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Abstract

Cell morphology has been identified as a potential indicator of stem cell response to biomaterials. 

However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous 

cell populations, microenvironment heterogeneity, and multi-parametric definitions of cell 

morphology. To associate cell morphology with cell-material interactions, we developed a shape 

phenotyping framework based on support vector machines. A feature selection procedure was 

implemented to select the most significant combination of cell shape metrics to build classifiers 

with both accuracy and stability to identify and predict microenvironment-driven morphological 

differences in heterogeneous cell populations. The analysis was conducted at a multi-cell level, 

where a “supercell” method used average shape measurements of small groups of single cells 

to account for heterogeneous populations and microenvironment. A subsampling validation 

algorithm revealed the range of supercell sizes and sample sizes needed for classifier stability 

and generalization capability. As an example, the responses of human bone marrow stromal cells 

(hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our analysis showed 

that 57 cells (grouped into supercells of size 4) are the minimum needed for phenotyping. The 

analysis identified that a combination of minor axis length, solidity, and mean negative curvature 

were the strongest early shape-based indicator of hBMSCs response to fibrous microenvironment.
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Introduction

The morphology of a cell is influenced by a combination of many intracellular mechanical 

processes, interactions with other cells and the surrounding extracellular matrix [1–7]. 

Thus, cell morphology reflects the integrative effect of many distinct processes and 

signaling pathways across different scales [4, 5] and may be a valuable descriptor 

of cell behaviors in differentiation [8–14], function or dysfunction [15], migration [16–

18] and cancer progression [19]. For example, a recent study by Marklein et al [8] 

demonstrates over 90% accuracy in the prediction of day 35 mineralization of human 

bone-marrow derived mesenchymal stem cells (hMSCs) cultures of varying donors and 

passages based on day 3 cell morphology. In another recent study by Unadkat et al [10], 

cell morphology was also investigated as an indicator of cell genotypic and phenotypic 

responses. Beyond being a possible indicator, some studies have shown that either affecting 

cell morphology with surface topographical cues [20–23] or directly manipulating cell 

morphology through geometric constraints of cell adhesive regions can elicit genotypic or 

phenotypic alterations [5–7, 24]. Therefore, cell morphology may contribute as a descriptor, 

indicator or intermediate factor in characterizing cell-material interactions. High-throughput 

single-cell bioimaging has enabled the quantification of heterogeneous cell population 

with many cell shape features that are increasingly difficult to interpret. In addition, the 

complex biomaterial microenvironment can also contribute to the heterogeneity of cell 

shape response. Innovative analytical tools must be developed to identify and combine 

key cell shape features correlated with biological outcome while accounting for both multi-

parametric complexity and biological heterogeneity.

Multi-parametric single-cell data are widely used in biomaterials studies with technologies 

such as bioimaging, single-cell PCR and flow cytometry. In order to associate multi-

parametric single cell data with cell-material interactions, appropriate computational and 

statistical tools are required to quantify the informative content of data and describe 

differences between cell populations. Common statistical methods typically used are 

Student’s t-test and ANOVA analyses. These approaches describe differences of the 

multi-parametric data by comparing the values of each single metric across different cell 

populations with a statistical hypothesis test which outputs a p-value [25, 26]. This has 

proven valuable to determine individual metrics that may be important in characterizing 

cell-material interactions. However, if we intend to describe the cell phenotypes for cell 

populations with more comprehensive representations by combining multiple metrics, 

these approaches are limited as they omit correlations between metrics in describing cell 

population differences.

Representations of multi-parametric data can be obtained by other statistical methods, such 

as principal component analysis (PCA) and singular value decomposition (SVD) [8, 27, 

28]. More recent methods (for instance, self-organizing maps [29] and multidimensional 

scaling [9]) can achieve reduced multidimensional representations of cell morphology. 

However, these methods bring other limitations. In particular, they are not designed to 

separate different classes optimally and, the achieved dimensional reduction introduces 

more abstract descriptions of the system in terms of linear or non-linear combinations of 

metrics, bringing difficulties to determine relevant features in defining the cell phenotypes. 
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To address these limitations, we have developed an approach to overcome several of these 

limitations by generating multi-dimensional linear classifiers that allow simple interpretation 

for classification and phenotyping in reduced metric space.

In this study, we investigated the morphology of human bone marrow stromal cells 

(hBMSCs) in fibrous substrates compared to that of cells on flat films (Fig 1.a) in 

presence or absence of osteogenic differentiation media. Fibrous materials are widely used 

in both research and clinical applications of tissue engineering and regeneration medicine. 

Previous studies had demonstrated that hBMSCs cultures on fibrous substrates developed 

osteogenic differentiation after 50 days of culturing without any osteogenic supplement 

[21]. Morphological response of hBMSCs in fibrous substrates is being investigated as a 

possible mechanism for osteogenic differentiation observed in this microenvironment [21, 

30–33]. This hypothesis is supported by several studies describing mechanistic associations 

between hMSCs shape and subsequent differentiation [5–7]. However, only a few individual 

cell shape features have been investigated for their association with differentiation, and cell 

morphologies vary greatly across a fibrous substrate. To address this limitation, we have 

developed an analysis framework for multi-parametric single-cell data based on support 

vector machines (SVMs) [34–36] to quantify shape differences of hBMSCs populations and 

associate them with different microenvironments (Fig 1.b). SVM classifiers are designed to 

find the optimal classification boundary that separates data points in the multidimensional 

shape metric space. We investigated a wide range of shape metrics to quantify global and 

local shape features, including cell size and aspect ratio, cytoskeletal branching, and local 

boundary curvature. Moreover, the resulting SVM classifiers provided a selection of reduced 

shape metrics to quantify hBMSCs shape phenotypes in specific microenvironments.

