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Abstract

Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular 

ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated 

processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell 

migration, involvement of macrophages and foam cells, and instability of the extracellular 

matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged 

as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This 

transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate 

state, characterized by a partial loss of endothelial-specific gene expression and the acquisition 

of “mesenchymal” traits. Consequently, this shift disrupts endothelial cell junctions, increases 

vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that 

drives atherosclerotic progression. While endothelial cell dysfunction initiates the development 

of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling 

intracellular molecules, is believed to exert a significant role in plaque development. Identifying 

the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial 
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autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology 

of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and 

highlight potential therapeutic targets.
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1. Introduction

Atherosclerosis is a major contributor to global mortality and morbidity. It is now 

characterized as an inflammatory condition that leads to arterial wall stiffening and 

thickening as well as plaque development [1]. Despite several hypotheses aimed 

at explaining the progression of atherosclerosis, a comprehensive understanding of 

its pathogenesis remains elusive [2-4]. Endothelial dysfunction significantly impacts 

atherosclerosis progression [5,6]. Endothelium, constituting the inner most layer of blood 

vessels, serves as a vital regulator of vascular homeostasis [7]. The primary role of 

endothelium is to create a barrier that governs the exchange of molecules and cells between 

the blood stream and the vessel wall. Beyond serving as a mechanical and non-thrombogenic 

barrier safeguarding the vascular wall, the endothelium also functions as a crucial and 

versatile network that plays a vital role in multiple physiological functions. In response to 

various chemical and biochemical signals, endothelium releases factors that control vascular 

tone, smooth muscle cell (SMC) proliferation and migration, adhesion of immune cells, 

thromboresistance and inflammation within vessels [8]. Over past decades, there has been a 

gradual unraveling of the diverse functions carried out by the endothelial cells (EC), some 

of which include immune regulation, endocrine and paracrine signaling, the preservation of 

redox homeostasis, and their role in influencing vascular tone.

Recently, EndoMT has emerged as a potential mechanism for the pathophysiological 

progression of atherosclerosis, shifting the focus on cell trans-differentiation and acquisition 

of new gene expression profiles and concordant shift in morphology and behavior [9]. 

EndoMT denotes a phenomenon wherein ECs transition into mesenchymal cells. This 

transformative process involves the acquisition of mesenchymal cell traits, marked by 

the loss of cell-cell contacts and cell polarity in response to both biochemical and 

biomechanical stimuli [10]. Interestingly, one of the physiological outcomes of EndoMT 

in atherosclerosis involves the process of autophagy. Attention is increasingly directed 

towards the crucial role of autophagic flux in maintaining the integrity of normal blood 

vessel walls. Moreover, emerging evidence establishes connections between autophagy and 

various vital physiological processes, including redox homeostasis, lipid metabolism, and 

the secretion of vasomodulatory substances, influencing the viability and function of ECs. 

Therefore, strategies aimed at enhancing autophagy in ECs holds promise for the treatment 

of atherosclerosis. In this review, we have endeavored to explicate the correlation between 

EndoMT and endothelial autophagy, emphasizing the contribution of this association to 

the pathogenesis of atherosclerosis. A thorough understanding of these dynamic cellular 
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shifts could potentially pave the way for the development of more specific treatments for 

atherosclerosis.

2. Exploring the role of EndoMT in atherosclerosis

The development of atherosclerosis is significantly influenced by endothelial dysfunction 

[5,6]. In healthy individuals, endothelium, which constitutes the cell layer immediately 

adjacent to the luminal surface of blood vessels, serves as a primary regulator of vascular 

homeostasis [7]. In atherosclerosis, ECs encounter diverse biochemical and physical stimuli 

from the bloodstream. Factors such as low-density lipoprotein (LDL), cholesterol, also 

inflammatory cytokines IL-1β, TNFα, TGFβ and wall shear stress can trigger EndoMT, 

disrupting EC homeostasis. This, in turn, results in endothelial dysfunction, ultimately 

contributing to the progression of atherosclerosis.

During this progression, ECs undergo a loss of apical-to-basal membrane polarity and 

cell-to-cell adhesion. Instead, they adopt a migratory, fibroblast-like phenotype. Moreover, 

a marked downregulation of EC markers, including platelet endothelial cell adhesion 

molecule (PECAM), vascular endothelial cadherin (VE-cadherin), vascular endothelial 

growth factor receptor 2 (VEGFR-2), and endothelial nitric oxide synthase (eNOS) are 

observed. Simultaneously, mesenchymal markers such as α-smooth muscle actin (α-SMA), 

neural cadherin (N-cadherin), fibroblast-specific protein 1 (FSP1), fibronectin, vimentin, and 

type I and type III collagen (ColI/III) are upregulated during EndoMT [11-13]. During 

the initial phases of EndoMT, documented reductions in intercellular adhesion forces 

within the endothelial monolayer accompany an observed increase in cellular stiffness [14]. 

Although EndoMT is a natural physiological process integral to cardiac development during 

embryogenesis and septate formation, its pathological occurrence has been implicated in 

the initiation, progression, and stabilization of atherosclerosis plaques, pulmonary arterial 

hypertension (PAH), fibrosis, pathological neovascularization, mitral valve thickening and 

cancer [14-22].

Mesenchymal cells assume crucial roles in this disease, contributing to processes such 

as the secretion of proinflammatory cytokines and growth factors, and the production 

of collagen and metalloproteinases, which are essential for plaque calcification and the 

formation of a fibrous cap. In vivo tracking systems for the EC lineage have suggested 

that ECs undergoing EndoMT significantly contribute to the population of fibroblast-like 

cells observed in atherosclerotic plaques. This cellular contribution is evidenced by the 

co-expression of markers specific to both the endothelial and mesenchymal phenotypes. 

The extent of EndoMT positively correlates with the instability of plaques [11,23]. Matrix 

metalloproteinases (MMPs) have a significant association with unstable atherosclerotic 

lesions, and fibroblast-like cells resulting from EndoMT exhibit heightened expression 

of MMP1, MMP9 and MMP10 compared to regular fibroblasts those are expressed 

mesenchymal markers vimentin and PDGFR [24,25]. MMPs are instrumental in vascular 

wall remodeling and the development of atherosclerosis by contributing to inflammatory 

activation and subsequent endothelial dysfunction [26]. Specifically, the activation of 

endothelial MMP2 can compromise endothelial integrity and function [26]. Additionally, 

recruited vascular wall cells leverage MMPs to remodel the surrounding extracellular matrix, 
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influencing the migration, proliferation, and apoptosis of both ECs and vascular smooth 

muscle cells (VSMCs) [27].

Nevertheless, the pathogenesis of atherosclerosis is intricate, involving endothelial 

dysfunction, inflammatory responses, oxidative stress, SMC activation, and thrombosis. 

Notably, endothelial dysfunction has been regarded as the primary factor initiating the 

cascade leading to atherosclerosis [28,29]. Furthermore, numerous studies have unveiled 

the interplay between endothelial dysfunction and inflammatory stress in vascular biology. 

In the context of chronic inflammation, prolonged activation of ECs triggered by 

dysregulated release of cytokines, such as interleukin 6 (IL-6), TNF-α, IL-1β or an impaired 

endothelial-dependent immune response, can lead to endothelial dysfunction [30]. Moreover, 

the NLRP3 inflammasome, beyond its crucial role as an immune response sensor, is 

implicated in endothelial dysfunction and the pathogenesis of atherosclerosis [31]. NLRP3 

inflammasomes govern caspase-1 activation and pro-IL-1β processing in macrophages, 

initiating inflammatory responses within the vascular wall that contribute to the progression 

of atherosclerosis [31].

The overexpression of adhesion molecules, including ICAM-1 and VCAM-1, serves as an 

early indicator of endothelial dysfunction and atherosclerosis [32]. Recent findings indicate 

that EndoMT plays a pivotal role in the intricate interplay between inflammatory stress 

and endothelial dysfunction. The prolonged stimulation of ECs by diverse factors, such as 

pro-inflammatory cytokines and hypoxia, lead to an imbalance in endothelial homeostasis, 

culminating in EndoMT.

Remarkably, Helmke et.al uncovered in vivo evidence supporting a bidirectional 

crosstalk between macrophages and the process of EndoMT whereby macrophages 

within atherosclerosis lesions demonstrate an upregulation of mesothelial markers, 

thereby promoting EndoMT. Conversely, cells undergoing EndoMT impact the function 

and phenotypes of macrophages, influencing processes such as lipid uptake [16]. 

Complementing in vivo and in vitro studies, single cell sequencing technology has been 

instrumental in advancing our comprehension of the landscape and pathophysiology of 

human atherosclerotic plaques. A recent study identified 14 cell populations within plaques, 

including ECs, SMCs, B cells, myeloid cells, and T cells under various cellular activation 

states [33]. Notably, one subclass of ECs within this study was shown to express SMC 

markers like alpha-actin 2 (ACTA2), notch receptor 3 (NOTCH3), and myosin heavy chain 

11 (MYH11), indicating that this subtype was undergoing EndoMT [33]. This discovery 

provides further weight to the notion of EC plasticity within atherosclerotic plaques. 

