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ABSTRACT: As the EU’s mandates to phase out high-GWP refrigerants come into effect,
the refrigeration industry is facing a new, unexpected reality: the introduction of more
flammable yet environmentally compliant alternatives. This paradigm shift amplifies the
need for a rapid, reliable screening methodology to assess the propensity for flammability of
emerging fourth generation blends, offering a pragmatic alternative to laborious and time-
intensive traditional experimental assessments. In this study, an artificial neural network
(ANN) is meticulously constructed, evaluated, and validated to address this emerging
challenge by predicting the normalized flammability index (NFI) for an extensive array of
pure, binary, and ternary mixtures, reflecting a substantial diversity of compounds like CO2,
hydrofluorocarbons (HFCs), hydrofluoroolefins (HFOs), six saturated hydrocarbons
(sHCs), hydroolefins (HOs), and others. The optimal configuration ([61 (I) × 14
(HL1) × 24 (HL2) × 1 (O)]) demonstrated a profound fit to the data, with metrics like R2

of 0.999, root-mean-square error (RMSE) of 0.1735, average absolute relative deviation
(AARD)% of 0.8091, and SDav of ±0.0434. Exhaustive assessments were conducted to ensure the most efficient architecture without
compromising the accuracy. Additionally, the analysis of the standardized residuals (SDR) and applicability domain (AD) exhibited
fine control and consistency over the data points. External validation using quaternary mixtures further attested to the model’s
adaptability and predictive capability. The exploration into the relative contribution of descriptors led to the identification of 23
significant sigma descriptors derived from conductor-like screening model (COSMO), responsible for 90.98% of the total
contribution, revealing potential avenues for model simplification without a substantial loss in predictive power. Moreover, the
model successfully predicted the behavior of prospective industry-relevant mixtures, reinforcing its reliability and opening the door
to experimentation with untested blends. The results collectively manifest the developed ANN’s efficiency, robustness, and
adaptability in modeling flammability, catering to the demands of industry standards, environmental concerns, and safety
requirements.
KEYWORDS: artificial neural networks, flammability, low-GWP refrigerants, applicability domain, normalized flammability index,
industry cooling demands

■ INTRODUCTION
With the growing concerns surrounding climate change,1−3 the
regulation and management of refrigerants with high global
warming potential (GWP)�have become a focal point of
attention in recent years.4,5 In this regard, the European Union
has led the charge in this direction, aiming to reduce
hydrofluorocarbon (HFC) emissions by two-thirds by 2030.6

Subsequent amendments have further promoted the use of
alternative refrigerants with lower GWP such as hydro-
fluoroolefins (HFOs), hydrochlorofluoroolefins (HCFOs),
saturated hydrocarbons (sHC), hydroolefins (HO), and
others, even including the previously phased-out CO2.

7−10

This strategy toward low-GWP refrigerants has emerged not
merely as a policy matter, but as an environmental imperative,
transforming the pursuit of sustainable solutions from an
optional requirement into a mandate.11 However, this
seemingly positive movement toward environmental compli-

ance has unfolded an unexpected challenge;12,13 as the newly
formulated refrigerants, whether pure fluids such as 2,3,3,3-
tetrafluoropropene (R1234yf), propane (R290), isobutane
(R600a), propylene (R1270), or difluoromethane (R32), or
blends of at least two refrigerants such as R448A, R449A, while
less detrimental to climate change, often exhibit highly
flammable characteristics compared to their predecessors.
Hydrocarbons are re-emerging14 as promising solutions
following setbacks in past efforts, and a reevaluation15,16 of
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their potential has brought them back into focus. Known for
their very low GWP and zero ozone depletion potential
(ODP), light hydrocarbons are both environmentally benign
and efficient conductors of heat.17 Nevertheless, their use is
not without challenges; their flammability has always led to
concerns and rigorous safety standards, being typically
classified in the high flammability class.18 In this sense, the
reintroduction of aliphatic hydrocarbon gases in new mixtures
of refrigerants aligns with global sustainability goals but faces
intricate challenges linked to intrinsic flammability concerns.
Overall, this paradigm shift is introducing significant safety
challenges19,20 into the refrigeration industry of today,
potentially elevating the cost of associated equipment and
demanding a new level of awareness and preparedness.
Flammability is an essential and complex characteristic of

refrigerants, encompassing an array of properties and subject to
various standards. According to the ANSI/ASHRAE Standard
3421 and ISO Standard 817,22 flammability is classified based

on a combination of factors, including heat of combustion,
lower flammability limit (LFL), and laminar burning velocity.
Within these standards, refrigerants are assigned to one of
three classes, from class 1, signifying no flame propagation
under conditions of 60 °C and 101.3 kPa, to class 3, signifying
higher flammability with criteria such as a heat of combustion
of >19 MJ/kg or a LFL of less than 0.10 kg/m3. A subclass
“2L” adds further nuance to class 2, imposing additional
restrictions on burning velocity.23 However, these distinctions
do not always lead to a clear demarcation between flammable
and nonflammable substances.24 In fact, flammability exists on
a continuum,25 where substances like propane display notable
flammability, others like carbon dioxide are entirely nonflam-
mable, and many substances fall along a spectrum of varying
flammability levels in between. Certainly, the multifaceted
nature of flammability does not end with classification;
predicting flammability is further complicated by various
factors,26,27 including flame propagation, thermal heat

Table 1. Machine Learning Models Developed in the Literature Using Molecular Descriptors as Inputs are Sorted by Year of
Publicationa

refs compounds family property assessed ML method

48 IL density, molar liquid volume MLR
49 solvents polarizability RBNN
50 IL density NN
51 IL toxicological effect MLP
52 organic solvents + IL solvatochromic parameter RBNN
53 IL activity, enantio-selectivity ANN + MLR
54 IL viscosity MLR + SVM
55 IL heat capacity MLR + ELM
56 IL H2S solubility QSPR + ELM
57 IL ecotoxicity MLR + MLP
58 IL refractive index ELM + MLR
59 IL Henry’s law constant MLR + SVM + ELM
60 IL viscosity ANN
61 DES viscosity MLR + ANN
62 cosmetic oils viscosity MLP
63 DES viscosity, density MLR
64 ester-alkane mixing energy ANN
65 DES electrical conductivity MLR
66 ES density, viscosity MLR
67 IL viscosity, conductivity, density SVR
68 ES pH MLR + ANN
69 DES CO2 solubility RF
70 chemicals Abraham parameters, solvation free energy, solvation enthalpy DNN
71 chemicals molar mass, boiling temperature, vapor pressure, density, refractive index, aqueous solubility DNN
43 F-refrigerants vapor pressure ANN
72 DES pH MLR + PLR + ANN
73 DES surface tension ANN
74 DES electrical conductivity ANN
75 IL + DES infinite dilution activity coefficients FM + DNN
76 polymers glass transition, melting temperature ANN
77 DES eutectic composition, melting temperature DT + MLR
78 IL Henry’s law constants SVM + RF + MLP
79 IL + DES thermal conductivity ANN
80 IL surface tension, speed of sound MLR + GBT
81 DES CO2 solubility ANN
82 DES heat capacity MNLR + ANN

