor growth and 
disordered vasculature, initiates a survival response within 
tumors. To survive under these extreme conditions, tumors 
employ a host of mechanisms, primarily the activation of 
HIFs that induce transcription of hypoxia-adaptive metabolic 
enzyme and VEGF [36, 37]. Moreover, hypoxia can 
stimulate activation of mTOR, PI3K, and AKT through post-
translational modifications of these proteins [38], which are 
central to EC metabolism, survival, and motility regulation 
in response to nutrient and oxygen depletion. Notch 
signaling emerges as a pivotal player in the orchestration 
of vessel sprouting, branching, and maturation. Aberrations 
in Notch signaling have been linked to tumor angiogenesis, 
positioning the Notch pathway as a potential target for anti-
angiogenic cancer therapies [34]. A recent study on DII4-
induced Notch signaling in EC growth and development 
shows that antibodies against Dll4 and VEGF had strikingly 
different effects on tumor blood vessels [39], suggesting 
differing mechanisms underlying Notch- and VEGF-
mediated tumor angiogenesis. Dll4-driven Notch signaling 
appeared vital during active blood vessel formation, 
but less so for maintaining normal vessels [39]. Beside 
its established role in developmental angiogenesis and 
vascular differentiation, Wnt pathway has been implicated 
in tumor angiogenesis. The interaction between Wnt and 
Frizzled receptors activates varied signaling outcomes in 
both canonical and non-canonical pathways, contributing 
to regulation of EC functions. For example, canonical Wnt-
frizzled signaling produces a β-catenin/Lef/TCF complex 
which triggers brain angiogenesis during development 
[40]. In the context of GBM, activation of Wnt/β-catenin 
signaling in ECs is associated with chemoresistance [41], 
highlighting a potential target in GBM treatment. On the 
other hand, in the non-canonical pathway, Ca2+/calmodulin-
dependent protein kinase II (CAMKII) activation influences 
ventral cell fate [42], and other signaling cascades like JNK 
and Daam-1 drive EC proliferation and maintain cellular 
architecture [43–45].

Overall, these findings highlight multiple regulatory 
mechanisms, mediated through hypoxia, VEGF, Notch, and 
Wnt, for EC proliferation, migration, and differentiation 
during tumor angiogenesis. Understanding their 
dysregulation in cancer may help develop new targets for 
anti-angiogenic therapies.
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Vessel normalization therapy

Anti-angiogenic therapy can adversely enhance tumor 
hypoxia and reduce drug delivery, resulting from destroyed 
tumor vasculature, leading to increased resistance of 
tumors to radio/chemotherapy and targeted molecular 
therapy. Considering structurally and functionally abnormal 
vascularity in cancer, i.e., tortuous, leaky vasculature due 
to dysfunctional EC sprouting and overgrowth, a different 
strategy, namely, vessel normalization, that aims to restore 
normal vessel function, has been exploited [11]. This could 
be achieved by re-balancing the pro- and anti-angiogenic 
factors presented in the TME, with reduced hypoxia, 
improved perfusion allowing for proper drug delivery, 
and enhanced immune cell infiltration [12, 13]. Previous 
preclinical studies show that vessel normalizing doses of 
anti-VEGF treatment improve T cell infiltration and enhance 
immunotherapy [46, 47], due to enhanced vessel delivery 
and reduced intratumoral hypoxia. Moreover, a recent 
clinical trial shows promising results for combining anti-
VEGF bevacizumab with immune checkpoint blockade in 
liver cancer treatment [29].

Additional therapeutic strategies for vessel normalization 
include decreasing vascular leakiness, enhancing the 
structural integrity, increasing perfusion, and adding 
angiostatic factors, with multiple targets identified. For 
example, targeting regulator of G protein signaling 5 (Rgs5) 
protein leads to more typical vessel morphology and function 
in tumors, without reducing vessel density [48]. Inhibiting 
L1CAM, a neural adhesion protein in tumor ECs, results in 
pruning and fortification of vessels, thereby reducing tumor 
growth and metastases [49]. Inhibition of neuronal nitric 
oxide synthase (nNOS) in cancer cells restores proper NO 
gradients, leading to denser and more effective vessels for 
oxygen and drug delivery [50]. Restoring semaphorin-3A 
(SEMA3A) initially prunes immature vessel, and long-term 
application increases vessel maturation [51]. Activation of 
R-Ras or lysophosphatidic acid (LPA) in ECs promotes 
vascular normalization [52, 53]. Chloroquine, known 
for its antimalarial properties, also plays a role in vessel 
normalization through endosomal Notch1 trafficking and 
signaling in ECs [54]. Activation of transient receptor 
potential vanilloid-4 (TRPV4) in tumor ECs restores normal 
mechanosensitivity and increases drug delivery [55]. Further 
strategies include using thrombospondin-1 (TSP-1), an 
endogenous antiangiogenic factor, to normalize vessels, 
enhance drug delivery, and increase the effectiveness of 
treatments like cisplatin [56].

Another innovative approach in vessel normalization 
involves modulating various cells within the perivascular 
niche. For instance, eribulin, a chemotherapy agent, 
regulates endothelial-pericyte interactions to fortify vessels 
and improve treatment outcomes [57]. Desmoplasia, 

characterized by fibrotic tissue growth, impairs vascular 
function by compressing vessels [13]. Therefore, 
normalizing the extracellular matrix (ECM) is crucial, as it 
can improve both vascular function and treatment outcomes. 
Strategies targeting cancer-associated fibroblasts and the 
extracellular matrix, such as inhibiting TGF-β [58] or sonic 
hedgehog pathways [59], and using Nab-paclitaxel [60], 
show promise in reducing vessel compression. Additionally, 
altering metabolic pathways in pro-tumor macrophages leads 
to the formation of well-organized and fortified vessels, 
thereby enhancing oxygen delivery [61]. Antitumor CD4+ 
T cells also play a role in normalizing vessels by modulating 
angiogenic gene expression in tumors [62]. Inhibiting 
VEGF expression from these T cells further suggests their 
role in promoting abnormal tumor vessel phenotypes [63]. 
These findings highlight the complex interactions among 
ECs, other cells, and ECM in the TME, which may induce 
vessel abnormalities. Understanding and targeting these 
interactions can normalize tumor vasculature and improve 
cancer therapy outcomes.