However, the heterogeneous cell population and the heterogeneous microenvironment may 

cause variability in cell morphology, where difference between shapes of single cells within 

the same culture environment are observed. Within the SVM scenario, variability in cell 

morphology can lead to highly overlapping cell populations and, thus poorly performing 

classifiers on the single-cell level. In order to address single-cell heterogeneity from 

different sources, a method of averaging shape metrics over a small subset of randomly 

selected cells known as “supercell” averaging [36, 37] was implemented to improve the 

training and prediction accuracies of the SVM classifiers. Instead of solely focusing on 

phenotypes on single-cell level, the SVM/supercell paradigm allowed consideration of 

cell shape phenotypes associated to small groups of cells, i.e. “supercells”. The random 

sampling used to generate supercells can introduce uncertainty in the SVM classifier. The 

tradeoff between prediction accuracy, supercell averaging and uncertainty in the classifier 

were quantitatively determined in this study. Furthermore, by introducing a subsampling 

validation procedure, we studied the sample size as another important limiting factor in the 

construction of single-cell or supercell phenotypes and its effects on classifier prediction 

accuracy. By combining multiple metrics and learning at small cell group levels, the 

SVM/supercell paradigm quantitatively identified changes in population behavior of cell 

morphology for four different conditions. Building on this approach, a systematic analysis 

of the cell response to the physics and chemistry of their surrounding biomaterial could be 

carried out.
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Materials and Methods

Certain commercial equipment, instruments, or materials are identified in this paper in 

order to specify the experimental procedure adequately. Such identification is not intended 

to imply recommendation or endorsement by the National Institute of Standards and 

Technology, nor is it intended to imply that the materials or equipment identified are 

necessarily the best available for the purpose.

Preparation of substrates

To fabricate poly(ε-caprolactone) fibrous substrates (FS), PCL solution (0.15 g/mL in 5: 1 

volume ratio of chloroform: methanol) was dispensed by a 3 mL syringe and pump (0.5 

mL/h) through a 21 gauge 1” shaft, flat tip, dispensing needle over an array of 0.95 cm2 

tissue-culture polystyrene (TCPS) disks arranged on a grounded aluminum foil over a 6 h 

period. The distance between the syringe needle and the target TCPS disk array was 20.4 

cm. The needle was connected to a positive lead of 13.5 kV. To help the adhesion of PCL 

fibers over the target TCPS disk array, the disks were sprayed with 70 % by mass ethanol 

solution every 10 min to enhance fiber deposition to the disks. The diameter of fabricated 

PCL fibers was (589 ± 116) nm (n=151) as determined by scanning electron microscopy 

imaging (2.00 kV, 5000x).

PCL films (SC) were prepared by spin-coating PCL solution (0.7 mL, 0.1 g/mL in glacial 

acetic acid) on tissue-culture polystyrene dishes at 1100 rpm for 30 s. Films were air dried 

at room temperature overnight and heated above 60 °C for 4 to 5 times in order to achieve 

a reproducible cobblestone pattern in the films [38]. Films were punched into disks of 0.95 

cm2. The surface roughness of the SC is (92.76 ± 10.69) nm determined by atomic force 

microscopy.

FS and SC disks were placed in 48-well tissue-culture polystyrene plates. Plates were 

sterilized by ethylene oxide for 12 h and then purged under vacuum for 2 days. 

Before cell seeding, each well was fully wetted with media (α-minimum essential media 

from Invitrogen supplemented with 16.6 % by volume fetal bovine serum from Atlanta 

Biologicals, 4 mmol/L L-glutamine and penicillin-streptomycin) and incubated at 37 °C 

with 5 % CO2 for 48 h [21].

Cell culture

Primary human bone marrow stromal cells (hBMSCs, donor 7038, Tulane Center for 

Gene Therapy) at passage 4 were cultured with media and dissociated with 0.25 % 

mass fraction trypsin and then re-suspended in media. Cell concentration was calculated 

with a hemocytometer. Cells were then diluted with regular cell culture media or media 

with osteogenic supplement (OS) of dexamethasone (10 nmol/L), β-glycerophosphate (20 

mmol/L) and ascorbic acid (0.05 mmol/L) to the desired cell concentration (5,000 cells/mL 

or 2,500 cells/cm2) for both media types. 0.5 mL hBMSCs suspension was seeded to each 

well in four conditions (FS, SC, FS+OS and SC+OS). hBMSCs were then cultured at 37 

°C with 5 % CO2 for 24 h. The seeding density of 1,000–3,000 cells/cm2 had been used 

for in vitro studies to investigate hBMSCs osteogenesis with different bioassays, as well 
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as studies correlating hBMSCs’ early morphology with later differentiation fates [5, 8–12, 

39, 40]. This seeding density results in many isolated cells after 24 hours. While cell-cell 

contact could be a factor in many contexts, affecting both cell behavior and cell shape, prior 

work had identified single cell shape as a possible early marker of differentiation [9, 13, 

21]. Therefore, in this study, we focused on single cells morphology as a model system to 

validate our method.

Fixation and fluorescence staining of cells

hBMSCs were fixed with 3.7 % by volume formaldehyde in Dulbecco’s phosphate-buffered 

saline (PBS) and then washed with PBS for 3 times. 0.1 % by volume Triton-X in PBS 

was used to permeabilize hBMSCs for 10 min. Samples were washed with PBS 3 times, 

then soaked in blocking buffer (50 mg/mL bovine serum albumin in PBS) for 30 min. Alexa 

Fluor 546 phalloidin (0.33 μM in blocking buffer) was added to stain F-actin of hBMSCs 

for 1h at room temperature and then washed away with washing buffer (10 mg/mL bovine 

serum albumin in PBS). Nuclei were stained by 4’, 6-diamidino-2-phenylindole (DAPI, 0.3 

μΜ) for 5 min. All samples were then rinsed with washing buffer and PBS. Stained samples 

were store at 4 °C in PBS protected from light before imaging.