aIL, ionic liquids; DES, deep eutectic solvents; MLR, multiple linear regression; RBNN, radial basis neural network; NN, neural network; MLP,
multi-layer perceptron; ANN, artificial neural network; SVM, support vector machine; ELM, extreme learning machine; QSPR, quantitative
structure−property relationship; RF, random forest; DNN, deep neural network; PLR, piecewise linear regression; FM, factorization machine; DT,
decision trees; GBT, gradient boosting tree; MNLR, multiple nonlinear regression.
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dissipation, and buoyancy, all of which require a deeper
understanding. The work by researchers such as Egolfopou-
los28,29 and Linteris and Babushok30−32 highlights the current
state of understanding and the areas where more research is
needed. This intricate interplay between different properties
and influencing factors emphasizes the challenging yet vital
nature of grasping flammability in the context of refrigerant
science, a pursuit that continuously evolves with the ongoing
advancements in the field. The quest for an accurate
representation of flammability has led to the adoption of
various methodologies and metrics,23 among which the
normalized flammability index (NFI) has emerged as a
significant tool.
In the context of this work, the NFI was used to estimate

flammability, and this choice is justified by several key
attributes of the index. Unlike some conventional metrics,
the NFI takes into account a comprehensive range of factors,
incorporating the heat of combustion, lower flammability limit,
and laminar burning velocity,33 while also allowing for
normalization based on a reference substance. This enables a
better understanding of flammability, offering insights that
reflect the real-world complexity of the phenomenon, depend-
ing both on the substance’s properties and the conditions of
evaluation, including temperature, pressure, and mixture
composition. By integrating these factors into a single index,
the NFI succeeds in providing a more cohesive and holistic
assessment of flammability, complementing other well-
established methods, such as the flame spread index (FSI),
flash point index, heat release rate (HRR), material calorific
value (MCV), fire propagation index (FPI), and limiting
oxygen index (LOI). Historically, the development and
utilization of the NFI trace back to 2019, as Linteris et al.24

sought more accurate and comprehensive ways to understand
and manage the risks associated with flammable substances. In
the present-day context, the use of the NFI has expanded far
beyond its original purpose, covering various fields within
refrigeration, including the design of binary,34 ternary,35,36 and
quartenary37 fourth generation drop-ins along with compre-
hensive testing of different types of circuit configurations.38

Further assessment of binary mixtures involving hydrocarbons
and A2 or A2L components is presented in the work of Calleja-
Anta et al.39

Given such an evolving landscape, the need for an efficient,
rapid, and reliable screening tool to evaluate the flammability
of contemporary drop-in alternatives to third generation HFCs
has come to the forefront. This stands in contrast to traditional
experimental procedures, which are time-intensive, laborious,
and often costly. Though a prior contribution37 explored the
flammability concerns of these avant-garde refrigerant systems
by developing an equation to evaluate the NFI, only a limited
view was provided.
Our study embarks on a mission to bridge this gap,

presenting a Machine Learning approach based on an artificial
neural network (ANN) to accurately predict the ASHRAE
designations and safety classifications across a wide range of
fourth generation refrigerant blends and novel configurations.
ML techniques have become popular for their versatile
capability to forecast a multitude of properties, including
solubility, thermal and electrical conductivity, surface tension,
vapor pressure, pH, density, viscosity, and heat capacity,
among others. Notably, recent studies had employed a range of
inputs including critical coordinates, acentric factor, vapor
pressure, molar mass, number of fluorine atoms, and Lennard-

Jones interaction parameters to accurately describe the
solubility40,41 and liquid density42 of F-gases. Building on
this potential, Table 1 offers a comprehensive overview of
machine learning models in the literature using σ-profiles as
inputs, encompassing various families of compounds and thus
showcasing the versatility of such predictive approaches.
However, our 2022 publication43 stands as the sole
documented instance in the literature to pioneer the use of
machine learning, specifically through ANN, for evaluating F-
based refrigerants through conductor-like screening model
(COSMO) descriptors, underscoring its unique importance in
this domain. This extensive applicability demonstrates ML’s
robust potential, opening new horizons for analyzing
flammability characteristics.
In the present work, we aim to develop an ANN model to

characterize the flammable behavior of novel combinations of
refrigerants, exploring what is consensually considered as
“mixtures of tomorrow” within the HVAC (Heating,
Ventilation, and Air Conditioning) domain. The model
employs molecular descriptors obtained from the COSMO
model for real solvents (COSMO-RS)44,45 as inputs to
effectively correlate molecular characteristics with flammability
of pure refrigerants and their blends. First, the developed ANN
model is trained using an expansive data set composed of
flammability of pure refrigerants and their binary and ternary
blends, along with ANN configuration optimization based on
statistical indicators. The optimized ANN configuration is
tested by using flammability for quaternary blends as a
demonstration of the predictive power of the model. Lastly, the
ANN model is used in a fully predictive manner to assess the
flammability of novel ternary blends comprised of CO2,
hydrocarbons, and F-based refrigerants as tangible alternatives
to the 2010s refrigerants, such as R410A and R134a, known for
their environmental drawbacks.46,47 By synthesizing market
needs, environmental concerns, and safety requirements, our
approach intends to offer a pragmatic alternative that aligns
with the urgent demands of today. Through this compre-
hensive endeavor, we hope to contribute to solving a complex
problem by providing a meaningful solution, reinforcing the
synergy between technological innovation and social respon-
sibility.

■ METHODOLOGY
The methodology proposed in this work, depicted in Figure 1,
encompasses four-stages: first, we use COSMO-RS for data set
generation in addition to supplying the essential output data
for ANN training and subsequent fitting. This is followed by
the second stage with the fine-tuning of the model’s inner
layout, adjusting layers, neurons, and hidden layer activation
functions for optimal performance. This step establishes a
correlation between the COSMO-RS molecular descriptors
(inputs) and the observed NFI outputs. The third stage entails
a rigorous evaluation of the ANN, combining regression and
statistical assessments with the external validation of refrigerant
blends not included in the training stage. Upon concluding the
model’s comprehensive testing and validation, including outlier
detection, we proceed to the screening of industry-targeted
future refrigerants in stage four. Here, the ANN is tasked with
predicting the flammability characteristics of new, untested
CO2-based mixtures, specifically in terms of ASHRAE
flammability ratings.
Flammability Output Data Set Assembly. The data set

for ANN development comprises the flammability using NFI

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.4c01961
ACS Sustainable Chem. Eng. 2024, 12, 11561−11577

11563

pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.4c01961?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(π̅) as an output, for a comprehensive array of pure
refrigerants, binary, and ternary blends compiled from multiple
sources.24,30,37,39,83 Specifically, NFI values for 18 pure-
components, 1309 binary mixtures, and 1028 ternary mixtures
were extracted from Bell’s et al. contribution.37 Additionally,
Calleja-Anta39 contributes one additional pure compound
(R1132a), 8 binary mixtures, and 579 ternary mixtures.
Further expansion of the data set stems from Domanski,83

which supplied a set of binaries, and Linteris et al.,24,30

introducing R161 and 180 novel binaries. The flammability of
these refrigerants is represented through the NFI,24 which is an
empirical representation for the flammability of working fluids
estimated using the refrigerant’s adiabatic flame temperature
(Tad), and degree of fluorination, expressed as the ratio of
fluorine atoms to the total number of fluorine and hydrogen
atoms +( )F

F H
. These parameters are fine-tuned to calculate the

NFI according to eq 1. The temperature difference in the
numerator is standardized by the upper limit adiabatic flame
temperature of 2500 K. The atan2 function is employed to
derive the four-quadrant arctangent angle within the domain
[−π, π], accounting for coordinates in a two-dimensional
Cartesian plane relative to the positive x-axis, prior to adjusting
the perspective to span angles from −180 to 180°. The 1/2L
boundary (π1,2L) is set at 36, yielding a normalized
flammability index ranging from zero, at this threshold, to an
absolute value of 100, for highly flammable compounds.
Indeed, the flammability class for refrigerants in line with the
ASHRAE classification are grouped based on their NFI values,
with nonflammable class 1 (NFI ≤ 0), mild-flammable class 2L
(0 < NFI < 50), and flammable classes 2 and 3 (NFI ≥ 50).