Although these strategies hold promise, the benefits of 
vessel normalization monotherapy have often been small 
and transient. For example, administration of low-dose 
bevacizumab to control excessive EC growth has been 
a central method used in vessel normalization. However, 
vessel normalization anti-VEGF therapies often lead to 
a transient window that is potentially open for additional 
therapies, after which tumors become resistant [64, 65]. 
Furthermore, the timing and dosing of vessel normalization 
therapy needs to be further optimized when combined with 
immunotherapies and other conventional cytotoxic therapies, 
as tumor immunogenicity and vascularity change over tumor 
development and treatment exposure [6, 13].

Endothelial reprogramming therapy

EC plasticity has been well characterized during 
embryogenesis [66, 67]. In pathological settings including 
cardiac, renal, and liver fibrosis, ossifying myositis, 
pulmonary hypertension, and cerebral cavernous 
malformation, ECs can take endothelial mesenchymal 
transition (Endo-MT) de novo to generate fibroblasts and 
stem-like cells [68–70]. Notably, cell plasticity plays a 
central role in the EC transcriptomic alteration and aberrant 
vascular phenotypes in cancer [71, 72]. As an alternative 
process to angiogenesis and vascular abnormality driven 
by pro-angiogenic factor-induced vessel sprouting and 
outgrowth, ECs retain key endothelial functions but undergo 
cell plasticity-mediated genetic reprogramming to induce 
aberrant vascularity in the tumor microenvironment. For 
example, ECs acquire partial Endo-MT, also known as 
endothelial transformation, to promote their ability to 
proliferate, migrate and secrete [71–73]. These transformed 



337Angiogenesis (2024) 27:333–349	

ECs, unlike normal ECs, take transcriptomic alteration to 
drive distinct behaviors due to the influence of the TME, 
forming an abnormal architecture of tumor vasculature. 
This leads to poor perfusion and hypoxia within the TME, 
which fosters the selection of more aggressive, treatment-
resistant cancer cells [74], and creates a physical barrier that 
shields tumor cells from immune cell attack and impedes the 
delivery of chemotherapeutic drugs, thereby inducing tumor 
resistance to chemo/radiotherapy and immunotherapy [7, 
28]. The strategy for genetic reprogramming of tumor ECs, 
e.g., by targeting EC plasticity, aims to normalize these cells 
by reversing their abnormal traits of gene expression, making 
the vasculature resemble the normal one in structure and 
function, and, therefore, may eventually improve the efficacy 
of cytotoxic treatment and immunotherapy approaches [71]. 
In addition to transcriptomic alteration, tumor ECs also 
undergo metabolic changes in the TME [75]. Metabolic 
switches in tumor ECs are driven by genetic and epigenetic 
alteration of metabolism-associated genes in response to the 
cues in the TME, such as hypoxia. The adaptively rewired 
metabolism fosters EC survival and growth in the TME, 
contributing to aberrant tumor angiogenesis. Metabolic 
reprogramming of tumor ECs, therefore, serves as an 
additional strategy for vasculature-targeting cancer therapy 
[75].

Genetic reprogramming of ECs

The approach of genetic reprogramming of tumor ECs is 
initially termed as vascular de-transformation therapy, 
emphasizing its main target on EC plasticity [71]. Genetic 
reprogramming of tumor ECs would be expected to 
induce the formation of a stable, functionally normal, 
and structurally orderly vasculature, which reduces 
tumor hypoxia, improves drug delivery, and alleviates 
immunosuppression, thereby enhancing anti-tumor immune 
responses and the efficacy of other therapies [72]. Several 
strategies have been exploited for the genetic reprogramming 
of tumor ECs. HGF/c-Met is identified as a critical regulator 
of Endo-MT in cancer [73]. EC-specific c-Met knockout 
inhibits EC plasticity, reduces vascular aberrancy, and 
sensitizes tumor to chemotherapy [73]. Moreover, c-Met-
mediated activation of Wnt signaling drives transformation 
of ECs into mesenchymal stem cell-like cells, leading to 
multidrug resistance in ECs and tumor chemoresistance 
[41]. Furthermore, platelet-derived growth factor (PDGF)-
mediated EC plasticity controls VEGFR2 expression through 
Snail, which contributes to tumor resistance to anti-VEGF 
treatment [9]. Based on these results, combination of anti-
PDGFR and anti-VEGFR therapy was explored in tumor, 
which shows promising synergistic anti-tumor effects [9]. A 
more recent whole kinome-wide screen identifies that p21-
activating kinase 4 (PAK4) is a key driver of Endo-MT in 

cancer [76]. Inactivation of PAK4 reprograms transcriptome 
in ECs and normalizes tumor vasculature. Notably, genetic 
and pharmacological ablation of PAK4 in ECs reshapes 
the immune landscape within the TME, improving T-cell 
infiltration and sensitizing tumor to CAR-T cell therapy [76]. 
Furthermore, several additional targets have been identified 
for endothelial reprogramming, including ERG, Myct1, 
and Lrg1. Forced expression of ERG, a transcription factor 
essential for endothelial homeostasis, restores the angiogenic 
balance in tumor ECs, thereby inhibiting tumor growth 
and vascular abnormalities [77]. Interestingly, Myct1, a 
downstream protein of ETV2 and Myc, which is primarily 
expressed in ECs, plays a crucial role in mesenchymal-like 
transcriptional activation. Myct1 deficiency in mouse tumor 
models decreases angiogenesis and increases antitumor 
immunity, thereby limiting tumor growth [78]. Lrg1 is 
exclusively expressed on tumor ECs rather than normal ECs 
or pericytes. Deletion or antibody-based neutralization of 
Lrg1 results in vessel normalization and promotes the TME 
toward an anti-tumor, immune-active state, enhancing the 
efficacy of various cancer therapies [79].