Collectively, these findings offer strong evidence for the close association between EndoMT 

and the initiation and development of atherosclerotic plaques.

2.1. Deciphering EndoMT signaling in atherosclerosis: Unraveling the mechanisms

The recognition of EndoMT as a significant contributor to pathologies like atherosclerosis 

and fibrosis has necessitated further investigation into the underlying molecular mechanisms 

propelling this process. The initiation of EndoMT can be triggered by various mechanisms 

and is coordinated by an intricate network of epigenetic regulators, transcription factors, and 
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noncoding RNAs [34-37]. Pathological conditions such as inflammation, oxidative stress, 

elevated blood sugar, and low shear stress can prompt EndoMT(Fig. 1) [36].

The transforming growth factor-beta (TGF-β) signaling pathway, particularly, the canonical 

downstream SMAD pathway, has been extensively studied as a critical regulator of EndoMT 

(Fig. 1) [36]. The TGF-β signaling pathway serves as a canonical modulator of EndoMT, 

exhibiting crosstalk with other pathways such as fibroblast growth factor (FGF), Notch 

signaling, and bone morphogenetic protein (BMP) pathways (Fig. 1). In atherosclerosis, the 

expression of long non-coding RNA H19 is elevated in aortic tissues and correlates with 

severity of cardiovascular disease [37,38]. H19 upregulates TGFβ receptor 2 (TGFβR2) 

and TSP1 through the let-7/TET1 pathway, indicating its potential to influence markers 

associated with EndoMT, including Slug, SM22-α, Vimentin, and fibronectin 1 (FN1) [39]. 

Furthermore, non-coding RNAs play an essential role in EndoMT. The ensuing discussion 

expounds on the mechanisms underlying EndoMT in the context of atherosclerosis.

3. Role of TGF-β signaling in EndoMT

The impact of the TGF-β signaling pathway on EndoMT has been thoroughly investigated 

(Fig. 1). The TGF-β pathway plays crucial functions in both physiological processes such as 

embryonic development, differentiation, cell growth, cell death, and tissue homeostasis, as 

well as in pathological processes including auto-immune responses, inflammation, fibrosis, 

angiogenesis, oncogenesis, and cardiovascular disease [40]. Mammals possess three TGF-

β isotypes: TGF-β1, TGF-β2, and TGF-β3. While all three TGF-β isoforms have the 

capacity to initiate EndoMT, studies in human microvascular and pulmonary progenitor 

valve endothelial cells have revealed that TGF-β2 is the most potent among these isoforms 

[41,42]. TGF-β family ligands bind to both type I and type II receptors, leading to the 

phosphorylation and activation of the transducer small mother against decapentaplegic 

(SMAD). The activated SMAD is then imported into the nucleus, where it regulates gene 

transcription [43].

SMADs are a set of proteins activated by serin phosphorylation, categorized into three 

subgroups based of their functions: Subgroup 1 compromises receptor regulated SMADs 

(SMAD 1–3, SMAD 5 and SMAD 8), subgroup 2 includes inhibitory SMADs (SMAD 

6 and SMAD 7), and subgroup 3 consists of the common SMAD (SMAD 4) [44]. 

Upon binding of TGF-β with its receptors, the SMAD2/3 complex is recruited and 

phosphorylated. This phosphorylation event prompts the formation of a SMAD2/3/4 

complex, subsequently translocating into the nucleus. The nuclear SMAD2/3/4 complex 

has the capability to bind with transcription factors and, thereby regulating gene expression 

[44,45]. In the context of epithelial-to-mesenchymal transition (EMT) or EndoMT, the 

specific transcription factors that interact with SMAD complexes include SNAIL and SLUG 

[46,47]. Earlier research indicated that the TGF-β-SMAD-SNAIL/SLUG signaling pathway 

not only diminishes the expression of endothelial genes, including CD31 and VE-cadherin, 

but also enhances the expression of mesenchymal genes such as fibroblast activation protein 

(FAP) and α-SMA [23,48-50].
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The non-canonical TGF-β pathways play a role in inducing EndoMT by activating various 

components of the mitogen-activated protein kinase (MAPK) signaling [51,52]. Notably, 

observations of SMAD-independent activation, particularly through c-Jun-N terminal kinase 

(JNK) and p38, suggest their potential role in triggering EndoMT [53]. Moreover, there 

is evidence of cross talk with other pathways like Wnt signaling and TGF-β signaling. 

Specifically, EndoMT regulated through autophagy has been reported to exhibit cross talk 

with the TGF-β signaling pathway [54].

Increasing evidence supports a role for the TGF-β signaling pathways in governing cell 

proliferation, differentiation, adhesion, migration, and apoptosis, not only during embryonic 

development but also in the pathogenesis of human diseases [55]. The underlying risk 

factors for atherosclerosis, such as oscillatory shear stress and inflammation induced 

loss of fibroblast growth factor receptor 1 (FGFR1) expression, can activate TGF-β 
signaling, thereby contributing EndoMT. Depletion of FGFR1 induces EndoMT through the 

upregulation of SMC markers and mesenchymal markers, which are also targets of TGF-β 
[56]. Dong et. al reported that inhibiting FGF signaling by targeting epsins, alongside 

potentiating TGF-β signaling, restrains EndoMT in atherosclerosis [57].

Epsins are ubiquitously expressed adaptor proteins and chiefly participate in regulating the 

endocytosis of plasma membrane receptor complexes [58,59]. This process facilitates the 

degradation of these complexes, influencing EC signaling [60-64]. Through the application 

of single-cell RNA sequencing and lineage tracing, it has been demonstrated that epsin 1 

and epsin 2 are both involved in promoting EndoMT. The absence of endothelial epsins 

curtails the expression of EndoMT markers and TGF-β signaling both in vitro and in 

atherosclerotic mice. This association is correlated with the development of smaller lesions 

in the ApoE−/− mouse model [57]. At a mechanistic level, the deficiency of EC epsins lead 

to elevated FGFR-1, hindering TGFβ signaling and EndoMT [57]. Epsin directly interacts 

with ubiquitinated FGFR-1 through their ubiquitin-interacting motif, resulting in the 

endocytosis and degradation of this receptor complex. Consequently, the administration of a 

synthetic ubiquitin-interacting-motif-containing peptide, specifically an atheroma ubiquitin-

interacting motif peptide inhibitor, significantly mitigates EndoMT and the progression of 

atherosclerosis [57].

Considering the pivotal role of TGF-β in the regulation of EndoMT, inhibiting TGF-β may 

be a strategy to reverse this process. The inhibition of EndoMT in mitral valve ECs, both 

in vivo and in vitro, by Losartan or MEK1/2 inhibitors, possibly through the suppression of 

non-canonical TGFβ signaling, indicates the potential utilities of these drugs in controlling 

EndoMT to mitigate the excessive growth and fibrosis observed in the leaflets following 

myocardial infraction [22,65]. A potential novel treatment strategy for atherosclerosis could 

involve inhibiting EndoMT by reducing the interaction between epsins and FGFR-1, using a 

therapeutic peptide. The precise role of TGFβ signaling in atherogenesis or atheroprotection 

is complex. Toma et al. discussed how TGFβ signaling resistance may enable repair cells 

to tolerate adverse environments and restore vascular damage. However, unchecked TGFβ 
resistance can lead to failure in regulating the repair process, resulting in adverse effects 

on the artery wall. Therefore, elucidating the molecular mechanisms governing vascular 

repair, including the precise contribution of TGFβ signaling in this process, is essential for 
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developing treatments for occlusive vascular diseases [66]. Although it may be tempting to 

classify TGFβ as either atheroprotective or atherogenic, it is more likely to play a central 

role in both normal and pathological vascular repair.

4. Role of the BMP signaling pathway in EndoMT

Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of cytokines, 

originally identified in bone tissue. BMPs exhibit well characterized crosstalk with 

mechanobiology in the bone marrow. The endothelium is constantly exposed to various 

mechanical stimuli in the form of wall shear stress induced by blood flow, along with strain 

and tension resulting from blood pressure and from the surrounding cells and extracellular 

matrix. The interplay between TGF-β/BMP signaling and these mechanobiological 

processes are well-understood [67].

To date, over 20 BMPs with diverse functions have been identified [68]. The interaction 

between BMP ligand and receptors triggers the phosphorylation of SMAD1/5/8, facilitating 

downstream signaling (Fig. 1) [69]. BMPs interact with two distinct receptors, mediating 

signal transduction through both SMAD-dependent and SMAD-independent pathways [70]. 

Activated TGF-β/BMP receptor complexes transmit signals through SMAD transcription 

factors or elicit various non-canonical responses, including activation of mitogen-activated 

protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K), and Rho homologous (Rho) 

GTPase signaling, among others (Fig. 1) [71]. The control of EndoMT is regulated by 

activin-like kinase (ALK), the receptors for TGFβ/BMP. Ligands like BMP2, BMP4, and 

TGFβ2 bind to and activate ALK2 and ALK5, triggering Smad1/5/8 and Smad2/3 signaling 

to induce EndoMT. On the other hand, BMP7 activates ALK2 but not ALK5, leading to the 

inhibition of EndoMT [72].