{ }
=

·
×

+( ) ( )( ) a tan2 ;

90
100

T F
F H L

L

180 1600
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Ä
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É
Ö
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(1)

The NFI flammability output data set consists of a total of
3127 refrigerants including 20 pure refrigerants with eight
hydrofluorocarbons (HFCs), five hydrofluoroolefins (HFOs),
six saturated hydrocarbons (sHCs), and one additional
hydroolefin (HO), along with 1500 binary blends, and 1607
ternary blends, with details on their distribution included in
Figure S1 in the Supporting Information (SI). The data set for

binary blends is predominantly weighted toward the lower end
of the NFI, with 83.27% of data points falling within categories
1 (NFI ≤ 0), and 2L (0 < NFI < 50), featuring mostly binary
blends of HFC + HFC and HFC + HFO (813 points),
followed by combinations of HFO + HFO (144 points), HFC
+ CO2 (111 points), HFO + CO2 (91 points), HFC + sHC
(74 points), sHC + sHC (30 points), and HFO + sHC (29
points). In contrast, the ternary blends flammability data set
provides a lower representation of 1−2L blends, specifically
comprising 394 data points for CO2-based blends, while also
having higher representation of ternary blends in flammable
classes of 2 and 3 (NFI ≥ 50), with 607 data points. This
distribution underscores a well-balanced data set, aiding in the
identification of safe refrigerants. It is noteworthy that lower
NFI values are frequently correlated with CO2-based binary
blends containing quantitatively small contents of other
refrigerants, whereas NFI values of 100 occur in HCs-rich
blends.
These data are used for ANN model development involving

training, testing, and validation, while NFI for 55 quaternary
blends are used for external validation by testing the developed
ANN model on these unseen data.
Input σ-Profiles Molecular Descriptors for Refriger-

ants via COSMO-RS. Toward predicting flammability of
refrigerants, pures and blends, COSMO-RS is used to obtain
molecular descriptors representative of the molecular structure
and energy of the studied refrigerants, as ANN inputs. These
descriptors are based on the σ-profile, which is the probability
of specific charge density (σ) on a discrete surface segment,
obtained from the density functional theory (DFT) level
geometric optimization for molecules using COSMO-RS.44,45

Given the thorough coverage of functional groups by
COSMO-RS, additional descriptors based on group contribu-
tion methods84,85 would increase the complexity of the ANN
architecture without yielding significant enhancements in
accuracy and predictive capability. While descriptors based
on physical properties such as heat of combustion,
flammability levels, critical points, and molecular weights,
among others, hold potential for enhancing the modeling
framework, their use is limited by the incomplete availability of
data for the selected output assembly under consideration.
This underscores the significance of this work, as it establishes
a direct correlation between molecular characteristics and
flammability, working with accessible inputs rather than
depending on costly and resource-intensive experimental
designs, which are often challenging for novel fourth
generation systems.
The methodology for obtaining σ-profiles86 starts with

importing the SMILES notation for each pure refrigerant into
the Turbomole software (TmoleX v4.5.1).87 The three-
dimensional (3D) molecular structures were subsequently
refined through a geometrical optimization at the DFT level
using the def-TZVP basis set with the Becke−Perdew 86
(BP86) generalized gradient approximation, and a rigorous
self-consistent field (SCF) convergence criterion was set at 1 ×
10−6 hartree.43 The optimized 3D molecular structures
(exported as COSMO files)88 were transferred to COSMO-
RS software (COSMOThermX v19.0.5)89 to generate the σ-
profiles, each encompassing 61 data points in the σ-range of
±0.03 e/Å2, which in essence represent the polar and nonpolar
regions across the molecule’s surface. The generated σ-profiles
were then discretized into 61 regions, each with a screening
charge density of 0.00098 e/Å2, used to compute the molecular

Figure 1. Integrated QSPR modeling framework implemented in this
contribution.
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descriptors selected as inputs for the ANN model, namely,
Sσ‑profile, obtained as integrals of the area under the σ-profile
curves in those 61 regions.51 To address computational
demands while maintaining analytical robustness, an additional
approach was considered for subsequent analyses: its
truncation to an eight-term descriptor set.68 In this regard,
each σ-profile was discretized into eight predefined electro-
static ranges representing the molecule’s surface polarity, and
the numerical integral of each segment was computed using
the integral function within MATLAB R2023a, as expressed in
eq 2. This resulted in eight quantifiable descriptors that serve
as reduced, yet meaningful, dimensional representations of the
σ-profiles.

=

=

S f S

f S

spline( ( ))d

integral(@( )ppval(spline( , ( )), ), , )1 2

1

2

(2)

where Sx serves as a truncated descriptor indexed from 1 to 8,
each numerically capturing a specific electrostatic range within
the σ-profile ( f(Sσ)), and essentially quantifying the area under
the polynomic curve for that specific segment of interpolation.
In this context, S1 focuses on σ/e·A−2 ranges from −0.030 to
−0.0225, S2 from −0.0225 to −0.015, S3 from −0.015 to
−0.0075, S4 from −0.0075 to 0, S5 from 0 to 0.0075, S6 from
0.0075 to 0.015, S7 from 0.015 to 0.0225, and S8 from 0.0225
to 0.03. The advantage of using these molecular descriptors as
inputs is that, aside from being obtained a priori without fitting,
they also contain sufficient information indicative of the
structural and energetic nature of the molecules needed to
predict their governing intermolecular interactions.
In the same manner, the molecular descriptors for binary

and ternary refrigerant blends were obtained relying on the
additive nature of the blend constituents’ σ-profiles.61 The σ-
profile of a given blend is obtained as a linear combination of
the constituent descriptors (Sσ

i ), each weighted by their
respective contributions, corresponding to their mole fractions
(xi) in the blend, as

= ·
=

S x S( )M

i

N

i
i

1

c

(3)

Artificial Neural Networks. Although a variety of machine
learning algorithms90,91 can be used to predict flammability of
refrigerants using their molecular descriptors, artificial neural
networks (ANN) are selected as the computational framework
of choice not only for its exceptional accuracy but also due to
its computational efficiency and architectural adaptability.76

ANNs draw their inspiration from biological neural networks
and have undergone decades of evolution.92,93 While initially a
tool to mimic biological intelligence, the focus has shifted
toward their utility in solving complex engineering challenges,
particularly in the domains of product design and safety
assurance. The basic architecture of a feed-forward ANN94

comprises an input layer, one or multiple hidden layers, and an
output layer. Each layer contains a varying number of neurons
or nodes, and each neuron in the network is associated with a
weight, a bias term, and an activation function that transforms
the neuron’s output. Hidden layers perform transformations on
input vectors through a series of linear and nonlinear
operations to facilitate the mapping from the input feature
space to the output target space, thereby enabling the
approximation of complex, multidimensional functions. In

this manner, the forward propagation of input data through the
network is enabled via synaptic connections between neurons
across successive layers. These connections, parametrized by
weights and biases, serve as conduits for the computational
flow, thereby facilitating the network’s ability to learn and
model complex relationships between the input feature space
and the output target.
In our model, the input feature vectors are derived from σ-

profile descriptors,51 which in turn are obtained from
quantum-level COSMO calculations, while the architecture
of the feed-forward ANN is meticulously crafted using the
advanced functionalities offered by MATLAB’s Neural Net-
work Toolbox. The Levenberg−Marquardt (LM) algorithm
integrated into MATLAB was utilized for its optimal balance of
computational efficiency and stability in weight optimization
for medium-sized data sets,95 using mean squared error (MSE)
as the loss function, and initializing weights randomly.
Compared to other algorithms like second-order Broyden−
Fletcher−Goldfarb−Shanno (BFGS), LM offers faster con-
vergence rates, robustness against local minima, and efficient
memory utilization, making it a versatile and reliable choice for
our study’s specific needs. Training proceeded for up to 2000
iterations (also known as epochs), with early stopping criteria
incorporated to mitigate overfitting.
The input/output data set underwent partitioning into three