In addition to structural abnormalities, tumor vasculature 
is also characterized by altered EC adhesiveness. Tumor 
ECs undergo genetic alteration, often with downregulated 
adhesion proteins, such as intercellular adhesion molecule 
1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-
1) that are necessary for immune cell attachment and 
extravasation [75, 80]. This leads to less T cell attachment 
to the endothelium, inhibiting T cell infiltration and 
contributing to tumor immune evasion. It is tempting to 
speculate that mesenchymal-like activation drives this 
dysfunctional adhesion in tumor ECs, induced by epithelial-
mesenchymal transition (EMT)-associated transcriptional 
repressors including Snail, Slug, Twist-1/-2, and Zeb-
1/-2. As such, inhibition of PAK4 reduces expression of 
Slug and Zeb-1, upregulating expression of VCAM-1 and 
Claudin-14 in tumor ECs, which eventually enhances T cell 
adhesion and improves CAR T cell immunotherapy [76]. 
Together, these findings underscore the potential of genetic 
reprogramming of tumor ECs as a promising approach for 
cancer treatment.

Epigenetic reprogramming of ECs

Epigenetic reprogramming in ECs represents another 
promising strategy for targeting tumor angiogenesis, 
considering tumor ECs undergo substantial epigenetic 
alterations to modulate their functionality in cancer. 
Acetylation of histone H3 has been well characterized in 
tumor ECs, which epigenetically regulates the expression 
of key genes essential for EC function and angiogenesis, 
including CLU, FBN1, TSPAN2, and ICAM1 [81]. The 
activity of histone deacetylases (HDACs), especially 
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HDAC1, is central to this process: they regulate MMP14 
and VCAM-1 expression, driving EC growth and the 
formation of vascular structures [82, 83]. Inhibitors 
targeting HDACs, such as trichostatin A (TSA) and 
suberoylanilide hydroxamic acid (SAHA), hold promise 
in anti-angiogenesis therapy, as they modulate the 
transcription of several crucial pro-angiogenic signaling 
components, including receptors VEGFR1 and VEGFR2 
[84], HIF-1α, and VEGF [85]. HDAC inhibitors not 
only exhibit anti-angiogenic properties across various 
cancer types but also enhance leukocyte adherence 
and movement within tumor vessels, primarily through 
the upregulation of ICAM-1 [86], underscoring their 
potential to boost the effectiveness of immunotherapy. 
Moreover, histone methylation is also critical for tumor 
angiogenesis. EZH2, a key histone methyltransferase, 
reduces trimethylation of histone H3 at lysine 27 
(H3K27me3), a repressive epigenetic mark, during 
Endo-MT induced by IL-1β and TGF-β2 [87]. Conversely, 
JMJD2B, a histone demethylase,epigenetically modulates 
Endo-MT by promoting repressive H3K9me3 occurring 
at the promoters of mesenchymal and TGF-β signaling 
genes, such as calponin (CNN1), AKT serine/threonine 
kinase 3 (AKT3), and sulfatase 1 (SULF1) [88].

Beyond histone modifications, DNA methylation 
significantly inf luences the behavior of tumor ECs 
and, consequently, the immune profiles as well. 
For instance, deletion of DNA methyltransferase 1 
(DNMT1) in ECs inhibits tumor growth and reshapes the 
immune environment, due to the increased expression 
of cytokines, chemokines, cell adhesion molecules 
in ECs, such as Cxcl9 and Cxcl10 that are crucial for 
infiltration of CD8+ T cells into the tumor [89]. DNMT1 
silencing in ECs also enhances the expression of IL-33, 
Ccl21, and Ccl19 that are critical for neogenesis of high 
endothelial venule (HEV), a specialized postcapillary 
venule adapted for lymphocyte trafficking. Moreover, 
DNMT inhibitor treatment boosts leukocyte infiltration 
into tumors by upregulating ICAM1 expression in ECs 
[86]. Interestingly, proangiogenic factor FGF2 promotes 
ERK-mediated DNMT1 phosphorylation and nuclear 
translocation to repress Cxcl9 and Cxcl10 transcription 
[89], suggesting feedback loops that regulate angiogenic 
pathway activation and epigenetic regulation.

In summary, recent studies identifying an intricate 
network of epigenetic regulation in ECs during tumor 
angiogenesis provide profound insights into the 
mechanisms driving epigentic regulation of EC functions, 
and opens new avenues for developing therapeutic 
strategies targeting these epigenetic alterations to inhibit 
tumor growth and enhance immunotherapy outcomes.