Crucially, the generation of reactive oxygen species (ROS) is also essential for BMP6 to 

govern osteogenic genes, osteogenic differentiation, and calcification [73]. Additionally, the 

brain and muscle ARNT-like protein-1 (BMAL1) inhibits ROS-induced EndoMT through 

BMP signaling, therefore inhibiting atherosclerotic plaque progression [74].

5. Role of the Notch signaling pathway in EndoMT

Additional significant pathways relevant to the induction of EndoMT comprise Notch 

and Wnt/β-catenin signaling (Fig. 1) [75-77]. The Notch and Wnt pathways are vital 

during cardiac development [78-81]. Microarray studies demonstrated an upregulation in 

the expression of Notch signaling mediators, including DLL4, Notch3, and Notch4, as well 

as Wnt signaling mediators FZD2 and FZD8 upon TGF-β activation [82]. Moreover, mice 

lacking endothelial β-catenin exhibited a significantly diminished TGF-β induced EndoMT 

[81].

ECs activated by Notch exhibit characteristics of EndoMT, including the downregulation 

of endothelial markers and the upregulation of mesenchymal markers [83]. Furthermore, 

Notch activation leads to the overexpression of Slug in ECs, a phenomenon associated 

with the loss of the endothelial phenotype [84]. Notch signaling contributes to EndoMT 

independently of or synergistically with TGF-β. TGF-β1 induces the upregulation of various 
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Notch components, including Jagged-1, the receptor Notch-1, N1ICD, recombination signal 

binding protein J kappa (RBPJK), as well as target genes, hairy enhancer of split-1 

(Hes-1) and Hes-5 [85]. In vitro activation of the Notch signaling pathway induces 

EndoMT by decreasing VE-cadherin expression and promoting α-SMA overexpression. 

Conversely, inhibition of the Notch signaling pathway through gamma-secretase inhibitors 

(GSI) mitigates the development of atherosclerotic lesion [86].

6. Role of non-coding RNAs in EndoMT

Non-coding RNAs, such as microRNA (miRNAs), long non-coding (IncRNAs), and circular 

RNAs (circRNAs), play important roles in regulating the process of EndoMT. Hulshoff 

et al. have reported an extensive overview detailing the non-coding RNAs implicated in 

the regulation of EndoMT [35]. MicroRNAs (miRNA), typically ranging from 20 to 40 

nucleotides in length, that exert their regulatory effects by binding to the 3’-UTR of 

target mRNAs, leading to suppression of target mRNAs [87]. mir-374b causes EndoMT 

through the targeting of MAPK7. MAPK7, reduced in atheroprone hyperplastic regions, is 

recognized for its inhibitory role in EndoMT. Suppression of mir-374b targets using short 

hairpin RNAs (shRNAs) resulted in a specific reduction in MAPK7 signaling components.

In ApoE−/− diabetic mice, miR-449a exhibited heightened expression and influenced 

EndoMT by upregulating the expression of mesenchymal cell markers while diminishing 

E-cadherin levels. E-cadherin is known to interact with adiponectin receptor 2 (AdipoR2) 

in lipid rafts. Treatment of ApoE−/− diabetic mice with a miR-449a antagonist resulted in a 

decrease in atherosclerotic lesions [88]. It is also reported that elevated levels of miR-122 

were detected in both ApoE−/− mice and in in vitro EndoMT models. Inhibiting miR-122 

in ApoE−/− mice demonstrated a mitigating effect on the advancement of plaque formation. 

The study also revealed that miR-122 facilitates plaque formation through NPAS3-mediated 

EndoMT, suggesting its potential role as a novel therapeutic target in the context of 

atherosclerosis [89].

6.1. Involvement of endothelial cell heterogeneity in EndoMT during atherosclerosis

The introduction of technologies like scRNA seq and other high throughput methods, 

along with the concurrent advancement of essential bioinformatics tools, have significantly 

broadened our understanding of the heterogeneity among ECs [90-93]. Before exploring 

significant findings on EC heterogenicity, as mentioned earlier, it’s important to emphasize 

that EndoMT in adults typically involves a partial transition.

Utilizing scRNA seq, Tombor et al. [90] demonstrated that after myocardial infraction, in 

adults mice EndoMT is both restricted and transient. In a separate study, Xu et al. [91] 

used scRNA seq to present evidence supporting the involvement of EndoMT in aortic valve 

calcification. In mouse aorta studies, Kalluri et al. [94] employed scRNA seq along with 

clustering analysis of gene expression. Through clustering analysis of gene expression in 

aortic cells, 10 distinct populations were identified, representing the primary arterial cell 

types: Fibroblasts, VSMCs, ECs and immune cells, including monocytes, macrophages, and 

lymphocytes. Notably, the most significant cellular heterogeneity was observed within the 

three distinct EC populations.
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Gene set enrichment analysis of these EC populations revealed a lymphatic EC cluster 

and other two populations with a specialization in lipoprotein handling, angiogenesis, and 

extracellular matrix production. These subpopulations persist and display similar changes 

in gene expression in response to a Western diet [94]. While a complete atherosclerosis 

mouse model was not specifically investigated, these endothelial cell subpopulations were 

persistent in response to feeding mice a Western diet for 8 weeks [94].

Kan et al. [95] conducted another study using scRNA seq on the mouse aorta, revealing 

results that closely resembled the earlier findings. Their investigation identified three distinct 

subpopulations of ECs. In this study, unsupervised cluster analysis of transcriptional profiles 

from 24,001 aortic cells revealed 27 clusters, representing 10 distinct cell types, including 

endothelial cells, fibroblasts, VSMCs, immune cells (B cells, T cells, macrophages, and 

dendritic cells), mesothelial cells, pericytes, and neural cells. Following the intake of a 

high-fat diet (HFD) that contains less glucose and fructose than a Western diet, specific 

subpopulations of endothelial cells exhibiting lipid transport and angiogenesis capabilities 

were identified [95].

Additionally, these ECs displayed extensive expressions of contractile genes like Myl9, 
Tagln, and Acta2. In the HFD group, three major SMC subpopulations exhibited increased 

expression of extracellular matrix-degradation genes, and a synthetic SMC subcluster 

showed proportional augmentation, accompanied by an upregulation of proinflammatory 

genes [95]. Also, it is identified that under HFD conditions, there was an increase in 

the numbers of aortic-resident macrophages, and the blood-derived macrophages displayed 

heightened expression of proinflammatory cytokines. This comprehensive study sheds light 

on the cellular composition of the ascending aorta, providing valuable insights into the roles 

of different cell types in the development and progression of aortic inflammatory disease.

Further supporting the hypothesis suggesting the susceptibility of specific EC 

subpopulations to EndoMT, another scRNA seq investigation delineated distinct 

subpopulations of ECs and EndoMT-derived cells under the influence of oscillatory shear 

stress [96]. Using a three-layer human coronary artery-on-a-chip model, shear stress levels 

comparable to those found in atherosclerosis-prone regions of the human arterial tree were 

applied. Oscillatory shear stress triggered a proinflammatory EndoMT by activating the 

Notch1/p38 MAPK-NF-κB pathway. This newly identified proinflammatory EndoMT was 

observed to stimulate SMC proliferation and matrix protein remodeling, primarily facilitated 

through the secretion of RANTES (regulated upon activation, normal T cell expressed and 

presumably secreted).

To fully appreciate EC heterogeneity, it is crucial to acknowledge the plasticity of ECs 

and the diverse mesenchymal fates that can be assumed through EndoMT. Upon induction 

of EndoMT, ECs predominantly exhibit transitions into phenotypes resembling fibroblasts, 

myofibroblasts, and SMCs [34,36,47,48,77,97]. ECs undergoing EndoMT have the capacity 

to generate additional mesenchymal cell types, such as chondrocytes, osteoblasts, and also in 

mitral valve endothelial cells [98,99].
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In this study, it was revealed that this transition occurs through an intermediary 

mesenchymal stem-like cell during EndoMT [10]. This noteworthy finding diverges from 

observations in other studies and adds an interesting dimension to our understanding of 

the diverse outcomes of EndoMT. Employing additional methodologies such as single-cell 

resolution proteomic experiments, like cytometry by time of flight (CyTOF), or approaches 

capable of simultaneous RNA and protein detection, such as CITEseq (cellular indexing of 

transcriptomes and epitopes by sequencing), hold promise for providing further insights into 

these processes.

6.2. Impact of endothelial autophagy in the initiation of atherosclerosis

Autophagy is a catabolic process crucial for sustaining normal physiological circulation. 