principal subsets�training, validation, and testing�via the
application of the “cvpartition” algorithm.96,97 This division
technique is designed to bolster the model’s predictive
performance and generalizability.98 The allocation of data
into these subsets occurs randomly yet in a stratified fashion,
based on predefined user ratios (80% allocated to training, 20%
to validation and testing, evenly split). By employing
stratification,99 the algorithm maintains an analogous distribu-
tion of classes across the training and testing subsets, thereby
ensuring that the testing subset accurately embodies the
characteristics of the full data set. While randomization
introduces an element of variability, enabling different
outcomes across multiple runs, the replicability of results is
assured through the “genfunction” utility introduced in the
MATLAB coding.
Several configurational parameters for ANN development

were tested to determine optimal ANN structure including the
number of neurons in each hidden layer (1 up to 25 neurons)
and hidden layer activation function (appreciate mathematical
expressions in Table S1) such as hyperbolic tangent, logistic
sigmoid, linear, radial basis, and rectified linear unit, selecting
the final architecture of our ANN based on optimal statistical
indicators.
ANN Model Evaluation. The developed ANN model is

subject to a rigorous evaluation via an assortment of statistical
metrics in order to determine the accuracy of its training and
testing processes.66,81,100 Specifically, we relied on the
coefficient of determination (R2), root-mean-square error
(RMSE), average absolute relative deviation (AARD), and
average standard deviation (SDav), given in eqs 4−7, where N
is the number of observations, while NFIact and NFIpred are
the mean of the actual and predicted values. The best
performing model would possess a high R2 value close to unity,
and low RMSE, AARD, and SDav values.

=R 1
(NFI NFI )

(NFI NFI )
2 act pred

2

act act
2 (4)
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N

SD
1

(NFI NFI )av pred pred
2
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Applicability Domain. In order to determine the predictive
power of the developed ANN model, particularly extrapolative
capabilities, the applicability domain (AD) is used,101−104

working as an outlier detection mechanism, while also
demarcating the space in which the model’s predictions can
be considered scientifically reliable, thereby establishing a
domain for extrapolations.
To build this multidimensional space, leverage values (hi)

and standardized residuals (SDR) are integrated and visualized
via William’s plots.105 Leverage values are determined by eq 8,
where zi corresponds to the descriptor row vector for molecule
i, and Z to the descriptor matrix associated with the training
set, essentially assessing a molecule’s similarity to the data set’s
central tendency. Concurrently, SDR evaluates the model’s
predictive capability using eq 9, where σ2 is the residual
variance. Furthermore, it is essential to introduce a warning
leverage threshold, h*, which serves as an upper limit to flag
predictions that are less trustworthy due to a higher degree of
extrapolation. This is calculated using eq 10, incorporating d*,
the count of descriptors, and p, the total number of samples in
the training set. Operational boundaries in the William plot are
set when accounting a SDR checkpoint of ±3 units,
instrumental for quantitatively assessing the AD’s coverage

(see eq 11), where pAD represents the number of data points
within the AD. Combined, these metrics and visual tools
contribute to a holistic comprehension of the QSPR model’s
operational scope, aiding in both validation and subsequent
application.

= ·h z Z Z z( )i i i
T 1 T (8)

= =SDR
(NFI NFI ) NFI NFI

N

pred act
2

2
pred act

(NFI NFI )pred act
2

(9)

* =
* +

h
d

p
3( 1)

(10)

=
p

N
ADcoverage

AD
(11)

Input Relative Contribution Assessment. In the pursuit of
understanding the intricate relationship between input
descriptors and their significance of predicting output response
in the context of neural networks and regression analysis, we
employ an analytical approach known as the partial derivatives
(PaD) method.106−108 At the heart of this approach is the
concept of differentiation, which essentially measures the rate
of change of a function’s output relative to infinitesimal
alterations or perturbations in its input variables.104 This is
achieved by computing the partial derivative of the output with
respect to each individual input descriptor, offering insights
into the significance or relative contribution of each descriptor
to the system’s response. In this study, we employed the PaD
method via the limit approach, using a ΔSσ value of 0.5%
(0.0001% when Sσ = 0) for approximation, enabling a precise

Figure 2. σ-Profiles of (a, b) selected single-component refrigerants used in this work, (c) R744 (blue) + R290 (black) binary mixtures at 25 (red),
50 (green), and 75 (pink) mole% ratios of R290, and (d) R744 + R290 at 1:1 ratio with the addition of 25 (blue), 50 (red), 75 (green), and 100%
(pink) of R134a mole fractions.
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examination of infinitesimal variations and deepening insights
into the system’s intrinsic dynamics. Using eq 12, the
magnitudes of the partial derivatives indicate the dynamic
effect of each input on the assessed output, highlighting their
relative contribution. Upon determination of all data points, a
matrix space is structured, as in eq 13, wherein the summation
of given columns denotes the relative influence of the
corresponding input on the assessed response.

=
+

+

* *

* *

f
S

f S S S S f S S S
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■ RESULTS AND DISCUSSION
σ-Profiles of Pure Refrigerants from COSMO-RS. In

this work, we evaluated the σ-profiles of 23 refrigerants listed in
the NFI database. This included 20 pure-components (see
section Methodology for extended details), as well as R1270,
CO2, and RE170 used in binary and ternary combinations,
highlighted in Figures 2 and S2, providing detailed insight into
their governing interactions and their role on their
flammability. This concept relies on evidence that COSMO-
RS descriptors effectively capture factors influencing flamma-
bility by considering surface charge density and molecular
interactions, including the presence of specific functional
groups, polarity, oxygen content, hydrogen bonding capacity,
and the presence of heteroatoms such as fluorine or chlorine.
For instance, in the case of HFC 1,1,1,2-tetrafluoroethane

(R134a), in Figure 2a, the highly electronegative fluorine
atoms lead to a pronounced electron density difference in the
C−F bonds, making them considerably polar. These zones of
high interaction potential would correspond to the peaks in the
hydrogen bond donor (HBD) region of the σ-profile.
Similarly, the HFO 2,3,3,3-Tetrafluoropropene (R1234yf),

in Figure 2a, also displays areas of high polar interaction

potential due to its C−F bonds, but additionally possesses C�
C bonds, which present another unique reactivity zone on the
molecule’s surface. Note that the C−F bond is highly polar due
to the significant difference in electronegativity between
carbon and fluorine. This bond is a strong hydrogen bond
acceptor (HBA) and would typically be represented in the σ-
profile with a high surface charge density (positive σ value).
The C�C bond, instead, has π-electrons that can act as a weak
HBA and would be represented in the σ-profile in a region
with a moderate surface charge density, as it is less polar than
the C−F bond but more polar than nonpolar bonds such as
C−C or C−H. The σ-profile for the HFO trans-1,3,3,3-
tetrafluoroprop-1-ene (R1234ze(E)), in Figure S2, with
fluorine atoms on opposite sides of the bond, often exhibits
moderately lower peaks due to a less polar configuration.
Conversely, a different spatial arrangement around the C�C
bond as with its isomer cis-1,3,3,3-tetrafluoroprop-1-ene
(R1234ze(Z)), see Figure 2b, displays higher peaks, reflecting
the stronger polar environment. These peak disparities indicate
differing atomic contributions to each isomer’s overall
molecular polarity.
In contrast, carbon dioxide (R744), in Figure 2c, though

nonpolar overall, has zones of significant electron density due
to its polar covalent C�O bonds. Such polar character results
in a different σ-profile with polarity zones associated with the
oxygen atoms. In a similar manner, the oxygen atoms in
dimethyl ether (RE170), in Figure 2a, induce zones of high
surface charge density due to their high electronegativity,
indicating strong HBA characteristics. However, the presence
of fluorine atoms and a C�C bond adds complexity to its σ-
profile, with higher peaks from the C−F bonds (strong HBA)
and moderate peaks from the C�C bond (weak HBA).
Hydrocarbons such as ethane (R290), in Figure 2c, exhibit a σ-
profile dominated by lower σ values, indicating nonpolar
regions primarily due to C−H and C−C bonds, thus reflecting
hydrocarbons’ overall nonpolar nature.
In binary mixtures of CO2 with R290 (see Figure 2c), a

gradual shift toward R290's nonpolar profile is observed,
characterized by the diminishing HBD/HBA interactions of
CO2. This effect underlines a direct correlation between
molecular interactions, as revealed by sigma profiles, and the

