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ABSTRACT Mycobacterium abscessus pulmonary infections are increasingly problem­
atic, especially for immunocompromised individuals and those with underlying lung 
conditions. Currently, there is no reliable standardized treatment, underscoring the need 
for improved preclinical drug testing. We present a simplified immunosuppressed mouse 
model using only four injections of cyclophosphamide, which allows for sustained M. 
abscessus lung burden for up to 16 days. This model proved effective for antibiotic 
efficacy evaluation, as demonstrated with imipenem or amikacin.
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M ycobacterium abscessus, a rapid-growing nontuberculous mycobacterium, causes 
lung, skin, and soft tissue infections (1). M. abscessus pulmonary infections are 

now a major health concern, particularly among immunodeficient patients or those with 
underlying lung conditions such as bronchiectasis or cystic fibrosis (2–4). M. abscessus 
resistance to many drugs makes eradication challenging (5–8). Due to the low cure rate 
of current therapies (9), there is a great interest in developing new drugs and regimens 
to treat M. abscessus lung infections. Unfortunately, many drugs with promising in vitro 
potency fail to translate to clinical efficacy (10). Hence, preclinical animal models are vital. 
While mouse models are common for infection research and drug testing, developing a 
model for M. abscessus is challenging due to its opportunistic nature. Immunocompetent 
mouse strains eliminate infection quickly (11–14), whereas certain genetically altered 
strains such as nude, NOD SCID, or GM-CSF knock-out maintain high bacterial counts 
(11, 14–17), but are costly. Pharmacological treatment with dexamethasone allows M. 
abscessus to persist in mice but requires daily injections (13). We present here a simplified 
model with cyclophosphamide-treated BALB/c mice, which requires only four injections 
and offers a cost-effective method for antibiotic testing.

Since our initial goal was to use a simple and reliable model to test antibiotic efficacy 
in a mouse model of M. abscessus lung infection, we first evaluated cyclophosphamide 
treatment as previously described (18). Seven-week-old female BALB/c mice received 
intraperitoneal injection of 150 mg/kg cyclophosphamide 4 days and 1 day prior to 
intranasal infection with 1.0 × 107 CFU of the M. abscessus reference strain CIP104536 
(rough variant). Following euthanasia, lungs were harvested, homogenized, serially 
diluted, and plated on Middlebrook 7H11 selective agar at 37°C for CFU enumeration. 
Our results showed that the bacterial burden in the lungs increased from 6.7 log10 
CFU/lung on day 1 to 8.7 log10 CFU/lung by day 7. However, the mice rapidly appeared 
moribund, necessitating early termination of the experiment. At the time of sacrifice 
on day 11, the lung bacterial burden had declined to day 1 levels, indicating that 
the decline in the mice’s health was due to cyclophosphamide-induced toxicity rather 
than uncontrolled bacterial proliferation. Lowering the cyclophosphamide doses to 
100 mg/kg was better tolerated. However, bacterial lung burden dropped sharply by 2.4 
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orders of magnitude between day 1 and day 14. These results highlighted the problems 
with the current dosing scheme: higher drug doses could not be tolerated by the mice, 
while a lower dose failed to maintain a steady bacterial lung burden over time.

To address these limitations, we devised a new scheme in which 4 doses of pharma­
ceutical-grade cyclophosphamide (Endoxan®, Baxter) were administered via intraper­
itoneal injection: two doses of 100 mg/kg 1 day before infection and on day 4 
post-infection, followed by two more doses of 75 mg/kg on day 8 and day 12 post-infec­
tion, to sustain immunosuppression (Fig. 1A). All mice were infected intranasally with 

FIG 1 A cyclophosphamide-treated mouse model of M. abscessus infection suitable for the evaluation of drug efficacy. (A) Schematic of experimental procedure. 

(B) M. abscessus CIP104536 (R) lung burdens in mice with and without cyclophosphamide treatment. (C) M. abscessus UC-22 lung burdens in mice with and 

without cyclophosphamide treatment. (D) M. abscessus CIP104536 (R) lung burdens in immunosuppressed mice treated twice daily for 10 days with either 

100 mg/kg imipenem, 100 mg/kg imipenem and cilastatin (1:1 dose ratio), or untreated. (E) M. abscessus CIP104536 (R) lung burdens in immunosuppressed mice 

treated daily for 12 days with 150 mg/kg amikacin (AMK) or untreated. Student t-test was performed to calculate the p-values. Cycloph: cyclophosphamide; IMP: 

imipenem; CIL: cilastatin; AMK: amikacin; n.s: not significant. The results were repeated at least once.
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1 × 107 CFU of M. abscessus CIP104536 (R) and divided into two groups: (i) a control 
group that did not receive any cyclophosphamide and (ii) a group that received the four 
doses. Blood was collected on day 2 and day 16 post-infection for hematological analysis. 
Analysis revealed a decrease in immune cells on day 2 that was sustained until day 16 
(Table S1). On day 2 post-infection, the bacterial burden was similar in the untreated and 
cyclophosphamide-treated groups (Fig. 1B). However, the bacterial burden in immuno­
competent animals decreased by three orders of magnitude between day 2 and day 
12, with an additional ~1.06 log10 decrease from day 12 to day 16 (Fig. 1B), which was 
consistent with the literature (13, 16). In the group that received cyclophosphamide, the 
bacterial burden decreased more modestly by ~1.26 orders of magnitude from day 2 
to day 12 and remained high, ~4.9 Log10 CFU/lung, on day 16 (Fig. 1B). These results 
indicate that the immunosuppression protocol allows for sustained lung colonization 
while being well-tolerated. Histopathological analyses revealed sustained inflamma-
tory phenotype with neutrophilic and macrophage infiltration, resembling persistent 
bacterial infection (Fig. S1), indicating some degrees of immunological response despite 
immunosuppression. Furthermore, we tested whether this model was also suitable for 
the study of other clinical isolates (19). The same cyclophosphamide treatment scheme 
(Fig. 1A) also allowed long-term lung colonization with the clinical isolate UC-22 (19) that 
was otherwise rapidly cleared (Fig. 1C). Together, these results indicate that the protocol 
is appropriate to allow maintenance of a high level of bacterial lung burden for up to 16 
days.

Next, we examined whether the model is suitable for the evaluation of antibiotic 
efficacy. We chose imipenem and amikacin as reference drugs. Imipenem was given 
alone at 100 mg/kg as reported before (20) or in combination with cilastatin (1:1) at 
100 mg/kg to reduce the rapid metabolization of imipenem in rodents (21). Treatment 
was initiated 2 days post-infection, twice daily for 10 days. Imipenem alone reduced lung 
bacterial burden by ~90 and ~99% when given alone or in combination with cilastatin, 
respectively (Fig. 1D). Amikacin at 150 mg/kg once a day (20) for 12 days also caused an 
~90% reduction in bacterial burden (Fig. 1E).

In summary, we describe here a model of M. abscessus pulmonary infection, which 
is suitable for evaluating drug efficacy. One of the limitations of the study is the use of 
antibiotic at doses not reflecting human drug blood levels. An in-depth analysis of the 
immune response also remains to be studied. Furthermore, the model may not reflect 
the immune response experienced in patients with bronchiectasis or cystic fibrosis. 
Although no single animal model can comprehensively recapitulate all aspects of M. 
abscessus pulmonary infection and pathology in humans, the simple model described in 
this study is a valuable and cost-effective addition to M. abscessus preclinical studies.
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