Confocal microscopy

3-D cell morphology was imaged with confocal microscopy (Leica SP5). Samples were 

immersed in PBS. High-resolution 3-D z-stack images were captured by a 63x water 

immersion objective with the numerical aperture of 1 AU and the z-step size of 700 nm. The 

z depth of each stack is determined by the expansion of each cell in z direction. Alexa Fluor 

546 phalloidin staining demonstrated the cell cytoskeletal boundary and DAPI staining of 

nucleus was used to identify single cells manually for the analysis. Cells touching the edges 

of field of view of each image were omitted. 121 cells of FS, 114 cells of SC, 125 cells of 

FS+OS and 116 cells of SC+OS were imaged and analyzed (Fig 2.a and Supplementary Fig 

1).

Image processing and cell morphology measurement

On both FS and SC, the dimension of cells in the z direction is much smaller compared 

to their dimension in the xy plane. Therefore, as a first step, we analyze 2-D cell shapes 

based on projections onto the xy plane. 2-D maximum intensity projections were made 

and analyzed with an active contour model (snake algorithm) implemented by a custom 

MATLAB script based on a package created by Xu et al [41], defining cell outlines 

represented by positions of a set of representative points, i.e., “snakes”. Snakes were 

initiated with the convex hulls of the hBMSCs and converged to fit the cell boundary in 

an energy minimization process driven by force fields assumed according to the brightness 

gradient of Alex Fluor 546 phalloidin channel and mechanical properties arbitrarily defined 

for the snake [41]. In particular, the parameters used to identify outlines of hBMSCs 

were the snake elasticity parameter α (2×10−5), the snake bending rigidity β (5×10−5), 

the viscosity parameter γ (0.2), the external force weight (1×10−3), and the distance range 

between two consecutive representative points (2 to 3 pixels). Once snake representations 

of each cell were obtained, the snakes and the original images were automatically overlaid 

to generate new images for visual inspections. Tiny protrusions on the cell boundary were 
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identified with a custom MATLAB script by locating local curvature regions, which were 

smoothed with a Gaussian filter to neglect features smaller than 1 μm. Protrusions on 

the cell boundary were identified as regions of positive local curvature. Branch topology 

of the dendritic morphology of cells was analyzed by pinching representative points 

of the tiny protrusions and skeletonizing the cell boundary with a custom MATLAB 

script implementing the level-set method [42] that kept the connectivity of all the tiny 

protrusions (Fig 2.b). Based on the quantified cell boundary and branch topology, hBMSCs 

morphologies in different microenvironments were characterized with 22 shape metrics of 

2-D cell shape (Fig 2.c and Supplementary Table 1) and compared with 1-Way ANOVA 

and associated Tukey’s test in pairwise comparisons (Supplementary Fig 2). The Pearson’s 

correlations of any 2 of these metrics were also calculated and represented in Fig 2.c. 

The correlations between shape metrics imply that it would be redundant to use all shape 

metrics to analyze morphological differences. Thus, in this manuscript, we identify what 

combinations of shape metrics best represent morphological differences.

Cell morphology classification with Support Vector Machines (SVM)

A 22-D Cartesian coordinate system of cell morphology, in which each axis represented one 

shape metric, was developed for the 22 shape metrics. Within this representation, each cell 

was described as a 22-D shape metric vector, i.e., as a point in this multidimensional space, 

whose position conveyed information of that cell’s morphology. In pairwise comparisons of 

cell populations grown in different microenvironments (FS, SC, FS+OS and SC+OS), each 

shape metric was normalized to Z-scores, which ensured that the distribution of each metric 

had zero mean and unit variance. The Z-score transformation of a variable X is defined by

Z = X − X
σ X

(1)

where X‾  and σ X  are the mean and standard deviation of the distribution of X for all data 

points in the comparison, respectively.

After being transformed to Z-scores, multidimensional shape metric datasets from cell 

populations cultured in two different conditions were taken as the learning datasets on which 

Support Vector Machines (SVMs) were trained with the kernlab package in R language. 

Linear-kernel SVM is a supervised machine learning method designed to find the optimal 

(maximum margin) hyperplane that separates two classes of data points. Because usually 

the datasets are not linearly separable, the process has some degree of tolerance to data 

points within the margin or misclassified data points, which are defined as support vectors 

as they affect the position of the class boundary. The degree of tolerance is quantified 

with a cost function. Depending on the choice of the cost parameter, the tradeoff between 

margin size and training classification accuracy can be tuned in the cost function which is 

minimized by the SVM algorithm (see supplementary information 1) [34]. Here, we define 

the training classification accuracy as the percentage of cells correctly classified by the 

SVM hyperplane, summing all correctly classified cells from both culturing conditions. 

Although non-linear-kernel SVMs introduce non-linear mappings of the data to allow 
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more flexible class boundary representations and, therefore, may improve the training 

classification accuracy, such added flexibility comes at the risk of incurring overfitting [43], 

i.e., obtaining artificial solutions that misrepresent the true boundaries between the classes. 

Moreover, the linear-kernel SVM allows us to obtain a straightforward interpretation of the 

machine-learned parameters in terms of the original shape metrics. Indeed, the components 

of the unit normal vector n of the classifier hyperplane indicate the relative importance of the 

different shape metrics to separate the two cell populations.

“Supercell” method to overcome single-cell heterogeneity

A challenge in the classification of biological samples is the problem of cell heterogeneity 

[44]. Highly overlapping cell populations lead to poorly performing and unreliable 

machine learning classification boundaries, since the maximum-margin optimization process 

becomes ill-defined. In order to improve the robustness of the classification scheme, Candia 

et al [36, 37] proposed the “supercell” approach as a pre-processing method that improves 

phenotyping under conditions of high heterogeneity at the single-cell level. In order to 

capture cell phenotypes in multidimensional metric space, a “supercell of size N” is defined 

as the average of the individual measurement vectors of a group of N randomly chosen cells. 

By repeatedly taking different random subsets of N cells, supercell samples can be built 

with the original single-cell datasets. Since the single-cell sample size, Ns, is usually small, 

supercell averaging is typically performed by selecting cells at random with replacement. 

That is, allowing the same single cell to be chosen more than once. This procedure is similar 

to the more commonly known method of bootstrapping [45]. By iterating this procedure, we 

obtain a representative sample of Nsupercell supercells out of the original sample of Ns single 

cells.