Figure 3. (a) Mapping the average RMSE variation in relation to the number of neurons in first (HL1) and second hidden layers (HL2) while
using tansig activation function in both HL1 and HL2, and (b) The configuration for the best performing ANN of [61 (I) × 14 (HL1) × 24 (HL2)
× 1 (O)] to predict the NFI of refrigerants.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.4c01961
ACS Sustainable Chem. Eng. 2024, 12, 11561−11577

11567

https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.4c01961/suppl_file/sc4c01961_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.4c01961/suppl_file/sc4c01961_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.4c01961?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.4c01961?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.4c01961?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.4c01961?fig=fig3&ref=pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.4c01961?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


mixture’s overall flammability, emphasizing the significance of
molecular composition in determining refrigerant behavior and
safety. Further complexity arises in the ternary mixture of R290
and CO2 with the inclusion of R134a at equimolar ratios, as
depicted in Figure 2d. As the fraction of R134a in the ternary
mixture increases, there is a marked decrease in flammability,
partially marked by a transitional enhancement in the nonpolar
peak around 0.0025 e/Å2 of the sigma profile, accompanied by
a modest increase near the HBD region.
Selection of the Best Optimal ANN Configuration. As

previously highlighted, the ANN for predicting the NFI for
pure refrigerants and blends relying on their molecular
descriptors from COSMO-RS has a two hidden layer general
architecture. According to empirical evidence from various
machine learning models,43,73,76,79,81 this particular setup
constitutes a suitably deep network, optimally balancing
learning capacity, computational efficiency, and generalization
performance, thereby mitigating the risk of overfitting. The
number of neurons in each hidden layer and activation
functions were kept as variables to determine the best ANN
configuration.
First, the number of neurons in each of the 2 hidden layers

were changed from 1 to 25 neurons, running each network for
eight randomized trials for each configuration, with their
average RMSE as a function of the number of neurons in each
hidden layer shown in Figure 3a. The most effective
configuration is found to be a [61 (I) × 14 (HL1) × 24
(HL2) × 1 (O)] configuration shown in Figure 3b, with the
lowest average RMSE of 0.430. This configuration ensured a
RMSE < 1 in each of its randomized trials, signifying high
precision and accuracy in all of its random tests. Note that this
ANN configuration requires a total of 1190 weights and 39
biases to effectively correlate the molecular descriptors with
the NFI of the refrigerants.
Additionally, for ANN configuration optimization, we can

observe that arrangements with only a single neuron in any of
the hidden layers often correspond to higher error rates,
thereby highlighting the limitations of overly simplistic models.
However, the process is not as straightforward as merely

maximizing neuronal count; a configuration involving a high
number of neurons in both hidden layers, such as [61 (I) × 25
(HL1) × 25 (HL2) × 1 (O)], can paradoxically lead to
increased RMSE (i.e., RMSE = 2.91). This underlines the
delicate balance between model complexity and performance
in the context of the ANN architecture.
To further enhance the performance of the best ANN

configuration depicted in Figure 3b, a series of additional
modifications were carried out, such as (1) introducing a third
hidden layer, (2) reducing the number of descriptors to 8
rather than the initial 61, and (3) changing the activation
functions for the hidden layers. The introduction of an extra
hidden layer sets the stage for a dichotomy: although it can
potentially increase the model accuracy (i.e., reduce RMSE),
this would be at the expense of increased computational time.
Conversely, reducing the descriptor count is expected to
reduce the computational time, yet potentially at the cost of a
reduced accuracy (i.e., increased RMSE). Hence, our task is to
adjust these variables, finding the right balance between
reducing the computational time and minimizing the RMSE.
As provided in Figure S3a, adding a third hidden layer to the

pre-established optimal configuration (i.e., [61 (I) × 14 (HL1)
× 24 (HL2) × 1 (O)]) does not significantly lower the RMSE,
regardless of the number of neurons in the third hidden layer
(i.e., 1−25 neurons), only observing a slight decrease in RMSE
when using either 4 or 6 neurons in the third layer. However,
this comes at the expense of a 3-fold and 8-fold increase (i.e.,
ET/s = 18.9 for ANN configuration in Figure 3b) in the
computational time (measured as the elapsed time per epoch),
respectively, negating the minor enhancements in accuracy,
thus keeping the configuration of the best performing model
unchanged. The reduction of molecular descriptors from 61 to
8 is analyzed in Figure S3b. As expected, computational time
substantially decreases from 0.703−0.803 s to 0.155−0.181 s
when using the 8 descriptors. Nevertheless, this substantial
decrease in computational time produces a severe deterioration
of the ANN performance, leading to a substantial increase in
the RMSE. The least error, achieved via [8 (I) × 24 (HL1) ×
19 (HL2) × 1 (O)] configuration, exceeds an RMSE of 6.00,

Table 2. Analysis of the Performance for Activation Functions in the Hidden Layers of the ANN Model

function equation range set R2 RMSE AARD/% SDav

hyperbolic tangent (tansig) =f x x( ) tanh( ) [−1, 1]

train 0.9998 0.4299 3.9778 0.4268
validate 0.9991 1.0437 4.3304 1.0434
test 0.9994 0.8629 4.5404 0.8627
total 0.9997 0.5847 4.0694 0.5827

logistic sigmoid (logsig) = +f x( ) 1
1 e x [0, 1]

train 0.9998 0.4268 3.8884 0.4244
validate 0.9990 1.1260 3.8893 1.1250
test 0.9987 1.1822 6.1410 1.1800
total 0.9996 0.6651 4.1140 0.6639

linear (purelin) =f x x( ) [−∞, ∞]

train 0.9011 11.3709 92.1066 11.3732
validate 0.8988 11.5049 87.1327 11.4848
test 0.8785 12.6966 76.6944 12.7037
total 0.8984 11.5324 90.0660 11.5336

radial basis (radbas) =f x( ) e x2 [0, 1] | x ∈ [0, ∞)

train 0.9691 5.5479 47.5140 5.5477
validate 0.9425 7.8847 45.1713 7.8874
test 0.9496 7.1821 57.1790 7.1870
total 0.9643 6.0473 48.2469 6.0469

rectified linear unit (ReLU) =f x x( ) max(0, ) [0, ∞)

train 0.9982 1.4754 14.1345 1.4747
validate 0.9948 2.4795 14.8493 2.4790
test 0.9955 2.3021 17.6914 2.3022
total 0.9976 1.7079 14.5621 1.7073
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indicating a decrease in model accuracy. Comparatively (see
Figure 3a), when using 61 descriptors, 86.4% of the total tested
combinations culminate in a lower error value, typically with
RMSE = 1. In summary, although the model performs
calculations faster when using fewer descriptors, this speed
comes with a cost in accuracy, compromising the practical
application of the model, and accordingly, the number of
inputs was kept at 61 descriptors.
Having identified the [61 (I) × 14 (HL1) × 24 (HL2) × 1

