Skip to main content
. 2024 Jul 23;12(31):11561–11577. doi: 10.1021/acssuschemeng.4c01961

Table 2. Analysis of the Performance for Activation Functions in the Hidden Layers of the ANN Model.

function equation range set R2 RMSE AARD/% SDav
hyperbolic tangent (tansig) Inline graphic [−1, 1] train 0.9998 0.4299 3.9778 0.4268
validate 0.9991 1.0437 4.3304 1.0434
test 0.9994 0.8629 4.5404 0.8627
total 0.9997 0.5847 4.0694 0.5827
logistic sigmoid (logsig) Inline graphic [0, 1] train 0.9998 0.4268 3.8884 0.4244
validate 0.9990 1.1260 3.8893 1.1250
test 0.9987 1.1822 6.1410 1.1800
total 0.9996 0.6651 4.1140 0.6639
linear (purelin) Inline graphic [−∞, ∞] train 0.9011 11.3709 92.1066 11.3732
validate 0.8988 11.5049 87.1327 11.4848
test 0.8785 12.6966 76.6944 12.7037
total 0.8984 11.5324 90.0660 11.5336
radial basis (radbas) Inline graphic [0, 1] | x ∈ [0, ∞) train 0.9691 5.5479 47.5140 5.5477
validate 0.9425 7.8847 45.1713 7.8874
test 0.9496 7.1821 57.1790 7.1870
total 0.9643 6.0473 48.2469 6.0469
rectified linear unit (ReLU) Inline graphic [0, ∞) train 0.9982 1.4754 14.1345 1.4747
validate 0.9948 2.4795 14.8493 2.4790
test 0.9955 2.3021 17.6914 2.3022
total 0.9976 1.7079 14.5621 1.7073