It is a cellular pathway specialized for the degradation of proteins and organelles in 

autophagosomes-double membrane vesicles, playing a crucial role in maintaining cellular 

metabolic homeostasis [100]. It also serves a protective function in cells by facilitating 

the movement of intracellular cargo and mediating cellular fate determination. The 

autophagosomes subsequently merge with lysosomes, giving rise to autophagolysosomes, 

in which a series of degradation processes take place, contributing to the maintenance of 

normal cellular metabolism [101].

To date, three primary types of autophagy have been demonstrated. Macroautophagy, also 

referred to as basal autophagy, begins with the formation of phagophores. Basal autophagy 

plays a crucial role in maintaining vascular homeostasis in ECs [102].

During this process, membranes form the autophagosome, which then fuses with the 

lysosome, leading to the degradation of large molecules and prevention of protein 

aggregation [103]. Microautophagy, another type of autophagy, involves the engulfment of 

cytoplasmic materials through the invagination of the lysosomal membrane. Microautophagy 

is essential for maintaining membrane integrity, regulating organelle size, and promoting cell 

survival during nitrogen starvation [104]. On the other hand, chaperone-mediated autophagy 

facilitates the transportation of cytosolic components across the lysosome with the help 

of chaperone proteins. [105]. Increased autophagic flux can counteract vascular injuries 

by enhancing EC functions, thereby impeding disease progression. However, dysregulated 

autophagy can lead to cell death in various pathological conditions as ischemic hypoxia or 

oxidative stress.

Dysregulation of autophagy is intricately linked to various health conditions, including 

cancer, neurodegenerative disease, and age-related diseases such as obesity, diabetes, and 

cardiovascular disorders [106-108], revealing that autophagy as a dynamic process aids EC 

adaptation to environmental changes and regulation of their function [109]. The involvement 

of autophagy in atherosclerosis remains a subject of debate. On one side of the argument, 

numerous studies have highlighted a protective effect associated with maintenance of 

basal autophagy in the context of atherosclerosis [110-112]. Throughout progression, from 

early to advanced stages of atherosclerotic disease, autophagy significantly influences the 

behavior of ECs, macrophages, and VSMCs; thereby, influencing the trajectory of the 

lesion. Analysis of mouse and human samples has identified the presence of autophagy 

markers, such as LC3-II and p62, within plaque cells. This finding suggests impaired or 
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reduced autophagy in the context of atherosclerosis formation [113,114]. The connection 

between autophagic activity and atherosclerosis suggests that autophagy in the early stages 

of atheroma development may act as a transient self-defense mechanism of cell-autonomous 

immunity. However, this self-defense mechanism tends to decline with prolonged lipid 

oxidation and oxidative stress [115]. As a result, autophagy may constitute a primary 

protective mechanism within endothelium [116]. Beyond cellular stress, the activation of 

basal autophagy can be augmented using specific drugs, suggesting that the autophagic 

machinery represents a potential therapeutic target for a range of diseases (Table 1) [106].

Endothelial dysfunction marks the early stages of atherosclerosis. External stimuli, such as 

shear stress and ox-LDL, intricately modulate the extent and severity of autophagy within 

the endothelium. Concurrently, the endothelium responds to the lesion initiation process by 

intricately regulating oxidative stress, inflammatory responses, death signals, and thrombotic 

factors in a counteractive manner. It is widely recognized that autophagy plays a crucial 

role in maintaining the proper functioning of ECs [117]. Accumulating evidence suggests 

that ox-LDL induces EC injury, contributing to atherosclerotic progression. Conversely, the 

activation of autophagy has been shown to mitigate EC injury induced by ox-LDL, thereby 

alleviating atherosclerosis [118-120]. Current research indicates that ox-LDL has the ability 

to trigger EC autophagy [121]. After ox-LDL is taken up, lipids undergo transportation to 

autophagic vesicles for degradation facilitated by lysosomes. Concurrently, ox-LDL may 

induce autophagy by triggering endoplasmic reticulum stress [122].

Autophagy in ECs leads to the induction of eNOS expression, subsequently enhancing 

the accessibility of NO (Fig. 2). This, in turn, reduces oxidative stress and inhibits the 

production of inflammatory cytokines [123,124]. Like macrophages and SMCs, excessive 

autophagic activity in ECs can trigger autophagic-induced cell death, contributing to 

the instability of plaques [124]. Recent evidence demonstrates that inefficient autophagy 

contributes to the development of atherosclerotic plaques, promoting inflammation, 

apoptosis, and a senescent phenotype in ECs [125]. However, despite the growing interest 

in autophagy within various pathophysiological contexts like neurodegeneration, cancer, 

and cardiac myopathies, its significance in atherosclerosis remains underestimated and 

overlooked.

Additional evidence also indicates that the manipulation of specific microRNAs, particularly 

miRNA876, in conjunction with an apoptotic agent, could amplify the adverse effects of 

atherosclerosis on the luminal surface [126]. Moreover, autophagy in ECs governs the 

secretion of von Willebrand factor, which is an integral constituent of the coagulation 

process [127]. Zhang et al. illustrated that ox-LDL has the capability to activate 

autophagy in ECs. Following the uptake of ox-LDL, lipids are conveyed to autophagic 

vesicles for degradation through lysosomal-mediated processes [127]. Ox-LDL might 

additionally induce autophagy by provoking endoplasmic reticulum stress. Demonstrating 

the significance of autophagy in ECs, that transient knockdown of the essential autophagy 

gene ATG7 led to elevated intracellular levels of intermediate-density lipoprotein (I-LDL) 

and ox-LDL. This suggests that autophagy plays a crucial role in regulating excess 

exogenous lipids in ECs [122].
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Under high shear stress conditions, EC autophagic fluxes are enhanced, potentially 

orchestrated by the transcription factors Kruppel-like factor (KLF)2 and KLF4, along 

with Sirt-1 activating FoxO1 [128,129]. Conversely, low shear stress inhibits AMPKα 
and activates mTORC1, impeding autophagic flux (Fig. 2). This inhibition ultimately 

leads to observed cell death, senescence, inflammation, and a predisposition towards 

atherosclerosis development [128,129]. In an inflammatory environment, ECs suppress 

the expression of adhesion molecules on their membranes, including PECAM-1 and VE-

cadherin, through robust induction of autophagy [130]. This intense autophagy by EC 

inhibits tissue infiltration resulting from the transendothelial migration of neutrophils, 

effectively disrupting the potential vicious cycle of subsequent inflammatory responses. It 

suggests that modulating EC autophagy to inhibit monocyte invasion and infiltration into 

the subendothelium could serve to temporarily halt the atherogenic process. In summary, 

endothelial autophagy stands out as a promising tool in addressing endothelial dysfunction. 

Modulating endothelial autophagy could present a promising avenue for developing a 

sophisticated treatment for atherosclerosis.

During the intermediate stages of atherosclerosis, autophagy in macrophages plays a 

pivotal role in suppressing foam cell formation, thereby impeding the progression of 

atherosclerosis [131]. Autophagy in macrophages is recognized for its crucial protective 

role in atherosclerosis [132]. Autophagy plays a facilitative role in the degradation process 

of lipid droplet transport into lysosomes, leading to the efflux of free cholesterol from foam 

cells and ultimately reducing the formation of foam cells [133].

Consistent with this assertion, suppressing autophagy in macrophages triggers plaque 

destabilization, leading to the initiation of necrosis through the luminal surface. Conversely, 

inducing autophagy in macrophages through mTORC1 inhibition contributes to the 

stabilization of atherosclerosis plaques [134]. Moreover, autophagy exerts an influence on 

the polarization of macrophages, and the activation of autophagy influences the development 

of macrophages towards the M2 phenotype, which is characterized by anti-inflammatory 

properties [135].

In the advances stages of atherosclerosis, the autophagic responses in macrophages are 

significantly impaired, resulting in the accumulation of lipids, compromised mitochondrial 

clearance, and the death of macrophages, contributing to the formation of larger necrotic 

cores [136]. It appears that the activation of C1q/CTRP9, a pro-inflammatory agent during 

atherosclerotic changes, may initiate the autophagy-related signaling pathway in foamy 

macrophages, consequently hindering the formation of atherosclerotic lesions in ApoE−/− 

mice [137,138]. It was reported that the beneficial effects of trehalose administration on 

autophagy and atherosclerosis involve the induction of lysosomal biogenesis factor TFEB 

in murine macrophage cells in vivo. These findings support the athero-protective role of 

autophagic activity in macrophages [139].

Through the modulation of VSMC phenotype, autophagy plays a crucial role in 

atherosclerosis [140]. A balanced and normal autophagic activity in SMCs is associated 

with cell survival and contributes to plaque stability. However, excessive autophagic activity 

can lead to SMC death and subsequent plaque destabilization [141,142]. In the advanced 
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stages of atherosclerosis, the apoptosis of VSMCs, which are the exclusive producers of 

interstitial collagen fibers within the fibrous cap, inevitably leads to diminished collagen 

fiber synthesis and thinning of the fibrous cap. Consequently, this process largely influences 

the vulnerability of the plaque and its propensity to rupture.