In this work, the number of single cells measured under each condition (FS, SC, FS+OS, and 

SC+OS) was Ns ~120. Since the supercell averaging method was stochastic, the procedure 

to randomly generate a supercell sample consisting of 120 supercells was repeated 100 times 

with different supercell sets generated. For each of these 100 repeating procedures, SVM 

was used to obtain a classification boundary between two conditions. The final classifier 

hyperplane orientation was defined by the average normal vector n over all unit normal 

vectors n of each machine learning repeat, i.e.,

n = ∑
all

n/ ∑
all

n

(2)

The average training classification accuracy was calculated from averaging over all repeating 

machine learning procedures with different supercell sets. The classifier hyperplane stability 

was then measured as the average cosine function cosθ  (inner product) of the angle 

between the normal vector determined by each machine learning procedure and the average 

classifier normal vector.

cos θ = n− ⋅ n
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(3)

And the average classifier hyperplane fluctuation is quantified by the equivalent average 

angular deviation θ′ defined as

θ′ = arccos cosθ

(4)

Selection of representative shape metrics

Bioimaging analysis approaches typically begin with computing a large number of features, 

although it is well known that many of these features may be redundant or irrelevant [46]. 

Feature selection methods are then applied to select a small set of representative features 

that are most relevant to characterize the objects or regions of interest [47]. The 22 shape 

metrics extracted here from the image of a single cell can be broadly grouped into 3 

categories, namely cell size measures, global morphology pattern features and local features 

(Fig 2.c). As expected, some of these shape metrics are redundant and highly correlated, 

while others may be irrelevant to the goal of characterizing differences between different 

growing conditions.

In our approach, we first implemented a “filtering” step [43], in which shape metrics 

showing statistically significant differences (p <0.01) between microenvironments, were 

preselected based on 1-way ANOVA and Tukey multi-comparison test (Supplementary Fig 

2). Then, a feature selection method based on the SVM/supercell paradigm was used to 

investigate the optimal combination of shape metrics for classification. All combinations of 

3 shape metrics were used to build different metric spaces. The subsequent SVM analysis 

used a “wrapping” step in which features were selected according to the performance of 

the classifier (Fig 1.b) [43, 48, 49]. In general, the combination of 3 shape metrics with 

the highest training classification accuracy among those that satisfy a certain classifier 

hyperplane stability criterion was finally selected to represent the population morphology 

difference.

Subsampling Validation

With the selected shape metrics, a subsampling validation procedure was employed to 

decide which training data size and supercell size are appropriate to build the classifier 

hyperplane. In this procedure, a training subsample of a certain size was randomly picked 

from the original cell population and then randomly generated 120 supercells of a certain 

supercell size. The SVM/supercell paradigm was applied to these data sets to train a 

classifier hyperplane. 120 supercells of the same size were also randomly made with the 

remaining sample to form a test subsample. The hyperplane achieved with the training 

subsample was utilized to predict the test subsample. The percentage of correctly classified 

supercells (containing the correct classifications in both culturing conditions) in the test 

subsample was defined as prediction accuracy of the classifier hyperplane.

This subsampling validation procedure was repeated for multiple times (number of 

subsample test repeats = 200) for a certain training sample size and supercell size. For 
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each repeat, the classifier hyperplane normal vector was calculated. The average cosine 

function of the angle between the instant classifier normal vector and the average classifier 

normal vector again was calculated as a measure of classifier hyperplane stability. Both 

prediction accuracy and the classifier hyperplane stability were taken into account to decide 

the appropriate training sample size and supercell size.

Results

The application of SVM/supercell paradigm increases the training accuracy of the 

classification on supercells generated from the original single-cell population and reduces 

the number of support vectors for SVM (Fig 3.a). It should be noted, however, that as the 

supercell size is increased, the classifier hyperplane stability decreases as well (Fig 3.b). 

For small supercell size, an increase in supercell size causes a decrease in the number 

of support vectors and a decrease in margin size, leading to a decrease in classifier 

stability. With the application of SVM/supercell paradigm, the accuracy of predicting 

supercells is also increased (Fig 4). Thus, the level of supercell averaging (as implied by the 

chosen supercell size N) determines the trade-off between training classification accuracy, 

prediction accuracy and the classifier hyperplane stability. As revealed by the subsampling 

validation, the sample size to build the classifier also affects the classifier hyperplane 

stability (Fig 4).

For the comparison of FS vs. SC, increasing supercell size can affect the feature selection 

of the most significant 3 metrics, as demonstrated (Fig 5.a). At supercell size = 1, 

the selected metrics include mean major branch width, circularity, and mean negative 

curvature. At supercell size = 2, 3, 4, the selected metrics include area, circularity and 

mean negative curvature. At supercell size = 5, 6, 7, the selected metrics include minor 

axis length, circularity and mean negative curvature. At supercell size = 8, 9, the selected 

metrics include area, solidity and mean negative curvature. There is an overlap in metric 

combinations identified at different supercell sizes. All of the metrics identified by the 

SVM might be considered important. By increasing supercell size, the training classification 

accuracy can reach 100 %. However, there is a concurrent decrease in classifier hyperplane 

stability (Fig 5.b). Therefore, a balance must be drawn between accuracy and classifier 

hyperplane stability when selecting an appropriate supercell size for analysis. In Table 1, 

we report the selection of 3 representative features which satisfied a classifier hyperplane 

stability threshold of θ′ < 8.1∘ cosθ ≥ 0.99) at supercell size of N = 5 to distinguish cell 

morphologies between 2 different microenvironments (differences between FS, FS+OS, SC, 

SC+OS, All FS, All SC, All OS, All w/o OS are described).

To distinguish morphologies of hBMSCs in FS and SC, at supercell size = 5, the optimal 

combination of 3 shape metrics was identified as minor axis length, solidity and mean 

negative curvature. The accuracy of the classifier training is (99±1) % (Fig 5.a and b, Table 

1), indicating a high correlation of the classification and the microenvironment difference. 