Metabolic reprogramming of ECs

Given metabolic adaptation is required for cell proliferation 
and migration, such as EC outgrowth and sprouting, targeting 
endothelial metabolism has emerged as a promising strategy 
for modulating tumor angiogenesis [75, 90–95]. This 
strategy may not only rewire tumor vasculature by targeting 
EC sprouting, but also recondition the metabolic TME as it 
changes the EC-derived metabolites that are locally released. 
A key regulatory pathway of endothelial metabolism is 
glycolysis, a process critical for EC survival and proliferation 
in the hypoxic TME, as it generates necessary energy and 
metabolites anaerobically. For instance, disruption of 
glycolysis via PFKFB3 inhibition stabilizes the vascular 
barrier by improving pericyte adhesion, reduces metastasis, 
and enhances the efficacy of cancer chemotherapy [90, 95]. 
Furthermore, decreasing aerobic glycolysis in tumor ECs 
reduces vascular abnormalities, increases T cell infiltration, 
and overcomes tumor resistance to immunotherapy [96]. 
Notably, PHGDH, which diverts glycolysis into a specific 
serine biosynthetic pathway, promotes aberrant tumor 
angiogenesis, through its role in regulating nucleotide 
synthesis and maintaining the redox balance essential for 
endothelial proliferation [94]. Endothelial metabolism 
also contributes to the immunosuppressive TME by 
providing immunomodulatory metabolites produced by the 
vascular niche. As such, inhibition of serine metabolism 
in tumors ECs reduces their production of lactate and 
2-hydroxyglutarate, two immunosuppressants in the 
TME, leading to activation of anti-tumor immunity [94]. 
Beyond glucose metabolism, other metabolic pathways in 
ECs are also being explored as therapeutic targets. Loss 
of endothelial Adrb2, which encodes the β2-adrenergic 
receptor, leads to angiogenesis inhibition through oxidative 
phosphorylation [97]. Similarly, disrupting fatty acid 
metabolism in ECs, as evidenced by that knockdown 
of fatty acid synthase (FASN) and the loss of CPT1A, a 
critical enzyme in fatty acid oxidation (FAO), limit vessel 
sprouting and proliferation through mTOR signaling and 
nucleotide synthesis, indicating the role of lipid metabolism 
in maintaining the physical structure of tumor vessels [91, 
92]. Additionally, restricting glutamine metabolism through 
glutaminase 1 (GLS1) impairs vessel sprouting due to 
disrupted EC proliferation and migration [93], highlighting 
the importance of glutamine in sustaining macromolecule 
production necessary for angiogenesis. Collectively, the 
metabolic processes within ECs are fundamental not just for 
their energy and biosynthetic needs but also play a pivotal 
role in maintaining the structural and functional integrity of 
blood vessels in the TME. Understanding of these regulatory 
pathways offer key insights into how blood vessels adapt and 
grow in the TME, opening up new possibilities for targeted 
therapies aimed at modulating tumor angiogenesis.
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In summary, genetic, epigenetic and metabolic 
reprogramming of tumor ECs represent promising advances 
in vasculature-targeting therapy, with the potential to 
improve the efficacy of conventional cytotoxic treatments 
and immunotherapies [75]. There are potential drugs that 
may be tested for endothelial reprogramming therapy 
(Table  1). In addition, a number of clinical trials are 
currently undergoing to evaluate the synergistic effects of 
combining conventional anti-angiogenic agents, such as 
Bevacizumab and axitinib, with immunotherapies, aiming to 
enhance treatment efficacy and patient outcomes (Table 2).

Regulation of tumor angiogenesis 
by myeloid cells

The vasculature is the avenue through which circulation-
derived immune cells are recruited into the solid tumors. 
The infiltrating immune cells are exposed to the local 
vascular niche and interact with ECs mainly through 
paracrine mechanisms. The infiltrating immune cells 
locoregionally regulate vascularity, potentially modulating 

sprouting angiogenesis and vascular abnormalities. Here 
we discuss the regulatory mechanism underlying tumor 
angiogenesis by myeloid cells, which may serve as key 
therapeutic targets for vasculature-based cancer treatment.

Tumor-infiltrating myeloid cells, mainly including 
macrophages, MDSCs and neutrophils, regulate tumor 
angiogenesis by secretion of a variety of pro-angiogenic 
factors. For instance, TAMs and MDSCs are known to 
secrete pro-angiogenic factors that stimulate EC prolif-
eration and sprouting, leading to tumor angiogenesis and 
progression [98–100].Neutrophils serve as an additional 
source of released pro-angiogenic factors that regulate 
tumor growth and metastasis [101–103]. Myeloid cells can 
also indirectly enhance tumor angiogenesis by expressing 
matrix proteases and mesenchymal-associated factors that 
facilitate EC migration and vascular remodeling and matu-
ration. In addition, myeloid cells, particularly perivascular 
macrophages, also contribute to dynamic vascular permea-
bility in tumor [104]. Therefore, myeloid cells can regulate 
tumor angiogenesis through both direct secretion of pro-
angiogenic factors and indirect modulation of the TME 
with multiple mechanisms potentially involved (Fig. 2).

Table 1   Potential drugs for endothelial reprogramming therapy

Name Brand Name Mechanism of action Status

Ficlatuzumab/AV-299 N/A Monoclonal antibody against HGF Under clinical trials
YYB101 N/A Monoclonal antibody against HGF Under clinical trials
Cabozantinib Cometriq, Cabometyx Inhibitor of c-Met (and VEGFR2, AXL, and 

RET)
FDA-approved for medullary thyroid cancer, 

kidney cancer
Olaratumab Lartruvo Monoclonal antibody against PDGFRα FDA-approved for soft-tissue sarcoma (STS)
Ripretinib Qinlock Inhibitor of PDGFRα (and KIT) FDA-approved for advanced gastrointestinal 

stromal tumor (GIST)
Sunitinib Sutent Inhibitor of PDGFRs (VEGFRs and KIT) FDA-approved for renal cell carcinoma (RCC), 

pancreatic cancer, and imatinib-resistant 
gastrointestinal stromal tumor (GIST)