The phenotype and function of VSMCs are influenced by autophagy, as evidenced 

by increased secretion of extracellular matrix and decreased calcification [143]. Recent 

documentation reveals that inhibiting autophagy through the knockout of Atg7 in SMCs 

in animal models has detrimental consequences. These include increased senescence, 

neointima formation and atherogenesis. Furthermore, defective autophagy in Atg7 and 

ApoE−/− mice have been implicated not only in plaque formation but also in plaque 

instability and rapture [144]. When Atg7 and ApoE−/− mice were fed a Western diet, there 

was an observed increase in the number of autophagosomes inside SMCs, suggesting an 

impaired autophagic response [145]. The autophagy of SMCs may also be regulated by 

various cytokines, including TNF-α and osteopontin, as well as growth factors such as 

PDGF [146].PDGF, secreted by several cell types during vascular injury protects against 

cellular death via activation of autophagy [147].

7. Autophagy and efferocytosis in atherosclerosis

Autophagy literally means “self-eating” and it is a self-protective process. Increasing 

evidence highlights the significant role of autophagy in suppressing inflammation and 

apoptosis, while concurrently promoting efferocytosis and cholesterol efflux [141]. 

The initiation and progression of atherosclerosis depends on three crucial cell types: 

Macrophages, SMCs, and ECs. Of these, macrophages are the most extensively studied 

cell-types.

It is commonly acknowledged that apoptosis in macrophages within atherosclerotic lesions, 

coupled with their impaired efferocytotic function, accelerate plaque necrosis. This process 

contributes to plaque instability, thrombosis, and ultimately precipitates cardiovascular 

events [148,149]. The buildup of monocyte-derived macrophages is considered a critical 

stage in the initiation and evolution of atherosclerotic plaques, with the degree of 

monocyte accumulation escalating as plaques progress [150]. This accumulation not only 

diminishes the engrafting function of macrophages within plaques but also exacerbates the 

impairment of efferocytosis in lesional macrophages due to macrophage apoptosis [151]. 

Consequently, this sequence of events results in secondary necrosis, further amplifying 

plaque inflammation [152].

It has been observed that autophagy plays a preventive role in lesional macrophage apoptosis 

and defective efferocytosis. Using LDL−/− mice, Liu and colleagues revealed that autophagy 

deficiency increased the overall necrotic area in advanced atherosclerotic plaques and 

exacerbates the damage induced by oxidative stress [148]. The authors illustrated that the 

use of resveratrol, a naturally derived phenol, enhanced the efferocytosis of oxLDL-induced 

apoptotic cells in RAW264.7 cells through the activation of Sirt1-mediated autophagy. This 

not only demonstrated a protective effect of resveratrol could potentially serve as a novel 

therapeutic approach for atherosclerotic treatment [153].
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Brophy et al. reported that myeloid epsins contribute to atherogenesis by promoting 

proinflammatory macrophage recruitment and inhibiting efferocytosis, partly through the 

downregulation of LRP-1. This suggests that targeting epsins in macrophages could 

represent a novel therapeutic strategy for treating atherosclerosis [154]. We have previously 

reported the molecular and cellular mechanisms governing efferocytosis in vascular cells, 

including macrophages and other phagocytic cells. We previously explored the intricate 

roles of efferocytosis-related molecules in preserving vascular hemostasis and elucidated 

how impaired efferocytosis contributes to the initiation and advancement of atherosclerotic 

plaques [155].

It has been demonstrated that atherogenesis is linked to the upregulation of CD47, a crucial 

anti-phagocytic molecule recognized for conferring resistance to efferocytosis [156,157]. 

Recent investigations have identified CD47 as a potential target to hinder impaired 

macrophage efferocytosis within atherosclerotic lesions [158]. CD47, typically found on 

viable cells, acts as a “do not eat me” signal for efferocytes. It signals through the phagocyte 

SIRPα receptor protein, preventing engulfment. The expression of CD47 increases as 

atherosclerotic lesions progress, observed in both human and ApoE−/− mice. CD47 in 

plaques is specifically localized to dying macrophages, SMCs, and the necrotic core [158]. 

Furthermore, the administration of antibodies against CD47 in various mouse models 

significantly decreased atherosclerotic lesion formation compared to controls, resulting in 

reduced necrotic core formation and fewer apoptotic cells unrelated to macrophages. The 

elevated expression of CD47 in cells undergoing apoptosis induced by proatherogenic 

oxidized phospholipids is associated with TNF-α signaling through TNFR1, leading to 

enhanced transcription via NF-κB activation [158].

Additional studies have indicated that enzyme-triggered primary necrotic death in cells 

hinders the efficacy of efferocytosis for these dying cells. This inefficiency is likely 

attributed to abnormal CD47 expression in cells undergoing this form of cell death. The 

interplay between apoptosis, efferocytosis and autophagy is intricately complex, at times 

exhibiting contradictions, yet undeniably important in determining the overall fate of the 

cell. Moreover, this crosstalk serves as a key factor influencing the outcome of death-related 

pathologies like atherosclerosis, including both its development and treatment.

7.1. Exploring the interplay: EndoMT and autophagy in atherosclerosis

Vascular ECs possess capabilities in proliferation, adherence, migration, and secretion. 

Injury to vascular ECs compromises the integrity and barrier function of the endothelium, 

promoting the deposition of lipids and contributing to the development of atherosclerosis 

[159]. Earlier investigations have revealed the role of EndoMT in fibrotic aspects of plaque 

formation and the instability of plaques in the pathological progression of atherosclerosis 

[14,23]. Given the substantial role of EndoMT in the atherosclerosis process [160], it 

is crucial to explore novel targets for the prevention and treatment of atherosclerosis, 

particularly in alleviating vascular endothelial injury.

Autophagy is emerging as a primary protective mechanism in endothelium [116]. The 

dysregulation of autophagy in ECs has been reported to be linked with various pathologic 

conditions, highlighting the biological significance of autophagy [161-163]. The association 
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between activation of autophagy and the atherosclerotic process suggests that autophagy in 

early atheroma lesions acts as a transient self-defense mechanism, diminishing over time in 

the face of prolonged lipid oxidation and oxidative stress [115]. However, the connection 

between endothelial autophagy and EndoMT remains unexplored, and further investigation 

is needed to understand the mechanisms underlying autophagy induced EndoMT (Fig. 3).

Zou et al. demonstrated that autophagy attenuates EndoMT by promoting Snail degradation 

in human cardiac microvascular endothelial cells (HCMECs) [164]. In this study, Zou et 

al. observed simultaneous induction of EndoMT and autophagy by hypoxia in HCMECs. 

They found that rapamycin, an autophagy enhancer, mitigated EndoMT while promoting 

angiogenesis. Conversely, agents inhibiting autophagy, such as 3-methylademine (3-MA) 

and chloroquine (CQ), accelerated the progression of EndoMT, accompanied by a decrease 

in tube formation under hypoxic conditions. Interestingly, the authors noted that modulating 

autophagy using rapamycin, 3-MA, or CQ did not influence hypoxia-induced autocrine 

TGFβ signaling. However, it did alter the expression of Snail protein without affecting 

Snail mRNA expression. Furthermore, the colocalization of LC3 and Snail suggested that 

autophagy might mediate Snail degradation under hypoxic conditions in HCMECs. This 

hypothesis was confirmed through Co-immunoprecipitation revealed the interaction of p62, 

an autophagy substrate, with Snail, particularly in cells incubated under hypoxia [164].

Wang et al. also showed that autophagy opposes the EndoMT process induced by TGF-β2 

by reducing the phosphorylation level of Smad3 [165]. Singh et al. demonstrated that 

reducing ATG7 expression promotes EndoMT in vitro and increases the expression of 

key genes involved in TGFβ signaling and fibrosis. They suggest that autophagy could 

be serve as a significant and innovative pathway connecting EndoMT to organ fibrosis 

[166]. Zhang et al. showed that AGEs/RAGE-autophagy-EndoMT axis involved in the 

development of cardiac fibrosis. Knockout of RAGE resulted in the mitigation of cardiac 

fibrosis by reducing EndoMT regulated by autophagy [97]. In this study, the knockout of 

RAGE resulted in EndoMT, along with reduced expression of autophagy-related proteins 

(LC3BII/I and Beclin 1). This intervention alleviated cardiac fibrosis and improved cardiac 

function in transverse aortic constriction (TAC) mice.

Additionally, inhibitors of autophagy, 3-methylademine (3-MA) and chloroquine (CQ), 

mitigated both EndoMT and cardiac fibrosis in TAC mice. Notably, the induction of 

EndoMT by an autophagy inhibitor both in vivo and in vitro [97]. Gao et al. discovered 

that Sirtuin3 (SIRT3), an NAD-dependent deacetylase, is a key cellular sensor of 

energy metabolism, controlling EndoMT. The reduction of SIRT3 further triggered the 

hyperacetylation of endogenous autophagy-regulated gene 5 (ATG5), thereby inhibiting 

autophagosome maturation and increasing the expression of pyruvate kinase M2 (PKM2) 

dimer [167]. Moreover, TEPP-46, a selective PKM2 tetramer activator, resulted in decreased 

lactate levels and a reduction in EndoMT both in vitro and in vivo. Concurrently, inhibiting 

lactate influx from ECs to VSMCs decreased the expression of synthetic VSMC markers. 