The average normal vector of the classifier hyperplane is (−0.86±0.04, −0.43±0.06, 

0.24±0.08). According to the normal vector of the classifier hyperplane, hBMSCs in FS have 

smaller width, lower cell to convex hull area ratio and higher concavity along the boundary. 

The average classifier normal vector suggested that in order to distinguish hBMSCs 

Chen et al. Page 9

Biomaterials. Author manuscript; available in PMC 2024 August 07.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



morphologies in FS and SC with the classifier hyperplane, morphological difference in 

minor axis length is the most distinct shape metric followed by solidity. Mean negative 

curvature is the least distinct shape metric among the three selected shape metrics.

We implemented a subsampling validation procedure to test the robustness of the classifier 

built with the selected shape metric combination of minor axis length, solidity, and mean 

negative curvature in terms of classifier hyperplane stability and predictive accuracy. Here, 

both the training subsample size and the supercell size to build the classifier varied. We 

found that the classifier hyperplane stability was improved with increasing number of cells 

in the training set to build the classifier (Fig 5.c). The classifier stability threshold of 

θ′ < 8.1∘ cosθ ≥ 0.99) was still assumed to define stable classifications as demonstrated 

with the red dash line in Fig 5.c. In Fig 5.d, classifier hyperplane stability and prediction 

accuracy were combined to quantify effect of data size and supercell size on the classifier 

for selected shape metrics. To summarize the subsampling validation, in order to maintain 

stability and prediction accuracy of the classifier hyperplane, morphology difference should 

be quantified with appropriate selections of supercell size and training data size. Selecting 

95 % as desired prediction accuracy, supercell size of at least 4 is appropriate and the 

required minimal number of single cells in the training set is 57 (Fig 5.c and d). This 

supports the efficacy to train a stable classifier hyperplane with the selected shape metrics at 

supercell size of 5 and current data size (121 hBMSCs of FS and 114 hBMSCs of SC).

In addition to comparison of FS and SC which is associated with hBMSCs response to 

different material topography, we also investigated the hBMSCs morphological difference 

in pairwise comparisons of other microenvironment. The comparison of FS vs. FS+OS and 

the comparison of SC vs. SC+OS are associated with osteogenic supplement’s effect on cell-

material response in different material structures. Distinguishing hBMSCs morphologies 

of FS+OS and SC+OS is associated with hBMSCs response to the material structure 

in presence of OS. It is also interesting to compare morphologies of hBMSCs of FS 

and SC+OS because they both induce osteogenic differentiation in later stages of cell 

culture through either material properties or chemical inducement[21]. We also defined 

cell populations by mixing cell populations in the same materials or the same chemical 

treatment and made pairwise comparisons. The same feature selection and subsampling test 

procedure based on SVM/supercell paradigm were applied to all these comparisons. Table 1 

lists the results of involved metrics, average normal vector and metric importance, training 

classification accuracy and prediction accuracy of the optimal metric combination comprised 

of 3 shape metrics. This enables identification of hBMSCs’ various morphological responses 

to either structural difference of substrate or chemical treatment and to estimate whether 

structural factor or chemical induction is more efficient to determine hBMSCs morphology 

after 24 h of culture. The results demonstrated that after 24 hours of culturing, higher 

perimeter to area ratio and smaller cell size were the leading difference induced by fiber 

structure. On the other hand, increasing boundary concavity and roughness were identified 

as the most distinct morphological change induced with osteogenic supplement. In the 

subsampling validation, the classifiers achieved prediction accuracy of more than 96 % at 

supercell size = 5 and training sample size = 90 in comparison of all FS vs. all SC, however 

classifiers for all OS vs. all no OS failed to maintain classifier hyperplane stability. On the 
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other hand, in order to reach θ′ < 8.1∘ cosθ ≥ 0.99) and prediction accuracy of 95 %, the 

least supercell size and least training sample size of all FS vs. all SC were smaller than that 

of the comparison of all OS and all no OS (Table 1). These results suggest that morphology 

of hBMSCs in different environments on day 1 was more influenced by scaffold structural 

differences than chemical stimulus.

In order to visualize the population morphological difference of the two classes defined by 

the 3 selected features and associated classifier in each pairwise comparison, we selected 

“canonical cells” as representative cell shapes from the single cells which are always 

well classified by the SVM classifier trained on supercells (i.e., they are always on the 

correct side and outside the margin for all classifier hyperplanes trained with different 

supercell sets. See supplementary information 2) and represented them in Fig 6. Therefore, 

the morphologies of these cells reflected the typical morphological responses to different 

microenvironment.

Discussion

SVM/supercell paradigm associates cell morphologies with microenvironment

In this study, in order to address challenges in associating hBMSCs morphology with 

the cell-material response, we designed an analytical approach based on a SVM/supercell 

paradigm to facilitate multi-parametric analysis while accounting for the high variability in 

cell morphology in a cell population. First, we identified combinations of 3 shape metrics 

(from an original set of 22 metrics) that clearly discriminate the cell population in one 

microenvironment from another in pairwise comparisons. With a reduced metric space, we 

decrease the occurrence of redundant shape metrics where redundancy can bring about not 

only interpretation difficulties but also noise and overfitting problems [43]. The feature 

selection procedure directly selects a subset of the original metrics with straightforward 

geometrical and biological explanations to describe the morphological difference between 

two classes. In contrast, other remapping methods for metric redundancy reduction, such as 

principal component analysis [8, 27, 28] and multidimensional scaling [9], output abstract 

functions of the original metrics. Additionally, simplicity of the linear kernel for SVM 

enables us to use a single normal vector for the class boundary to quantify the population 

morphology difference and obtain the shape metric importance ranking within the classifier. 

These properties of this analysis technique bring convenience of interpretation about cell-

material morphological responses and facilitate the targeting of future studies on biological 

mechanisms that may be associated with particular cell morphological features.