KPT-9274 N/A Inhibitor of PAK4 (and NAMPT) Under clinical trials
Panobinostat/ LBH589 Farydak HDAC inhibitor FDA-approved for multiple myeloma
Vorinostat/SAHA Zolinza HDAC inhibitor FDA-approved for cutaneous T-cell lymphoma 

(CTCL)
Belinostat/ PXD101 Beleodaq HDAC inhibitor FDA-approved for peripheral T-cell lymphoma
Romidepsin/ FK228 Istodax HDAC inhibitor FDA-approved for cutaneous T-cell lymphoma 

(CTCL) and other peripheral T-cell 
lymphomas (PTCLs)

Azacitidine Vidaza DNMT inhibitor FDA-approved for myelodysplastic 
syndrome, myeloid leukemia, and juvenile 
myelomonocytic leukemia

Decitabine Dacogen DNMT inhibitor FDA-approved for myelodysplastic syndromes 
and acute myeloid leukemia (AML)

TVB-2640 N/A FASN inhibitor Under clinical trials
Etomoxir N/A CPT1A inhibitor Under clinical trials
IACS-6274 N/A GLS1 inhibitor Under clinical trials
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Table 2   Clinical trials evaluating combination of anti-angiogenic and immunotherapies

Clinical Trial Identifier Phase Status Angiogenic Therapy Immunotherapy Other Drugs Cancer

NCT05488522 I Recruiting Bevacizumab Atezolizumab Stereotactic body 
radiotherapy (SBRT)

Advanced hepatocellular 
carcinoma (HCC)

NCT02873195 II Active Bevacizumab Atezolizumab Capecitabine Refractory metastatic 
colorectal cancer

NCT04356729 II Recruiting Bevacizumab Atezolizumab – Unresectable or 
metastatic stage II 
or IV cutaneous 
melanoma

NCT03762018 III Active Bevacizumab Atezolizumab Standard 
chemotherapy

Malignant pleural 
mesothelioma

NCT03074513 II Active Bevacizumab Atezolizumab – Rare solid tumors
NCT02210117 I Active Bevacizumab Nivolumab, 

Ipilimumab
– Resectable metastatic 

kidney cancer
NCT06083844 II Recruiting Bevacizumab Pembrolizumab Low-dose 

cyclophosphamide
High grade ovarian 

cancer with minimal 
residual disease after 
frontline treatment

NCT03175432 II Active Bevacizumab Atezolizumab Cobimetinib Untreated melanoma 
with brain metastasis

NCT04721132 II Recruiting Bevacizumab Atezolizumab – Resectable liver cancer
NCT02921269 II Completed Bevacizumab Atezolizumab – Recurrent, persistent, 

or metastatic cervical 
cancer

NCT03141684 II Recruiting Bevacizumab Atezolizumab Advanced unresectable 
alveolar soft part 
sarcoma

NCT01950390 II Active Bevacizumab Ipilimumab – Stage III-IV melanoma
NCT04981509 II Recruiting Bevacizumab, 

Erlotinib
Atezolizumab – Advanced stage kidney 

cancer
NCT05211323 II Recruiting Bevacizumab Atezolizumab Gemcitabine, cisplatin Advanced unresectable 

liver cancer
NCT02997228 III Recruiting Bevacizumab Atezolizumab Combination 

chemotherapy
Mismatch repair 

deficient, metastatic, 
colorectal cancer

NCT02853318 II Completed Bevacizumab Pembrolizumab Low-dose 
cyclophosphamide

Recurrent ovarian, 
fallopian tube, or 
primary peritoneal 
cancer

NCT05468359 I/II Recruiting Bevacizumab Atezolizumab Cyclophosphamide, 
sorafenib

Pediatric solid tumors

NCT03396926 II Active Bevacizumab Pembrolizumab Capecitabine Locally advanced, 
metastatic, or 
nonresectable 
microsatellite stable 
colorectal cancer

NCT03172754 I/II Recruiting Axitinib Nivolumab – Advanced renal cell 
carcinoma

NCT04996823 II Recruiting Axitinib Ipilimumab – Advanced melanoma
NCT04338269 III Active Cabozantinib Atezolizumab – Inoperable, locally 

advanced, or 
metastatic renal cell 
carcinoma

NCT05805501 II Recruiting Axitinib Triagolumab, 
Tobemstomig, 
Pembrolizumab

– Previously untreated, 
unresectable locally 
advanced or metastatic 
clear-cell renal cell 
carcinoma
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Macrophages

Macrophage‑produced pro‑angiogenic factors

Macrophages are a major cellular component of solid tumors 

[105]. TAMs promote tumor angiogenesis by secreting a 
plethora of pro-angiogenic growth factors, cytokines, and 
chemokines that induce EC proliferation and migration, 
including EGF[106], FGF-2/bFGF [107], platelet-activating 
factor (PAF) [108], PDGF [109], VEGF [110–112], TNF-α 

Table 2   (continued)

Clinical Trial Identifier Phase Status Angiogenic Therapy Immunotherapy Other Drugs Cancer

NCT04493203 II Recruiting Axitinib Nivolumab – Unresectable stage III or 
IV melanoma

NCT02133742 Ib Completed Axitinib Pembrolizumab – Advanced renal cell 
cancer

NCT04919629 II Recruiting Bevacizumab Pembrolizumab APL-2 Recurrent ovarian, 
fallopian tube or 
primary peritoneal 
cancer

NCT05231122 II Recruiting Bevacizumab Pembrolizumab, 
anti-CD40 CDX-
1140

– Recurrent ovarian 
cancer

NCT02636725 II Completed Axitinib Pembrolizumab – Advanced alveolar soft 
part sarcoma and soft 
tissue sarcomas