(O)] configuration as optimal, we have conducted a systematic
examination of various activation functions within the hidden
layers, including hyperbolic tangent (tansig), logistic sigmoid
(logsig), linear (purelin), radial basis (radbas), and rectified
linear unit (ReLU) functions, in order to fine-tune the
performance for this specific configuration. The detailed
results of this examination, averaged over ten random runs
of the corresponding ANN configuration, are outlined in Table
2. From these observations, the tansig function is the best
performing, achieving an R2 of 0.9997 and RMSE of 0.5847
across all data sets (i.e., training, testing, validation). The logsig
function is another promising alternative on par with tansig
function achieving an R2 of 0.9996 and RMSE of 0.6651. Its
consistent performance across validation and testing data sets
(R2 of 0.9990 and 0.9987, respectively) highlights its efficacy in
predicting external data sets. The ReLU and radbas functions,
although competent, exhibit lower R2 values compared to
tansig and logsig functions, hinting at a potential overfitting.
However, the most notable discrepancy is observed with the
use of the purelin function with an overall R2 of 0.8984,
denoting a considerable mismatch with the actual data.
In light of the previous analysis, it becomes manifest that the

optimal ANN for predicting NFI values for refrigerants using
molecular descriptors from COSMO-RS is the [61 (I) × 14
(HL1) × 24 (HL2) × 1 (O)] configuration using tansig
activation functions in both hidden layers. This synthesis of
insights paves the way for us to explore this specific
configuration further, considering it as the best-case scenario
for our targeted application.
Evaluation of the Best Optimal ANN Configuration.

Training, Testing, and Validation of the Selected ANN
Model. Figure 4a offers a visual comparison between actual
and predicted NFI values for both training and external
(validation and testing) sets, as a parity plot between ANN-

predicted NFI (x-axis) and actual NFI data (y-axis) for the best
performing ANN configuration from the previous section. The
machine learning simulation achieved the desired accuracy at
epoch 134 in just over a minute (00:01:03), with a
performance error of 0.00491. It reported a gradient of 2.83,
and a μ of 0.001, striking a balance between training strategies.
These results confirm the successful training of the model, as
most points fall along the y = x diagonal. Consequently, the
model is seen as a reliable tool for predicting flammability
based on the given inputs, effectively avoiding overfitting, a
common pitfall in machine learning. This accurate fitting
underscores the model’s precision and narrow dispersion in
future predictions, as indicated by the excellent alignment with
actual data in the external testing and validation data sets.
The residual plot, shown in Figure 4b, highlights the model’s

ability to predict the flammability index for binary and ternary
mixture blends. As observed, most of the differences between
predicted and actual values (residuals) are within a range of
±1, while almost all fall within a broader range of ±5 SDR,
with only a few exceptions. Specifically, 0.72% of the training
data, 0.96% of the validation data, and 0.32% of the testing
data fall outside the SDR range of ±5, while a substantial
81.3% of the total data set is found to be constrained within an
SDR of ±1. The data analysis reveals that in the worst-case
scenario within an SDR of ±5, the NFI is overestimated by
0.27; however, given that the NFI spans a substantial range
from −150 to +100, this overestimation is considered minor
and does not constitute a clear outlier. Certainly, the
comprehensive coverage of all safety classifications within the
flammability scope underscores the database distribution’s high
reliability and accuracy. Notably, only two points (1.9% of the
validation set) within the 2−3 flammability region, and a mere
0.44% of total validation data in the 1−2L discretized
spectrum, display residual deviations over ±5, respectively,
with no outliers detected during testing.
The comprehensive results of the statistical analysis,

including specific key performance indicators, are presented
in Table 3 to supplement the previous visual representation
with statistical insights. Our findings indicate that the R2 value
remained consistently high across all data sets, registering
values greater than 0.999. Although demonstrating a robust
linear relationship between predicted and actual NFI values,
this consistency fails to delineate a clear trend; hence, further

Figure 4. (a) Parity and (b) standardized residual plots between the actual and ANN-predicted NFI.
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assessment through additional statistical descriptors becomes
essential. Unlike R2, RMSE and AARD show a clear trend as
the analysis moves from training to validation and testing
stages, with values increasing progressively, thereby indicating
the model’s increasing deviation as it is exposed to new and
unseen data. Note that while RMSE quantifies aggregate
differences between predicted and actual values, AARD
measures the average percentage deviation from the actual
values, providing a complementary view of the model’s
performance across different stages of data analysis. This
insight underscores the importance of careful evaluation in
understanding how well the model may perform when applied
to real-world scenarios. Lastly, the SDav, quantifying the
residuals’ dispersion or spread around the mean, reflects the
inherent variability and complexity of each data set, as the
larger the deviation, the more the residuals spread out from the
mean. This assessment reveals that the predictions for the
validation and testing stages are more spread out from the
average error, highlighting the importance of both the
underlying data distribution in addition to the model’s capacity
to handle diverse complexities and inherent variations within
different data sets.
Applicability Domain (AD). An examination of Figure 5 and

Table 4 provides insights into the applicability domain of the

developed ANN model, contributing to the identification of
potential outliers and anomalous data points lacking a physical
interpretation. Within this context, 20 structural outliers were
identified, distributed in 15 and 5 from the training and testing
stages, respectively. For assessing data points where hi values
range between h* (0.0744) and 0.1, identified as borderline
structural outliers, the number of instances falling outside the
AD diminishes to 14, with 10 related to training and 4 to
testing stages. In addition, the analysis reveals that response
outliers, defined as data points with an SDR value outside ±3,
tally up to 55, comprising 47 for training, 6 for validation, and
2 for testing stages within the developed ANN. If the
borderline response outliers (SDR between ±5) are included
within the AD, the outliers diminish to 8, distributed as 4 for
training, 3 for validation, and 1 for testing. This observation
revealing that most response outliers cluster near the SDR
border of ±4, defining a clear threshold between potential
interpolation and extrapolation predictions. Figure 5’s zoomed
view reveals an average AD coverage of 97.67% across the total
3D space, with 97.92% of the data points for external model
evaluation falling within the AD. This percentage rises to
99.36% when including borderline outliers for both structural
and response factors, reflecting the trend that most response
outliers converge at the SDR border’s limit. The cumulative
evidence, as portrayed through the visual and statistical
elements of Figure 5 and Table 4, underscores the robust
alignment of the ANN model, establishing that new
predictions within this domain can be deemed to be reliably
consistent for comprehensive analyses and high-throughput
screening applications.
Relative Contributions and Importance of Input Param-

eters. Figure 6 illustrates the relative contribution of the 61-

descriptor inputs to the NFI output, where the greater the
absolute value of the contribution, the more pronounced the
discrimination capability of the respective parameters. From
the analysis, it becomes apparent that the primary contributor

Table 3. Statistical Analysis of Performance Parameters for
the Developed ANN Model

metric training validation testing total

R2 >0.999 >0.999 >0.999 >0.999
RMSE 0.0727 0.2546 0.4402 0.1735
AARD% 0.7302 0.7957 1.1989 0.8091
SDav ±0.0357 ±0.0679 ±0.0812 ±0.0434
data points 2501 313 313 3127

Figure 5. William’s plot delimitating the AD (white) boundaries for
the total set of assessed compounds, with response outliers in red,
structural outliers in turquoise, and areas with both in purple.