Variability in single-cell morphology within each cell population can bring outliers and 

population overlaps. This reduces the training accuracy of linear SVMs, where a large 

portion of the training data set will perform as the support vectors (i.e., cells within the 

margin or misclassified cells) of SVMs [34]. A large fraction of support vectors is a sign of 

low training accuracy and subsequently low generalization capability of the trained classifier 

[50, 51]. As demonstrated on single cells in the subsampling validation procedure, the 

number of support vectors increases linearly with respect to the training data size (i.e., the 

number of cells imaged) (Fig 7). Thus, SVM training with single cells does not benefit, in 
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terms of training and prediction accuracies on single cells, from an increase in the training 

data size. Upon the application of the supercell method however, the number of support 

vectors decreases as the supercell size increases (Fig 3.a and Fig 7) and both training and 

prediction accuracies of SVMs are improved.

In addition, the number of support vectors reaches a plateau as the training data size 

increases (Fig 7). This implies that given a certain population of cells, we can establish a 

data set of finite data size that is sufficient to generalize cell population difference and is 

sufficient for reliable predictions of small groups of cells (supercells). In contrast, on the 

single-cell level even with larger data set sizes, SVMs may not be sufficient to directly 

generalize information about cell population difference to predict new single cells well. 

Training accuracies can be improved by non-linear classifier kernels or including more 

metrics in the metric space in SVM. However, these approaches may suffer from higher 

number of support vectors that compromise generalization capability in addition to the 

interpretation and overfitting difficulties described previously.

In the SVM/supercell paradigm, the influence of variability in cell morphology and 

the number of support vectors can be reduced to generate classifiers that have higher 

generalization capability as evidenced by increased prediction accuracy for investigating 

cell population phenotype. As an example, if we attempt to train a classifier based on 

single cells, the highest accuracy of that classifier is 86 % and the prediction accuracy 

that can be achieved for each individual cell is approximately 80 % (Fig 5.a and d) across 

the population. However, these results cannot be significantly improved by increasing the 

training set size due to the increasing number of support vectors required to build the 

classifier (Fig 5.d and e). Alternatively, if we train a classifier on supercells, training 

accuracy can reach % accuracy values over 99 % (Fig 5.b and Table 1). In the application 

the SVM/supercell paradigm in the prediction of cell class, we can image a small number 

of cells from the new sample and calculate the average shape metrics across these cells 

(generating a supercell) then apply the classifier trained at the same supercell size, resulting 

in prediction accuracies that can be over 95 % (Fig 5.d and Table 1). This provides greater 

confidence in the prediction of biomaterial-induced cell shape population behavior.

However, in both training and subsampling validation procedures, we found that the 

randomness of supercell generation also introduces bias which contributes to the complexity 

of the represented morphologies and brings uncertainty of the classifier orientation (Fig 

5.b and c). Therefore, the selected supercell size should be tested for reliable cell shape 

phenotyping and shape metric importance comparison. Furthermore, in the subsampling 

validation procedure we found that the classifier stability was improved by increase in 

training data size. Thus, sufficient data size is required to generalize the cell morphology 

complexity introduced by both single-cell heterogeneity and bias of supercells. Combined 

with the measure of prediction accuracy, we determined the appropriate combination of 

training sample data size and supercell size to assure both reproducibility of the shape metric 

importance information and the usefulness of the classifier in future predictions (Fig 5.d and 

Table 1).
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Several factors can contribute to the variability of cell morphology in a sample. Since 

cell morphology is usually identified at a snapshot in time, cells in the same population 

can be in different states of attachment, migration and cell cycle [52] Due to disordered 

properties of the biomaterial topography, a variety of different niches may exist in a single 

culture and play roles in the overall functional outcome of the population [21, 22]. In 

addition stem cell cultures are inherently heterogeneous and may contain different subsets 

of cells based on their source, isolation and expansion history [53]. Since the majority of 

cell differentiation assays are based on global responses from the culture (i.e., RT-PCR, 

mineral staining, alkaline phosphatase activity, proliferation assays) and not the single-cell 

responses, cell morphology data obtained at the single-cell level may not be reflective 

for overall cell culture response because of single-cell heterogeneity. As discussed above, 

the proposed method successfully dealt with single-cell heterogeneity by implementing a 

supercell method and subsequent SVM analysis, which reduced the effect of variability in 

cell morphology and improved the capability of SVM classifiers to quantify and predict cell 

population response to different microenvironments.

Quantifying differences in cell behaviors is crucial for estimating effect of biomaterials. By 

combining multiple metrics and learning at supercell levels, the proposed SVM/supercell 

paradigm could be well suited to reveal even subtle difference in cell population behavior 

upon changing of the chemistry or physics of biomaterials. In the quantitative phenotyping 

of cell population behaviors, the selected metric combination and classifier quantify the 

way that cells change behaviors in response to varying conditions. The subsampling 

validation quantifies not only the strength of the phenotype but also sufficiency of data for 

phenotyping. In a systematic screen of biomaterials, our approach toward quantification and 

validation of the classifiers could be used for pairwise comparison of cells in all conditions, 

i.e. revealing a matrix of comparisons.

Cell-material interactions reflected by morphology

Cell morphology has gained attention from researchers studying several cellular functions 

including proliferation [24], differentiation [5–14, 21, 22] and migration [16–18]. It has 

been demonstrated that global cell morphology control such as control in spreading area 

and elongation may affect properties of the cytoskeleton and cell adhesions to regulate cell 

proliferation or differentiation [5, 6, 24]. Local morphological changes such as protrusions 

and invaginations have also been associated with the enrichment or activity of intracellular 

signaling [17, 54]. By identifying cell shape phenotype with multi-parametric analysis, we 

can better understand the role of cell morphology in directing global functional outcomes 

and the microenvironmental cues that may induce the regulation.

In this study, we specifically examine the cell shape phenotypes associated with 

fibrous substrates and osteogenic supplement. Both fibrous substrates and osteogenic 

supplement have been demonstrated to promote osteogenic differentiation [21]. However, 

the mechanisms behind these interactions are not well understood and might be varied. 