Transgenic mice with EC-specific overexpression of SIRT3 showed decreased EC transition 

and partial improvement in vascular fibrosis and collagen accumulation [167].

Singh et al. Page 15

Vascul Pharmacol. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hammoutene et al. observed that a deficiency in endothelial autophagy not only 

contributes to the initiation of liver inflammation, characteristics of endothelial- to- 

mesenchymal transition, apoptosis, and liver fibrosis during the early phases of non-

alcoholic steatohepatitis (NASH) but also supports the progression to more advanced stage 

of liver fibrosis [168]. Liver sinusoidal endothelial cells (LSECs) from mice deficient 

endothelial autophagy exhibited increased expression of genes associated with inflammatory 

pathways. Furthermore, deficiency in autophagy in the LSEC line amplified inflammation 

(Ccl2, Ccl5, Il6, and VCAM1 expression), features of EndoMT (α-Sma, Tgfb1, Col1a2 
expression), and apoptosis (cleaved caspase-3), and perisinusoidal fibrosis. Additionally, 

mice lacking endothelial autophagy and treated with carbon tetrachloride showed increased 

perisinusoidal fibrosis [168].

Nivoit et al. showed that endothelial ATG5 plays a pivotal role in the activation of eNOS 

induced by both fluid shear stress and VEGF [169]. This function regulates vascular tone, 

tissue perfusion, and adaptive arterial remodeling [169]. Additionally, they showed that 

endothelial autophagy is essential for maintaining optimal VEGFR2 activity, promoting 

endothelial recovery following injury, and facilitating neoangiogenesis [169]. Mesenchymal-

to-endothelial transition (MEndT) is one of the mechanisms that impacts cardiac fibrosis, 

playing a pivotal role in cardiac remodeling. Hu et al. discovered that autophagy activation 

promotes MEndT and increases cytoplasmic and total expression of p53, while decreasing 

nuclear p53 expression [170]. Furthermore, after nuclear p53 knockout, autophagy promoted 

MEndT, whereas autophagy inhibited MEndT in p53 overexpressing cells. These findings 

highlight the role of autophagy in regulating MEndT through nuclear p53 and suggest a new 

strategy for treating fibrosis diseases [170].

Increasing evidence suggests that Wnt/β-catenin pathways regulate cell proliferation, 

senescence, and apoptosis [171-173]. Numerous reports highlight that the activation of 

Wnt/β-catenin serves as a negative regulator of autophagy. For example, there are reports 

indicating that the activation of Wnt/β-catenin hinders the expression of Beclin1, a pivotal 

component in autophagic flux [174]. Conversely, documented evidence suggests that the 

activation of autophagy can suppress Wnt/β-catenin signaling by degrading Dvl [175] 

or β-catenin [176]. In colorectal tumors, the level of autophagy exhibits an inverse 

correlation with the activation of Wnt/β-catenin [177]. In glioblastoma, multiple myeloma, 

and mammary tumors, inhibiting the Wnt/β-catenin pathway was observed to increase the 

expression of p62, LC3, and Beclin1, consequently enhancing autophagic flux [178-180]. 

In ovarian cancer, it was demonstrated that the DACT1 protein inhibits Wnt/β-catenin 

signaling and activates autophagy [181]. On the contrary, in lung cancer, the WIF-1 protein 

induced autophagy and inhibited Wnt/β-catenin signaling [182]. Additionally, activation 

of Wnt/β-catenin pathways have been shown to enhance EndoMT [183]. A prior study 

showed that autophagy precludes HCMECs from undergoing EndoMT [164,184]. Canonical 

Wnt signaling activity is a distinctive feature of EndoMT [185]. Both autophagy and Wnt/β-

catenin pathways play roles in the processes of proliferation, apoptosis, and survival in ECs 

exposed to either high glucose, hypoxia, or oxidative stress [186].

In a recent study, it was reported that activation of autophagy reduced expression of 

mesenchymal markers in atherosclerosis models and mitigated endothelial dysfunction 
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[186]. Additionally, the same study revealed that B cell lymphoma 2-associated athanogene 

(BAG3) protected against EC injury induced by defective autophagy and EndoMT, where 

EndoMT itself was prompted by defective autophagy. BAG3 has been demonstrated to play 

a regulatory role in tumor angiogenesis, neurodegenerative diseases, and cardiac diseases. 

However, its involvement in atherosclerosis is still not well understood.

Diao et al. reported that BAG3 prevents endothelial injury by activating autophagy through 

the formation of the chaperone-assisted selective autophagy (CASA) complex, thereby 

contributing to the amelioration of atherosclerosis. The study established a correlation 

between EndoMT and autophagy and clarified that BAG3 regulates autophagy induced 

EndoMT by constituting part of the CASA complex [186].

8. Role of TGFβ in regulating EndoMT and autophagy

The TGFβ1 signaling exerts wide-ranging effects that could impact cell growth, 

differentiation, and the synthesis of extracellular matrix (ECM) proteins [187,188]. 

Increased levels of TGFβ1 are detected in the heart of rat’s post-myocardial infraction (MI), 

and this elevation correlates with the phenotypic transition of fibroblasts to myofibroblasts, 

accompanied by the activation of canonical Smad signaling [189]. Ghavami et al. 

demonstrated a connection between autophagy and TGFβ1-induced fibrogenesis in human 

atrial myofibroblasts (hAT-Myofbs) and in a rat model of myocardial infraction (MI) 

[190]. The authors observed that TGFβ1 enhanced the synthesis of collagen type Iα2 and 

fibronectin in human atrial myofibroblasts (hATMyofbs), a phenomenon which coincided 

with an upsurge in autophagic activity in these cells.

Knockdown of ATG7 in hATMyofbs and knockout of ATG5 in mouse embryonic fibroblasts 

reduced the fibrotic response to TGF-β1 compared to control cells in the experimental 

setting. The fibrotic response in hATMyofb cells was attenuated by pharmacological 

inhibition of autophagy using bafilomycin-A1 and 3-methyladenine [190]. The authors 

also noted elevated levels of protein markers associated with fibrosis, autophagy, and 

Smad2 phosphorylation in lysates of whole scar tissue. Additionally, they observed the 

colocalization of punctate LC3B with vimentin, ED-A fibronectin and phosphorylated 

Smad2 [190].

Dysregulation of TGFβ signaling pathways contributes to the progression of several types 

of tumors. Suzuki et al. reported that TGFβ induces autophagy in hepatocellular carcinoma 

cells and mammary carcinoma cells and examined its role in the growth- inhibitory function 

of TGFβ [191]. The authors demonstrated that TGFβ activates autophagy in specific 

hepatocellular carcinoma cell lines, leading to cell cycle arrest and apoptosis. In HuH7 

human hepatocellular carcinoma cells, TGFβ triggers the accumulation of autophagosomes 

and conversion of LC3 to its lapidated form, LC3II. The activation of autophagy flux 

by TGFβ is supported by additional findings showing that TGFβ increases enhances the 

degradation rate of long-lived proteins and turnover of LC3II [191]. Moreover, TGFβ 
increases the mRNA expression levels of several autophagy-related genes, including 

BECN1, ATG5, ATG7, and DAPK. Interestingly, the authors also discovered that TGFβ 
upregulates certain autophagy-related genes in a Smad4-dependent manner and necessitates 
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new RNA synthesis for inducing autophagy. Therefore, it is suggested that TGFβ could 

induce autophagy, partially through the Smad pathway and the transcriptional activation of 

autophagy- related genes [191] (Fig. 4).

Trelford et al. explored how autophagy, a cellular mechanism for quality control that 

transports materials to lysosomes, modulates TGFβ signaling pathways involved in 

promoting epithelial to mesenchymal transition (EMT) and cell migration [192]. By 

impairing autophagy in non-small cell lung cancer cells using chloroquine, spautin-1, 

ULK-101, or small interfering RNA (siRNA) targeting autophagy-related genes (ATG5 

and ATG7), the authors observed a reduction in TGFβ1-dependent expression of EMT 

transcription factors and cell markers, as well as diminished stress fiber formation and 

cell migration [192] Inhibition of autophagy reduces pro-tumorigenic TGFβ signaling by 

controlling receptor trafficking, leading to decreased phosphorylation of Smad2/Smad3 

and diminished nuclear accumulation [192]. TGFβ1 elevates Unc51-like kinase 1 (ULK1) 

protein levels, triggers AMPK-dependent phosphorylation of ULK1 at serine (S) 555, 

promotes ULK1 complex formation, and concurrently reduces the activity of mechanistic 

target of rapamycin(mTOR) on ULK1 [193].