Table 4. AD Parameters, Including Borderline Outliers in Parentheses, for the Developed ANN Modela

training validation testing total

structural outliers (BSO) 15 (5) 0 (0) 5 (1) 20 (6)
response outliers (BRO) 47 (43) 6 (3) 2 (1) 55 (47)
ADcoverage (+ BO)/% 97.60 (99.52) 98.08 (99.04) 97.76 (98.40) 97.67 (99.36)

ah* = 0.0744.

Figure 6. Relative contribution of the input parameters used in the
ANN model.
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to the NFI is S50 (
f

S
x , @σ = 0.019 e/Å2), accounting for

34.1% of the total contribution. This is followed by the notable
influences of S23 (σ = −0.008 e/Å2), S39 (σ = 0.008 e/Å2), and
S25 (σ = −0.006 e/Å2), contributing 4.42, 4.24, and 4.14%,
respectively. Further emphasizing the importance of certain
regions, descriptors S14−18, S20, S22−27, S31, S32, S35−37, S39−42,
S44, and S50 account for a remarkable 90.98% of the total
contribution. Certainly, it is evident that polarized positive-
charged segments (depicted in intense blue) and negative-
charged segments (in intense red) significantly impact the NFI
of the refrigerant mixtures, surpassing the weak hydrogen
acceptor and donor regions, with the nonpolar zone emerging
as the least significant factor. This observed trend, evident from
the data, aligns with the interplay of hydrogen bonding
capabilities and electron-donating and -accepting character-
istics within the molecular structure. In this context, mildly
strong acceptor or donor regions significantly influence the
NFI through stable and potent interactions, while weak
donors, acceptors, and nonpolar regions yield lesser or minimal
effects, due to their inherently weaker interactions that lack
substantial influence on flammability dynamics.
In a further examination of the underlying dynamics, it is

revealed that the molecular descriptors corresponding to S1−13
and S51−61, regions typically characterized by their role as
predominantly HBD and HBA, respectively, manifest a
complete absence of contributions. A plausible hypothesis for
this observation might be rooted in the formation of stabilizing
hydrogen bond networks within the molecular structure. These
networks could act to stabilize the molecular system, reducing
the available reactive sites and, thereby, diminishing the
propensity for ignition. The intricate charge distribution and
potential influence of the surrounding molecular features might
further mitigate the contributions of these charged regions to
flammability. To sum up, the insights gathered from Figure 6
not only underline the vital descriptors influencing the ignition
features but also provide a deeper understanding of the
underlying molecular interactions, which are central to the
design and optimization of refrigerant mixtures.
Testing ANN Predictive Power on Flammability of

Quaternary Mixtures. As illustrated in Figure 6, a substantial
90.98% of the total contribution to the NFI is ascribed to a

specific set of 23 molecular descriptors. The next step of the
analysis involves a 2-fold approach encompassing both a
comprehensive examination employing the full array of 61
molecular descriptors and a targeted assessment utilizing the
condensed subset of 23 specific descriptors. Note both
strategies employ consistent hidden layer layouts and
activation functions, as detailed in the main outputs of Figures
3 and S3 and Table 2. The ANN is rechecked by employing 55
quaternary mixtures not previously used for training or testing
the model, involving CO2, HFOs (R1243zf, R1234yf, and
R1234ze(E)), and HFCs (R41, R134a, R227ea, R125, R32,
and R152a), representing a wide spectrum of compositions.
Specifically, the ANN is exclusively trained and validated on
pure substances and binary and ternary mixtures (see data
assembly and preprocessing section), rendering these quater-
nary mixture predictions as a stringent test of model integrity.
For this purpose, the ANN configuration in Figure 3b operates
using weights, biases, and output parameters as determined
from Table S1, in accordance with the mathematical expression
presented in eq 14. Building on this configuration, the
ensemble neural model is integrated into an Excel spreadsheet
in the Supporting Information, enabling NFI calculations
across pure to quaternary refrigerant mixtures. Also, the reader
may find the database for training and testing, in addition to
the quaternary compositions used for external validation, as
outlined in the “DataBase” and “External Validation DataBase”
subtabs.
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As can be extracted from Figure 7, the 61-descriptor model
achieves an RMSE of 0.0631, indicative of high accuracy,
whereas the 23-descriptor model provides a less precise RMSE
of 0.5158 but offers the advantage of reduced computational
time. As appreciated, the increase in the RMSE represents a
decrease in prediction accuracy, reflecting once again the

Figure 7. (a) Parity plot (numbers denote the flammability region zooms) and (b) residuals plot of actual37 versus ANN-predicted NFI values for
selected quaternary mixtures using the 61 (blue symbols) and 23-descriptor (red symbols) ANN models.
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complexity of capturing intricate molecular interactions with a
reduced descriptor set. Figure 7 presents an in-depth and
detailed graphical analysis of these trends. Specifically, Figure
7a contrasts the actual and predicted NFI values using both the
61 and 23-descriptor sets, while Figure 7b showcases the
distribution of residuals, revealing that 41.8% of the total data
exhibit a residual of ±3 when employing the simplified 23-
descriptor model, an absent phenomenon in the data analysis
concerning 61 descriptors. Interestingly, the AD method’s
application disclosed that only one mixture, composed of
R1243zf, R1234ze(E), R1234yf, and CO2 (52:32:12:4 mol %),
falls outside the AD when using 23 descriptors, whereas a
100% AD is achieved with 61 descriptors. In summary, the 61-
descriptor approach emerges as highly predictive (average
residual of 0.049) but computationally more demanding, while
the more simplified model, although less precise with an
average residual of 0.34, offers the benefit of reduced
computational time and complexity. Given the broad NFI
prediction range evaluated [−5 to 25], the excellence of the
ANN model’s predictive capabilities, particularly with 61
descriptors, stands as an impressive achievement.
Predicting Flammability of Novel Ternary Refrigerant

Blends. After a robust phase of training and testing, including

external validation with quaternary mixtures, the ANN model
is deployed to predict the ignition propensity of novel ternary
mixtures of high interest for which no experimental data are
available, marking their novelty in industry as a focal objective
of this research. This crucial undertaking is instrumental in
facilitating the selection of refrigerant blends that strike an
optimal balance between a low GWP and moderate to low
flammability without compromising safety-related character-
istics.
Figure 8 depicts composition-property correlation mappings

of four specific mixtures, including (a) CO2, R600a, R1132a;
(b) CO2, R290, R1234yf; (c) CO2, R1270, R134a; and (d)
CO2, R1270, R125. This graphical representation serves as a
comprehensive visual guide, elucidating the interplay among
pure compounds at the vertices and binary mixtures along the
edges. As observed, all formulated mixtures incorporate CO2 as
a consistent component, complemented by commercialized
carbon-based specimens R600a, R1270, or R290, and paired
with F-based refrigerants with flammability ranging from A2
(Figure 8a) to A1 (Figure 8c,d), passing through A2L (Figure
8b).
The analytical results, including further predictions of blends