Previous studies also suggested that the fiber environment may promote cell morphology 

responses that are associated with osteogenic differentiation [21, 30–33]. With the SVM/

supercell paradigm, we have identified specific cell shape metrics that distinguish cells in 
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fibrous substrates (FS) from those on the control flat surfaces (SC films). The distinguishing 

metrics include minor axis length, major branch width, area, solidity, circularity, and mean 

negative curvature. The major morphological response of hBMSCs to fibrous substrates is 

identified as the narrower width of the cell [8]. Changes in solidity and circularity suggested 

that the cell morphology in fibrous substrates is also more dendritic. Boundaries of cells 

in fibrous substrates are also rougher than those on the flat substrate. These changes are 

visualized with the selected representative cell shapes in Fig 6.

We have also identified cell shape metrics associated with the fibrous environment 

regardless of chemical supplement treatment and metrics associated with chemical 

supplement treatment regardless of scaffold type. These comparisons identify cell shape 

metrics that may be most important to cellular response to either the fibrous substrates or 

osteogenic supplement. For example, in all FS group regardless of OS treatment conditions, 

circularity and mean boundary distance and mean negative curvature become important to 

distinguish them from those on flat control surfaces. In all OS environments regardless of 

the substrate types, the shape metrics related to boundary roughness such as mean negative 

curvature and perimeter and number of tiny protrusions were found to be more important 

to distinguish these cells from those without OS treatment. FS environment was found to 

be more influential in determination of cell morphology on day 1, according to the training 

accuracy and subsampling validation results of the classifiers and the visualization of the 

selected representative cell shapes (Table 1 and Fig 6).

Traditional shape features such as area, perimeter and cell elongation that we call “global” 

are measured by metrics that are not particularly sensitive to local curvature or local 

protrusions. Our work shows that “local” shape metrics that emphasize local curvature 

or protrusions are also important in describing morphological response of cells to fibrous 

materials. Branching features were found to be important in elucidating some differences 

in cell morphology. A possibly related phenomenon is that dendritic branching may 

have important biological significance for cell signaling where the global phosphorylation 

level of some messenger proteins can be enhanced by subcellular protrusions structures 

[54]. Another local shape feature that was prominent in distinguishing cells of different 

microenvironments was boundary curvature. Curvature around the cells boundary has been 

associated with cytoskeletal force generation and intracellular mechanotransduction [6, 55].

Interestingly, in studies where human mesenchymal stem cells (hMSCs) were forced to 

assume artificial geometries with shape features associated with metrics identified in the 

current study, differences in osteogenic potential were observed. For example, in a study 

by Kilian et al [6], cell elongation of cell shape and cell boundary curvature (similar to 

metrics of minor axis length, solidity and mean negative curvature in our study) were found 

to be relevant to not only cytoskeleton and focal adhesion spatial organizations but also 

hMSCs’ potential of osteogenesis and adipogenesis. Further analysis suggested that the 

c-Jun N-terminal kinase (JNK) and extracellular related kinase (ERK1/2) cascades as well as 

the wingless-type (Wnt) signaling and mitogen-activated protein kinase cascades (MAPK) 

might mediate the regulation of cell shape on hMSCs differentiation [6]. These pathways 

associated with RhA-ROCK pathways [4, 5] were also found to regulate expressions of 

Runt-related transcription factor 2 (RUNX2), peroxisome proliferator-activated receptor 
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gamma (PPAPγ), and Sox-9 which are closely related to osteogenesis, adipogenesis and 

chondrogenesis [56, 57]. These studies shed light on the mechanisms with which cells could 

have functional changes in response to surrounding microenvironment.

In many biomaterial scaffolds, the interactions of the heterogeneous cell population 

and the heterogeneous microenvironment are complex and increase variability in cell 

morphology. Approaches to correlate cell morphology with cell function however, have 

utilized artificial cell shape constraints, often via micro-patterning techniques, to investigate 

influence of cell shape features on cell function [5, 6], and constrained geometries are not 

generally representative of the wide range of cell shapes found in the complex biomaterial 

environments (i.e., Supplementary Fig 1). Therefore, it is difficult to apply cell shape related 

observations from these types of studies when trying to investigate cell shape-function 

interactions in more complex micro-environments. By identifying cell shape phenotypes 

and representative cell shapes for different microenvironments we may be able to target 

microenvironment relevant cell shapes in micro-patterning studies. To facilitate this, we 

have developed an approach to identify canonical cell shapes that may represent each 

cell population. This allows us to gain systematic visualization for the morphological 

differences observed in different microenvironments (Fig 6), in spite of the variability in 

cell morphology from cell to cell. These cell shapes may also serve as candidate templates 

for the future investigation of the effects of cell shape on cell function with micro-patterning 

techniques.

Conclusions

We implemented an SVM/supercell based methodology to quantify morphological response 

of hBMSCs populations to different microenvironments with a classifier comprised of 

selected shape metrics. This method enables us to focus on a few representative shape 

metrics obtained from the automated image quantification process and compare the 

importance of different shape metrics in phenotyping. This method also enables us to 

overcome issues caused by single-cell heterogeneity in phenotyping, as the supercell 

averaging is implemented to reduce influence of variability in cell morphology that 

affects the performance of SVM classifiers. Our work introduces a subsampling validation 

procedure to quantify the robustness of the classifier boundary in terms of classifier 

hyperplane stability and predictive accuracy. We found that smaller, more elongated and 

more dendritic shape is the major morphological changes induced by fibrous substrates 

in hBMSCs on day 1. On the other hand, osteogenic supplement triggered morphological 

changes occur mostly in terms of cell boundary concavity and roughness. In addition to 

our automated classification, we also identified “representative” cells that can be used for 

visualization and human interpretation, as well as a starting point for cell shape templating.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
(2-column). (a) SEM images of PCL fibrous substrates and PCL spin-coated film. (b) 