NCT04370509 II Recruiting Axitinib Pembrolizumab – Locally advanced 
metastatic clear cell 
kidney cancer

NCT03092856 II Active Axitinib Anti-OX40 – Metastatic kidney cancer

Fig. 2   Regulation of tumor 
angiogenesis by myeloid cells. 
Tumor-infiltrating myeloid 
cells, including macrophages, 
MDSCs, and neutrophils, 
interact with ECs and modulate 
tumor angiogenesis through 
secreted factors
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[113], IL-1 [114, 115], IL-8/CXCL8 [116, 117], and CCL18 
[118]. TAMs undergo alternative polarization in the TME to 
stimulate tumor angiogenesis [107, 119], which is character-
ized by elevated expression of these pro-angiogenic factors 
[120]. Macrophages are a major source of pro-angiogenic 
factors, particularly VEGF, that are present in tumors. Mac-
rophages employ diverse mechanisms to express VEGF, 
mainly induced by hypoxia through HIFs-mediated tran-
scriptional activation and further stimulated by multiple 
cytokines like IL-1β [121–123] and CCL18 [118]. Moreover, 
TAMs significantly contribute to production of proteases, 
particularly matrix metalloproteinase (MMP)-9, presented in 
the TME [124], which directly facilitates EC overgrowth and 
sprouting by remolding ECM and indirectly activates ECs 
by providing the active form of VEGF as a result of cleaving 
VEGF and releasing it from the binding to ECM [125–129]. 
Bone marrow-derived, MMP-9-expressing macrophages 
also participate in tumor neovascularization together with 
vascular endothelial progenitor cells [130], providing an 
additional mechanism for tumor angiogenesis. TAMs also 
release various additional factors that have pro-angiogenic 
activity, such as adrenomedullin (ADM), PGE2, Sema-4D, 
thymidine phosphorylase (TP), urokinase-type plasminogen 
activator (uPA), and YKL-40. For instance, ADM induces 
EC proliferation and tumor angiogenesis and growth [131], 
PGE2 enhances EC motility and survival, contributing to 
tumor angiogenesis [132], Sema-4D binds to its receptor 
Plexin-B1 on ECs to induce tumor angiogenesis [133], TP 
stimulates EC migration [134], uPA promotes ECM degra-
dation and vascular invasion [135], and YKL-40 activates 
MAPK signaling in ECs, leading to increased expression of 
VEGFR-2 that facilitates vessel sprouting [136]. Targeting 
tumor macrophage-released pro-angiogenic factors represent 
a promising strategy for therapeutic modulation of tumor 
angiogenesis.

Perivascular macrophages

Macrophages expressing Tie2 receptor (also known as Tek) 
often reside near vasculature and exhibit high angiogenic 
potential, playing a significant role in physiological and 
pathological angiogenesis [137]. A subpopulation of 
Tie2+ macrophages show a pro-angiogenic activity during 
embryogenesis [138]. These Tie2+ tissue macrophages 
release VEGF-C and soluble VEGFR1 to bridge between 
EC tip cells and modulate vessel branching in development 
[139, 140]. Similar to these findings, bone marrow-derived 
TAMs cluster around tumor vasculature and co-express 
Tie2 and CD206, showing more robust pro-angiogenic 
activity than Tie2– monocytes or macrophages [141, 142]. 
Tie2+ monocytes express a number of tumor-promoting 
genes including Mmp9, Vegfa, Cxcl12, Tlr4, Nrp1, and 
Pdgfb at a high level [143], and their pro-angiogenic 

potential could be further stimulated by EC-derived factors 
in the perivascular niche [144]. The presence of Tie2+ 
macrophages in tumor regions has been linked to increased 
tumor microvascular density, enhanced tumor grade and 
distant metastasis, and reduced survival rates in human 
patients [145–147]. Perivascular macrophages accumulate 
in the tumor microenvironment following chemotherapy, 
radiotherapy, and anti-angiogenic therapy, contributing to 
vascular reconstruction, and potentially leading to tumor 
relapse [112, 148–151]. These macrophages originate from 
the precursors of a subset of Tie2+ circulating monocytes 
and are attracted to tumors by chemotaxis, induced by 
EC-derived angiopoietin-2 (ANG-2), a ligand of Tie2 [141, 
144, 152]. Interaction with ECs stimulates Tie2 expression 
in TAMs and enhances the production of pro-angiogenic 
factors by these macrophages [144]. Ang-2 also drives Tie2+ 
macrophages to express IL-10 and CCL17, which inhibit 
T-cell proliferation and disrupt vascular homeostasis [153].

Recent studies have shed light on the importance of 
perivascular macrophages in the TME. In addition to 
promoting angiogenesis, these macrophages, residing 
near blood vessels, promote the formation of the vascular 
niche that contributes to tumor progression. Activation of 
these macrophages by extracellular matrix proteins, such 
as TNC (tenascin-C), through toll-like receptor 4 (TLR4) 
signaling, leads to the secretion of nitric oxide (NO) and 
TNF-α [154]. These factors, in turn, induce the expression 
of niche components in ECs, facilitating the establishment 
of a supportive TME for tumor growth and metastasis. These 
macrophages usually acquire anti-inflammatory phenotypes, 
contributing to spatially restrict immunosuppression in the 
vascular niche. As such, tumor EC-derived IL-6 induces 
alternative polarization and immunosuppressive phenotypes 
in perivascular macrophages [155]. In addition, Lyve-1+ 
macrophages have a critical role in creating a pro-angiogenic 
TME through maintaining and expanding a perivascular 
mesenchymal cell population, ultimately establishing a 
specialized niche that supports tumor progression [156]. 
Macrophage-derived TNF-α and endothelial TNF receptor 
are identified as crucial components of this regulatory 
mechanism. Perivascular macrophages, activated via 
TNC and TLR4 to induce the formation of pro-tumor 
vascular niche that drives tumor metastasis [154]. The 
spatial interaction between macrophages and ECs provides 
strong evidence for the intricate crosstalk that stimulates 
angiogenesis and tumor progression, metastasis, and therapy 
resistance [109].