in the SI (see Figure S4), reveal the influence of selected

Figure 8. Ternary contour plots generated by multitask ANN, depicting predictions of NFI for various CO2 blends, including (a) R600a + R1132a,
(b) R290 + R1234yf, (c) R1270 + R134a, and (d) R1270 + R125.
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compounds’ properties on the resulting mixtures.109 CO2, for
instance, lowers both the GWP and flammability but increases
the pressure and decreases the efficiency of the cycle. On the
contrary, HCs, all with an A3 ASHRAE rating, lower GWP but
increase flammability, while HFCs and HFOs exhibit a mixed
set of attributes, revealing the necessity for novel combinations.
From the results illustrated in Figure 8, it is observed that the
choice of sHC/HO compounds is not a primary factor in
determining flammability, as all of the considered carbon-based
compounds are uniformly categorized under A3. Specifically,
R1270 yields the lowest flammability, followed closely by R290
and R600a trailing behind. However, the choice and inherent
influence of F-based compounds, ranging from A1 to A3,
proved to have a more substantial impact on the resulting NFI
of the assessed mixtures, with specific requirements on CO2
composition to achieve desired flammability indices, along
with constraints on GWP. Certainly, the mapping of the
flammability region, indicated in blue colormap, identified a
sequence of refrigerants by ignition propensity, ordered as
R125 (A1) < R134a (A1) < R1234yf (A2L) ∼ R1234ze(E)
(A2L) < R1132a (A2) < R161 (A3).
In the case of A3 F-based refrigerants, a minimum mole

composition of 90% CO2 is required within the blend to
achieve an A1 flammability index, irrespective of the
hydrocarbon portion. This requirement for CO2 could be
reduced to 80% when A2-classified refrigerants (e.g., R1132a)
are mixed with the same base constituents, leading to a
refrigerant mixture with enhanced safety and maintenance
features. However, utilizing A2L refrigerants like R1234yf or
R1234ze(E)110 grants even greater flexibility in designing A1
blends, allowing the CO2 compositions to reach a minimum of
75% mol. Concurrently, the percentage of hydrocarbon is
restricted to a maximum of 15 mol %, a constraint that could
be elevated to 20−25 mol % when using A1-classified F-based
refrigerants (e.g., R134a or R125). Indeed, within the
formulation of refrigerant blends, it is consistently observed
that the limiting factor governing the flammability of
refrigerant blends invariably depends on the concentration of
the carbon-based component. This constituent emerges as the
maximum permissible concentration that can be added to the
mixture in accordance with the NFI contours in Figure 8, a
threshold beyond which flammability becomes a paramount
concern. Even though A3 refrigerants bear a degree of
limitation akin to that of R1270, R600a, or R290, their effect
is typically more lenient, underscoring the critical role of
hydrocarbons in the overall blend design. Overall, the
predicted results, although exploratory in nature, align with
reasonable expectations, thus reinforcing the reliability of the
model, while also providing a structured framework to guide
the formulation of refrigerant blends that reconcile flamma-
bility, environmental, and safety requirements.

■ CONCLUSIONS
In this work, an ANN model has been developed to accurately
predict the Normalized Flammability Index, as a measure of
flammability, for a wide variety of refrigerants, including pure
systems and blends involving compounds like CO2, HFCs,
HFOs, sHCs, and HOs, among others. An extensive database
including 20 pure-components, 1500 binary, and 1607 ternary
blends has been compiled, with a wide spectrum of
flammability characteristics, and used for ANN model training,
testing, and validation. The developed ANN model employed
61 molecular descriptors based on the σ-profile obtained from

COSMO-RS, with the optimal configuration of two hidden
layers, with 14 and 24 neurons in each layer and tansig
activation function after a strategic blend of systematic trial-
and-error, iterative tuning, and cutting-edge optimization
techniques. The resulting structure of the model has exhibited
remarkable predictive power, with metrics such as an R2 of
0.999, RMSE of 0.1735, AARD% of 0.8091, SDav of ±0.0434,
and 81.3% of the data set with SDR of ±1. Moreover, there is a
remarkable capacity to predict the behavior of additional 55
quaternary mixtures not included in model development,
confirming the adaptability and general applicability of the
model. Further validation has been achieved through the
applicability domain analysis, demonstrating that 97.67% of the
total 3D space was encompassed within the AD, a coverage
that extends to 99.36% when considering borderline outliers.
Additionally, the relative contributions of the 61 descriptors
used as input parameters have been analyzed through the PaD
method, identifying 23 significant descriptors collectively
accounting for 90.98% of the total contribution. However,
the reduction of the input descriptors to 23 has provided an
average residual of 0.340, a 7-fold lower predictive precision
compared to the more holistic approach employing all 61
descriptors. The developed methodology can therefore be
applied to precisely forecast the flammability characteristics of
novel untested mixtures, in line with industry needs, facilitating
the screening of a diverse array of potential compounds toward
the development and implementation of environmentally
sustainable and safety-compliant refrigeration technologies.
For this challenging task, a user-friendly layout within the Excel
interface has been designed and is available in the Supporting
Information, thereby aiding in the identification of refrigerants
permissible in EU equipment in compliance with the most
recent safety directives.
Capturing the essence of this part of our investigation, the

main outcomes may be synthesized as follows: (1) NFI
estimates align with expectations and thus settle a precedent
for subsequent research of new, mildly to nonflammable fourth
generation mixtures; (2) the formulation of such refrigerant
blends confirmed the limiting factors leading to the
identification of A1 regions within the search space, as per
the NFI contour plots; (3) the hydrocarbon limit, set at 15 mol
% for A2L + CO2 sequences in designing A1 blends, is
projected to be increased to 20−25 mol % with the inclusion
of A1 F-based refrigerants like R134a or R125; and (4) this
study underscores the pivotal role of CO2 in tempering the
flammability of high-efficient yet combustible refrigerants such
as R161, R290, R600a, or R1270, thereby unlocking the path
to high-energy-efficient systems with minimized safety risks. In
summary, this research represents a milestone in the utilization
of machine learning in the ever-evolving field of flammability
analysis, as it provides reliable predictions that can be applied
in real-world scenarios, including the precise domains of safety
analysis, risk assessment, and the optimization of industrial
processes.
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■ LIST OF ABBREVIATIONS
AARD absolute average relative error
Act actual data
AD applicability domain
ADcoverage applicability domain coverage
ANN artificial neural networks
ASHRAE American Society of Heating, Refrigerating, and

Air-Conditioning Engineers
b bias
BRO boundary response outliers
BSO boundary structural outliers
COSMO-RS conductor like screening model for realistic

solvents
d* number of descriptors
def-TZVP double-electron, triple-ζ valence with polar-

ization
DFT density functional theory
e elementary charge
ET elapsed time
EU European Union

F fluorinated
GWP global warming potential
h* leverage threshold
HBA hydrogen bond acceptor
HBD hydrogen bond donor
HCs hydrocarbons
HFCs hydrofluorocarbons
HFOs hydrofluoroolefins
hi leverage values
HLX hidden layer X
HOs hydroolefins or alkenes
I input
LM Levenberg−Marquardt
Logsig logistic sigmoid
ML machine learning
MSE mean squared error
N number of observations
Nc number of components
NFI normalized flammability index
O output
ODP ozone depletion potential
p total number of samples in the training set
pAD number of observations within the applicability

domain
P(σ) sigma profile
PaD partial derivatives method
Pred predicted data
Purelin linear
R2 coefficient of determination
radbas radial basis
RC relative contribution
ReLU rectified linear unit
RMSE root mean square error
s seconds
Sσ
P surface charge density for molecule i

Sσ
M surface charge density for mixture M
SCF self-consistent field
SDav average standard deviation
SDR standardized residuals
sHCs saturated hydrocarbons or alkanes
SMILES simplified molecular input line entry system
Tad adiabatic flame temperature
Tansig hyperbolic tangent
w weight
xi mole fraction of compound i
zi descriptor row vector for molecule i
Z descriptor matrix associated with the training set

■ FORMULAS, UNITS, AND GREEK SYMBOLS
Å Ångström

+
F

F H
degree of fluorination

μ learning rate parameter
π̅ normalized flammability index
# HL number of hidden layers
# NHL number of neurons in each hidden layer
# Sσ number of sigma profiles as inputs
σ2 residual variance
σ specific charge density
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