Both the canonical Smad4 pathway and the non-canonical TGFβ activated kinase1/tumor 

necrosis factor receptor-associated factor 6/P38 mitogen-activated protein kinase (TAK1-

TRAF6-P38 MAPK) pathways play crucial roles in TGFβ1-induced autophagy. Specifically, 

the TAK-TRAF6-P38 MAPK was found to be vital for the downregulation of mTOR 

S2448 phosphorylation, ULK1 S555 phosphorylation, and autophagosome formation 

[193]. Although silencing Smad4 using siRNA did not affect mTOR-dependent ULK1 

S757 phosphorylation, it did lead to a reduction in AMPK-dependent ULK1 S555 

phosphorylation and autophagosome formation. Additionally, both Smad4 silencing and 

inhibition of the TAK1-TRAF6-P38 MAPK pathway resulted in decreased colocalization of 

autophagosomes with lysosomes in the presence of TGFβ [193].

Takagaki et al. revealed an intriguing link where autophagy deficiencies in ECs led 

to IL6-dependent EndoMT and subsequent organ fibrosis, accompanied by metabolic 

abnormalities in mice. Inhibition of autophagy, either through a specific inhibitor or siRNA 

targeting ATG5 in HMVECs, induced EndoMT. Elevated IL6 levels were observed in the 

culture medium of ATG5 siRNA-transfected HMVECs compared to the control group, 

and neutralizing IL6 with a specific antibody completely prevented EndoMT in ATG5 

siRNA-transfected HMVECs [194]. It was observed that endothelial-specific atg5 knockout 

mice (Atg5 Endo; Cdh5-Cre Atg5 flox/flox mice) exhibited both kidney and heart fibrosis 

associated with EndoMT compared to controls. Plasma IL6 levels were elevated in Atg5 

Endo mice compared to controls, and fibrosis was accelerated in HFD-treated Atg5 Endo 

Mice. Neutralization of IL6 with a specific antibody alleviated EndoMT and fibrosis in 

HFD-fed Atg5 Endo mice, leading to the improvement of metabolic abnormalities [194].

Cerebral cavernous malformation (CCM) is a congenital cerebrovascular disorder, impacting 

around 0.3–0.5% of the population. It is marked by enlarged and leaky capillaries, increasing 

the risk of seizures, focal neurological impairments, and potentially fatal intracerebral 

hemorrhages. Marchi et al. proposed that defective autophagy is closely associated with 
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EndoMT, a pivotal process contributing to the progression of CCM [195]. The deletion of 

the KRIT1, one of the three major genes mutated in CCMs, significantly inhibits autophagy, 

resulting in the abnormal buildup of the autophagy adaptor p62/SQSTM1, impaired quality 

control mechanisms, and heightened intracellular stress. Loss of KRIT1 function triggers 

activation of the mTOR-ULK1 pathway, a key regulator of autophagy, and treatment with 

mTOR inhibitors partially restores some of the molecular and cellular abnormalities linked 

to CCM [195]. Similarly, defective autophagy is also observed in CCM2-silenced human 

ECs, as well as in cells and tissues from an endothelial-specific CCM3-knockout mouse 

model, and in human CCM lesions [195].

9. Role of mTOR in regulating EndoMT

Autophagy has emerged as a potentially crucial factor in regulating EndoMT by 

reducing TGF-β2-induced EndoMT [196]. Additionally, autophagy activation has been 

demonstrated to diminish Snail expression by reducing Smad3 phosphorylation levels, 

thereby counteracting EndoMT [165]. Moreover, the pharmacological inhibition of mTOR 

has been linked to autophagy activation and a reduction in EndoMT, indicating a 

direct association between mTOR-mediated autophagy inhibition and EndoMT [197]. The 

mTOR pathway exerts precise control over the various stages of autophagy. In instances 

of starvation, where energy production is compromised, the activation of AMPK and 

subsequent inhibition of mTOR result in the stimulation of autophagy. It was demonstrated 

that mTOR phosphorylation played a role in EndoMT, and in vitro studies using cultured 

rat pulmonary artery ECs revealed that BMP-7 suppressed hypoxia-induced phosphorylation 

of mTORC1. These collective findings highlight BMP-7 as a potent antagonist of hypoxia-

induced EndoMT in pulmonary artery ECs, with its mechanism of action involving the 

mTORC1 signaling pathway [198].

Bleomycin (BLM) is recognized as a gentle and efficacious sclerosant, extensively 

employed in the management of vascular malformations (VMs) [199]. BLM is also a 

widely used inducer of fibrosis and is frequently employed to establish models of pulmonary 

fibrosis [200,201]. Remarkably, a recent study revealed distinct morphological changes 

in pulmonary ECs within a BLM- induced pulmonary model, which were subsequently 

identified as EndoMT [202]. Zhang et al. demonstrated that sustained exposure to BLM 

triggered alterations in ECs resembling EndoMT, with the transformation influenced by 

the EMT-associated transcription factor Slug in an Akt/ mTOR pathway-dependent manner 

[203].

He et al. elucidated the underlying mechanism involving the long-coding RNA maternally 

expressed gene 3 (MEG3) and DNA methyl-transferase 1 (DNMT1) in EndoMT associated 

with diabetic retinopathy (DR) [204]. Using a rat model induced by streptozotocin (STZ) 

injection and a high-glucose -induced cell model, they found that DNMT1 facilitated MEG3 

promoter methylation, suppressing MEG3 expression by recruiting methyltransferase. This 

process activated the PI3K/Akt/mTOR signaling pathway, thereby accelerating EndoMT in 

DR [204].
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10. Therapeutic implications

Considering the impact of EndoMT on regulating atherosclerosis, targeting EndoMT 

disruption could present a therapeutic avenue for addressing this condition. In fact, certain 

compounds and clinical medications may exhibit protective effects against atherosclerosis 

by inhibiting EndoMT (Table 1). Similar to EndoMT, autophagy undergoes upregulation 

in numerous cardiovascular diseases, exhibiting both protective and detrimental effects 

depending on the context and the specific disease. Therefore, pharmacological modulation 

of autophagy emerges as an innovative therapeutic strategy to prevent or mitigate myocardial 

damage during various diseases.

EndoMT is a multifaceted process influenced by numerous factors, including signaling 

pathways and non-coding RNAs. Despite this complexity, there remains a shortage of 

effective drugs capable of reversing EndoMT. Looking ahead, the utilization of single-

cell/high-throughput sequencing technology may offer valuable insights into identifying 

EndoMT-associated targets for the treatment of atherosclerosis.

Simvastatin, a lipid-lowering medication used clinically, was found to inhibit EndoMT. 

Research by Lai et al. revealed that simvastatin can impede EndoMT through the 

upregulation of the KLF4/miR-483 axis in HUVEC [205]. Furthermore, simvastatin 

attenuated 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVC)-induced 

EndoMT by suppressing oxidative stress and TGFβ/SMAD signaling, suggesting its 

potential therapeutic application in addressing atherosclerosis [206]. RGFP966, an inhibitor 

of histone deacetylase 3 (HDAC3), is a significant regulator of cardiovascular diseases 

and has been identified as upregulated in atherosclerotic disease [207]. It demonstrates the 

ability to reduce atherosclerotic lesion burden by inhibiting EndoMT in the aortic root 

[208]. On the other hand, icariin, a compound derived from epimedium, effectively inhibits 

ox-LDL-induced EndoMT through the H19/miR-148b-3p/ELF5 (E74-like factor 5) pathway. 

By inducing H19 overexpression, icariin attenuates the EndoMT process, thereby exerting 

a protective effect in atherosclerosis [209]. Rapamycin and geniposide, both known as 

autophagy enhancers, were found to mitigate EndoMT via mTOR signaling pathway. This 

mechanism was validated in vitro using HUVECs and cardiac microvascular ECs, as well as 

in vivo in bleomycin mouse model of tissue fibrosis [164,210].

Fundamental research and numerous clinical trials have focused on targeting the autophagic 

process to treat atherosclerosis. Based on these studies, various autophagy stimulators 

have demonstrated effectiveness in mitigating atherosclerosis. Therefore, stimulation of 

autophagy holds promise as a treatment strategy for atherosclerosis, and targeted therapies 

directed at autophagy may be effective in this context (Table 1). The therapeutic significance 

of mTOR inhibitors in various diseases is well-documented. In human kidney transplant 

patients, rapamycin, an mTOR inhibitor, demonstrated cardioprotective benefits. The 

treatment led to an improvement in hypertension, a reduction in central arterial stiffness, 

and lowered blood pressure in brachial and carotid arteries [211].

Everolimus, a rapamycin derivative and mTOR inhibitor, is among the most extensively 

researched and well-known inducers of autophagy. These agents manifest a variety of anti-
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atherosclerotic effects, such as reducing plaque macrophages, enhancing cholesterol efflux, 

decreasing systemic and local inflammation, inhibiting intra-plaque neovascularization, 

promoting plaque stability, and diminishing intimal thickening [212-214]. The increased 

clearance of toxic materials by Everolimus, through mTOR inhibition and subsequent 

induction of autophagy, has shown promise [215]. However, these encouraging findings 

are somewhat overshadowed by its adverse effects on blood lipid and glucose levels, making 

combined therapy with statins or metformin desirable.