Macrophage‑mediated vascular maturation

Macrophages regulate vascular maturation under 
physiological and pathological conditions. As a resident 
macrophage population in brain, microglia maintain the 
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integrity of blood–brain barrier that mainly consist of tightly 
associated ECs [157, 158]. Loss of NG2 proteoglycan in 
myeloid-specific and pericyte-specific cells leads to 
significant reductions in early-stage intracranial tumor 
growth [159, 160]. Myeloid-specific NG2 loss-induced 
vascular deficits, characterized by poor pericyte coverage on 
ECs and immature vessel, result in smaller vessel diameter, 
lower patency, increased leakiness, inefficient blood flow 
in tumor vasculature, and elevated intratumoral hypoxia 
[159]. TAMs promote pericyte coverage and stabilize tumor 
vasculature through the secretion of PDGF-B, contributing 
to vascular maturation [161]. Adenosine deaminase 2 
(CECR1) is highly expressed by TAMs, contributing to 
tumor angiogenesis [161]. Increased CECR1 expression 
correlates with higher microvascular density in GBM 
tissues. Inhibition of CECR1 reduces new vessel formation, 
while CECR1 stimulation promotes vascular maturation 
through paracrine activation of pericytes via PDGFB-
PDGFRβ signaling [161].

Macrophage‑mediated vascular permeability

VEGF was originally identified as vascular permeability 
factor (VPF) as a result of its potent ability to enhance 
vessel permeability, resulting in vascular leakage [162]. 
TAM-derived VEGF-A may, therefore, induce local vascular 
permeability in tumors. Consistent with this hypothesis, 
real-time intravital imaging reveals that dynamic vascular 
permeability occurs concurrently with cancer cell invasion 
and Tie2+ macrophage infiltration in the perivascular niche 
[163]. Genetic deletion of VEGF in TAMs reverses vascular 
permeability and cancer cell intravasation [163], suggesting 
a role of TAMs for regulation of vascular permeability. 
TAMs regulate vascular permeability through VEGF-
induced downregulation of vascular junction proteins ZO-1 
and VE-cadherin and through VLA4-mediated disruption 
of vascular adhesion proteins VCAM1 in ECs [163, 164]. In 
addition, M2-like polarized macrophage-derived exosomes 
containing miR-23a, miR-155 and miR-221 induces 
angiogenesis and vessel leakiness [165, 166], serving as 
an alternative mechanism for regulating tumor vascular 
permeability.

MDSCs

MDSCs are pathologically activated granulocytes 
(granulocytic or polymorphonuclear MDSCs, PMN-
MDSCs) and monocytes (monocytic MDSCs, M-MDSCs) 
with potent immunosuppressive activity [167, 168]. MDSCs 
regulate immune responses in physiological and pathological 
conditions, including pregnancy, cancer, chronic infection, 
sepsis and autoimmunity [169]. In addition to their well-
established role for direct suppression of lymphocyte activity, 

MDSCs secrete various pro-angiogenic molecules to induce 
tumor angiogenesis [100, 170, 171]. Tumor-associated 
Gr1+CD11b+ mouse MDSCs produce MMP-9 and release 
VEGF-A to promote angiogenesis [172]. Consistent with 
these findings, tumor-infiltrating MDSCs express MMP-2,-
13,-14 at a high level [173], and overexpression of MMP 
inhibitor TIMP-2 reduces MDSC infiltration and vascular 
density in tumor [174], suggesting a critical role of protease 
for MDSC-mediated tumor angiogenesis. Moreover, 
G-CSF stimulates Stat3-dependent MDSC expression of 
Bv8 [175], a potent driver of myeloid cell-dependent tumor 
angiogenesis [176]. MDSCs also express FGF-2 [171], 
PDGF [177], IL-1β [178], IL-28/IFN-λ [179, 180], TGFβ, 
EGF, and HGF [181] that can stimulate EC proliferation 
and migration, contributing to tumor angiogenesis [182]. 
In addition, MDSCs could directly differentiate into ECs 
[172] and induce tumor cell formation of vascular mimicry 
(VM) [183], serving as alternative processes to sprouting 
angiogenesis.

Neutrophils

Neutrophils are the most abundant innate immune cells 
in bone marrow and peripheral blood [184]. Neutrophils 
have emerged as an important component of the TME, but 
their functional role in cancer is still controversial [185]. In 
accordance with their critical functions in developmental 
angiogenesis [186, 187], neutrophils modulate tumor 
angiogenesis by providing pro-angiogenic factors in a 
time- and tumor context-dependent manner, contributing to 
tumor growth and metastasis [101, 102]. Tumor-associated 
neutrophils secrete a plethora of pro-angiogenic molecules 
including VEGF [188, 189], FGF-2 [190], Bv8 [191, 192], 
IL-17 [193], and MMP-9 [188, 194]. Neutrophil-derived 
oncostatin M also up-regulates the secretion of VEGF 
[195], and reprograms and degrades the ECM which then 
primes the environment for angiogenesis [195]. MMP-9 
released by neutrophils promotes the activation of VEGF 
and subsequent angiogenesis and tumor progression [129, 
194, 196]. Neutrophils also carry an intracellular pool of 
VEGF and mediate its rapid secretion [197]. Interestingly, 
IFN-β inhibits the infiltration of proangiogenic neutrophils 
that express VEGF, MMP-9, and CXCR4 and reduces 
tumor growth, suggesting a potential therapeutic approach 
for targeting neutrophil-mediated tumor angiogenesis [188]. 
These findings together suggest that neutrophils support the 
pro-angiogenic switch during cancer development [194]. 
As such, neutrophils display different states based on the 
expression of markers such as HIF-1α, arginase 1, and 
MMP-9, in which HIF1α+ neutrophils significantly correlate 
with greater angiogenesis and worse overall survival [198]. 
In addition to their role in directly driving pro-angiogenic 
functions, neutrophils can also indirectly promote 
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angiogenesis by activating pro-angiogenic functions of other 
immune cells [103]. For example, neutrophils reprogram 
T cells to acquire regulatory-like phenotypes and support 
their expression of IL-10, IL-17, and VEGF to promote 
angiogenesis [199].

Neutrophils also contribute to tumor vascularization 
through several non-angiogenic mechanisms, such as 
neutrophil extracellular trap (NET) formation [174, 
175], vessel co-option, and VM mechanisms [200, 201]. 
NETs, the release of web-like DNA structures, constitute 
an important mechanism by which neutrophils prevent 
pathogen dissemination or deal with microorganisms of 
larger size [202]. Cancer cells can induce NET formation 
by neutrophils, leading to tumor angiogenesis [203, 204]. 
NET-associated myeloperoxidase produces H2O2 released 
to ECM and activates NF-κB-mediated signaling in ECs, 
resulting in enhanced EC proliferation and migration [205]. 
Angiopoietins (ANG-1/-2) also induce NETs formation 
and promote neutrophil adhesion to endothelium and 
stimulated EC proliferation [206]. Finally, VM structures 
provide vascular channels for neutrophil infiltration and 
activation, leading to their expression of arginase, CCL2, 
CXCR4, and MMP-9 to promote angiogenesis and evade 
anti-angiogenic therapy [201], collectively suggest a critical 
role of neutrophils for tumor angiogenesis.

Conclusion remarks and future perspectives

Anti-angiogenesis, vessel normalization, and endothelial 
reprogramming stand out as promising strategies for 
targeting the vasculature in cancer treatment. They 
hold significant potential when combined with various 
anti-cancer approaches including, but not limited to, 
radiotherapy, chemotherapy, molecular targeted therapy, 
and immunotherapy. The application of these strategies 
in clinical settings might require optimization based 
on factors like tumor type, size, stage, location, and 
pathology to achieve the maximal efficacy in combination 
therapy. Particularly, genetic, epigenetic and metabolic 
reprogramming of tumor ECs may offer unique opportunities 
to empower T cell-based immunotherapy, considering that 
endothelial reprogramming could (1) inhibit excessive 
angiogenesis and suppress vascular aberrancy, leading to 
increase vessel delivery function to improve lymphocyte 
infiltration as well as to relieve intratumoral hypoxia and to 
activate these lymphocytes, (2) regulate adhesion molecule 
expression on ECs to promote lymphocyte attachment to 
endothelium and their recruitment to the tumors, and (3) 
reverse pro-tumor immunity that is induced by locally 
EC-derived immunosuppressive molecules, facilitating 
lymphocyte activation.

Among these innovative strategies, the induction of 
HEV neogenesis has emerged as a promising strategy to 
augment anti-tumor immunity and vessel functionality. 
HEVs play a vital role in lymphocyte trafficking and 
activation, serving as a critical target for therapeutic 
modulation of immunocyte infiltration [207]. Recent 
single-cell RNA-seq analyses suggest their significant 
involvement in upregulated expression of EC activation 
markers and co-stimulatory molecules that regulate 
dendritic cell function and T cell activation [208]. 
Activation of lymphotoxin β receptor (LTβR) signaling 
induces the formation of HEVs and T cell activation, 
and thereby sensitizes tumors to anti-angiogenic and 
anti-PD-L1 therapy [209], collectively suggesting that 
better understanding the immunostimulatory functions 
of HEVs may open new avenues for immunotherapeutic 
interventions in the future.

Despite these advancements, there are still several 
major limitations and challenges that restrict vascular-
targeting therapy in cancer, due to treatment toxicity, 
vascular heterogeneity in cancer, and the lack of reliable 
biomarkers hinder the effectiveness and applicability of 
current treatments. Notably, tumors can develop resistance 
to traditional anti-angiogenic treatments by compensatory 
activation of additional pro-angiogenic pathways to sustain 
tumor vascularization and by activating HIF-1α to support 
tumor growth and progression in low-oxygen conditions. 
One particular challenge is to develop a vascular-targeting 
strategy to selectively promote the infiltration of cytotoxic 
T cells and/or NK cells, but not immunosuppressive 
myeloid cells. Future spatiotemporal analysis of tumor 
specimens at single-cell transcriptome, epigenome, and 
metabolome levels will help address these challenges, as 
they need a deep understanding of the complex interplay 
between tumor vasculature and immune system in the 
tumor microenvironment.

Further research into the interaction of infiltrating 
myeloid cells with ECs regulates tumor angiogenesis, 
providing insights into the resolution of vascular 
formation, maturation, and aberrancy in cancer. 
Understanding of the underlying regulatory mechanism 
for tumor angiogenesis may lead to identification of new 
therapeutic targets for anti-vascular therapy, contributing 
to development of more efficient approaches for anti-
angiogenesis, vessel normalization, and endothelial 
reprogramming therapy. It also remains largely unclear 
how ECs spatiotemporally regulate the immunity of these 
macrophages, MDSCs, and neutrophils in the vascular 
niche. New knowledge filling this gap may help understand 
tumor immunosuppression and lead to development of new 
myeloid cell-based immunotherapy for cancer treatment.
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