Resveratrol, another mTOR inhibitor and autophagy inducer, possesses anti-oxidative and 

anti-inflammatory properties, playing a protective role against various diseases such as 

atherosclerosis. It facilitates the efferocytosis of apoptotic cells, decreases atherosclerotic 

plaque size and density, reduces layer thickness and inhibits age-related changes 

[212,215,216]. A recent in vitro study further confirmed that resveratrol promotes the 

efferocytosis of apoptotic cells by activating autophagy [153]. Resveratrol exhibits vascular 

benefits by mitigating arterial stiffness and vascular endothelial dysfunction. It achieves this 

by enhancing NO-mediated vasorelaxation, which in turn reduces vascular oxidative stress 

and inflammation while suppressing endothelial apoptosis [217].

Metformin, an anti-diabetic medication, activates autophagy and inhibits mTOR through 

AMPK stimulation. It has been shown to reduce vascular complications in diabetic patients 

and suppress vascular aging, thereby inhibiting atherosclerosis in diabetic individuals 

[218,219]. Recent findings indicate that metformin’s anti-inflammatory effects on ECs 

are autophagy-dependent, although further research is needed to fully understand whether 

metformin’s cardiovascular benefits are directly linked to autophagy activation. Trehalose 

induces an increase in autophagic flux by activating TFEB, a process normally suppressed 

by mTOR. This mechanism contributes to the restoration of endothelial function by 

elevating the availability of NO in the arteries of elderly mice [220].

Statins, renowned for their pleiotropic effects including anti-inflammatory properties, 

enhancement of EC function, and stabilization of plaques, have been shown to trigger 

autophagy in SMCs by inhibiting the mTOR pathway [221].

MiR-100 reduces inflammation and atherosclerosis by promoting endothelial autophagy. An 

elevated expression of miR-100 enhances autophagic flux, thereby reducing NF-κB activity 

and suppressing levels of adhesion molecules in ECs, leading to decreased recruitment of 

leukocytes. RAPTOR, a component of mTORC1, is targeted by miR-100 in the endothelium 

[222]. Ultimately, caloric restriction and endurance exercise offer advantages in combating 

cardiac aging by inducing autophagy through the suppression of mTOR [223]. In the 

vascular context, it mitigates wall thickening and vascular stiffness, and enhances eNOS 

expression and bioavailability, thereby, restoring endothelial function [224].

In conclusion, while autophagy frequently serves as a mechanism for cell survival, excessive 

induction of autophagy could lead to autophagic cell death. Therefore, it is crucial to 

accurately determine and target the therapeutic window for modulating autophagy. Finally, 

we anticipated that future research would provide novel drugs or drug combinations 
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that effectively harness the beneficial outcomes of autophagy induction and inhibition of 

EndoMT in atherosclerosis and various other vascular conditions.

10.1. Concluding remarks and future perspectives

In this review, we have expounded the interplay between EndoMT and endothelial 

autophagy in the context of atherosclerosis. ECs, as the innermost layer of blood vessels, 

are the initial targets in the onset of atherosclerosis. Disrupted shear stress and elevated 

lipid levels in the blood exert an overwhelming burden on the endothelium, triggering its 

activation and instigating the pathological progression of atherosclerosis.

Over the past two decades, our understanding of EndoMT has evolved from a theoretical 

conception to a well-characterized biological process. Moreover, recent fundamental studies 

have elucidated the role of autophagy in endothelium. These studies demonstrate that 

endothelial autophagy is fundamentally cytoprotective and plays a regulatory role in 

response to blood flow and stress. An even less investigated aspect of endothelial autophagy 

relates to its role in crucial aspects of endothelial cell plasticity. In this context, impaired 

autophagy results in a notable loss of endothelial cell markers, a characteristic typically 

associated with EndoMT. The link between autophagy and EndoMT has been ascertained 

in the progression of cardiovascular disease [225]. A recent study employing scRNA-

seq revealed significant upregulation of autophagy-associated genes in a subset of EC 

undergoing endothelial-to-hematopoietic transition [226], emphasizing the pivotal role of 

autophagy in regulating EC plasticity.

Although the significance of vascular inflammation in atherosclerosis has long been 

acknowledged, the factors facilitating its progression and enhancing its therapeutic 

resistance have scarcely been explored. Moreover, treatments centered on lipid lowering 

therapies or singlecytokine inhibition, at best exhibit a slowing effect but do not halt 

or reverse the disease. The recognition of EndoMT-induced autophagy as the central 

mechanism governing ongoing vessel wall inflammation holds the potential to reveal 

novel therapeutic avenues. The efficient endothelial-specific suppression of these signaling 

cascades not only appear to inhibit vessel wall inflammation and impede the growth of 

atherosclerotic plaques but also induces significant regression of mature atherosclerotic 

lesions in mouse models.
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Fig. 1. 
The signaling pathway involved in EndoMT in pathogenesis of atherosclerosis. 

Transcription factors associated with EndoMT related transcription factors such as Snail, 

Slug, Twist are regulated by upstream signaling including BMP, TGF-β, Wnt, and Notch, 

which in turn regulate endothelial and mesenchymal gene expression, ultimately inducing 

EndoMT.
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Fig. 2. 
A schematic representation demonstrating the response of endothelial autophagy to shear 

stress and its potential impact on the progression of atherosclerosis. Steady laminar flow 

can trigger endothelial cells (ECs) to produce nitric oxide (NO) through eNOS activation 

and stimulate AMPKα, thereby enhancing autophagy levels in ECs, which may help hinder 

the disease progression. Conversely, low shear stress inhibits AMPKα and activates mTOR 

pathway, disrupting autophagy and contributing to the development of atherosclerosis.
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Fig. 3. 
Interplay between endothelial-to-mesenchymal transition (EndoMT) and endothelial 

autophagy in the pathogenesis of atherosclerosis.
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Fig. 4. 
A potential mechanism where TGFβ plays a role in the interaction between endothelial 

autophagy and EndoMT. TGFβ operates as a pivotal player in the intricate interplay between 

endothelial autophagy and EndoMT. In various disease progressions, TGFβ activates 

multiple pathways. Autophagy and EndoMT mutually regulate each other. TGFβ stimulates 

the expression of pro-autophagic genes (ATGs) via the p38 and JNK pathways. Moreover, 

TGFβ triggers the PI3K-AKT-mTOR pathway, which is associated with promoting 

EndoMT. Additionally, another potential mechanism involves the autophagic-promoting 

complex PI3K/BCN1, which facilitates the autophagy-mediated degradation of transcription 

factors Snail, Slug, and Twist, thereby mitigating EndoMT.
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Table 1

Anti-atherosclerotic effects of various compounds through modulation of EndoMT and autophagy.

Compound Functions Anti-atherosclerotic
Effect

Reference

Simvastatin Lipid-lowering medication, inhibit 
endomt, induce KLF4/mir-483 
axis in ecs

Suppressing oxidative stress and tgfβ/SMAD signaling 205,206

RGFP966 Inhibitor of histone deacetylase 3 
(HDAC3), inhibit endomt

Reduce atherosclerotic lesion burden 207,208

Icariin Inhibit ox-LDL induced endomt Protective effect in atherosclerosis 209

Rapamycin and 
geniposide

Inhibit endomt via mtor signaling 
pathway

Improvement in hypertension, a reduction in central arterial 
stiffness, lower blood pressure in brachial and carotid arteries.

164,210,211

Everolimus Rapamycin derivative, mtor 
inhibitor, autophagy inducer

Anti-atherosclerotic effect, reducing plaque macrophages, 
enhancing cholesterol efflux, decreasing systemic and 
local inflammation, inhibiting intra-plaque neovascularization, 
promoting plaque stability, and diminishing intimal thickening.

212-215

Resveratrol Mtor inhibitor, autophagy inducer Playing protective role against atherosclerosis, reduce arterial 
stiffness, reduce vascular endothelial dysfunction, anti-oxidative, 
antiinflammatory, facilitates efferocytosis of apoptotic cells, 
decreases atherosclerotic plaque size, density, reduces layer 
thickness and inhibits age related changes

212,215,216,153

Metformin Anti-diabetic medication, inhibit 
mtor through AMPK stimulation, 
autophagy inducer

Suppress vascular aging, anti-inflammatory effects on endothelial 
cells, thereby inhibiting atherosclerosis in diabetic patients

218,219

Trehalose Mtor suppressor, autophagy 
inducer by activating TFEB

Restoration of endothelial function by elevating the availability of 
NO

220

Statin Inhibit endomt, mtor suppressor, 
autophagy inducer in SMC

Enhancement of endothelial function, stabilization of plaques 221

miR-100 Autophagy inducer in ecs Inhibits NF-κβ activity, suppresses the levels of adhesion 
molecules in ecs, decreases the recruitment of leukocytes, reduces 
inflammation and atherosclerosis

222-224
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