Schematic flow chart of the analysis procedure and outcomes of the computational tools 

developed in this study.
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Fig 2. 
(2-column). Quantification of cell shapes in different microenvironment (FS and SC with 

or without OS). (a) Maximum intensity projections of the confocal z-stack images (red: 

actin, blue: nucleus). (b) Outlines of hBMSCs were obtained with snake algorithm which 

allowed calculation of local curvature. Boundary regions were colored differently according 

to local curvatures. (c) 22 metrics were quantified to describe hBMSCs shapes and sorted 

into 3 categories about different aspects of cell shape. 12 metrics were obtained with the 

snake outlines (without asterisks) and 10 metrics were obtained from branch analysis (with 

asterisks). The correlations between shape metrics were calculated with Pearson correlation 

coefficient.
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Fig 3. 
(2-column). (a) Schematic demonstration of the influence of supercells on SVM of a linear 

kernel in 2-D metric space. The instant classifier hyperplanes were demonstrated with 

the solid straight line. The margin between two classes was defined with the black dash 

lines. (b) Supercells populations were randomly generated from the original single cells for 

100 times (only supercells of one loop is plotted). The average classifier hyperplane was 

demonstrated with the solid straight line. Randomness of supercell generation perturbed the 

classifier hyperplane. The average fluctuation of the classifier hyperplane θ′ was indicated 

with the black dash lines.
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Fig 4. 
(2-column). Illustration of the subsampling procedure to test appropriate data size and 

supercell size to build the classifier hyperplane with stability and predictive potential. 

Classifiers were built with the training subsamples of the original cells. And the fluctuation 

of the classifier hyperplane orientation θ′ caused by random subsampling was measured 

(the scatterplots showing original cells or supercells of only 1 loop). Achieved classifier 

hyperplanes were then tested with the test subsamples comprised of cells in the rest of the 

total sample. Percentage of the accurate classification was taken as the measurement of the 

prediction potential.

Chen et al. Page 22

Biomaterials. Author manuscript; available in PMC 2024 August 07.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig 5. 
(2-column). Results of SVM analysis and associated subsampling validation of selecting 

3 shape metrics to compare morphological difference of hBMSCs populations of FS 

and SC. (a) At different supercell sizes, Shape metric combinations of 3 shape metrics 

with the highest training classification accuracy were selected if the average classifier 

hyperplane fluctuation θ′ < 8.1∘ cosθ > 0.99). The figure shows the training accuracies of 

SVMs built with these selected combinations for all supercell size, if θ′ < 8.1∘ cosθ > 0.99). 

(b) Training classification accuracy and average classifier hyperplane fluctuation θ′ of the 

selected shape metric combination in SVM training with supercell implementation. (c) In 

subsampling validation, classifier hyperplanes were built with different random subsample 

sizes and supercells sizes. Average classifier hyperplane fluctuation was quantified by θ′. 
A threshold of θ′ < 8.1∘ cosθ > 0.99) was chosen to define stable classifier hyperplanes 
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(red dotted line) (d) Prediction accuracy of the classifier hyperplanes in the subsampling 

validation when the built classifiers were tested with the rest of the total sample at different 

supercell sizes. The dark region represented combinations of training data size and supercell 

size causing unstable classifier hyperplane. In the stable region, combinations of the training 

data size and supercell size were colored according to the prediction accuracy. All error bars 

in (a) and (b) represent standard deviation.
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Fig 6. 
(2-column). Shapes of “canonical cells” representing the morphological difference between 

hBMSCs cultured in different microenvironments.
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Fig 7. 
(1-column). Number of support vectors required for the SVM classifier of different sample 

sizes and supercell sizes in subsampling validation of selecting 3 shape metrics to compare 

morphological difference of hBMSCs populations on FS and SC. Error bars represent 

standard deviation.
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Table 1

(2-column). Selected three shape metrics with the highest training classification accuracy (values are indicated 

with ± standard deviation). In subsampling validation part b, NA (not applicable) means there is no 

combination of training sample size and supercell size that yield a prediction accuracy > 95% and at the same 

time θ′ < 8.1∘ ( cosθ > 0.99.)

Training (100 Iterations)

Comparison FS vs. SC FS vs. FS+OS FS vs. SC+OS SC vs. SC+OS FS+OS vs. SC+OS All FS vs. All SC All w/o OS vs. All OS

Supercell 
Size 5 5 5 5 5 10 10

Selected 
Classifier 
(cos θ ≥ 

0.99, 
Highest 
Training 

Accuracy)

Metrics Vector Metrics Vector Metrics Vector Metrics Vector Metrics Vector Metrics Vector Metrics Vector

Minor 
Axis 

Length
−0.86±0.04

Mean 
Negative 
Curvature

−0.96±0.03
Max 

Boundary 
Distance

−0.70±0.05
Mean 

Negative 
Curvature

−0.86±0.03 Area −0.94±0.02 Circularity 0.72±0.03
Mean 

Negative 
Curvature

−0.93±0.03

Solidity −0.43±0.06 Aspect 
Ratio 0.2±0.1 Circularity 0.66±0.05 Circularity −0.39±0.07 Perimeter 0.28±0.05

Mean 
Boundary 
Distance

−0.66±0.04 Perimeter −0.33±0.06

Mean 
Negative 
Curvature

0.24±0.08 Circularity −0.13±0.08

Mean 
Major 
Branch 
Width

−0.2±0.1 Tortuosity 0.31±0.09
Mean 

Negative 
Curvature

0.20±0.05
Mean 

Negative 
Curvature

0.21±0.05
Num. of 

Tiny 
Protrusions

0.2±0.1

Training 
Accuracy (99±1) % (92±2) % (98±1) % (95±2) % (98±1) % (100±0) % (96±1) %

Subsampling Validation (200 Iterations)

a. For Fixed Supercell Size =5, Training Sample Size = 90

Prediction 
Accuracy (97±2) % Hyperplane Not Stable (98±4) % Hyperplane Not Stable (93±3) % (97±2) % Hyperplane Not Stable

b. For Prediction Accuracy ≥ 95 %, θ' < 8.1° (<cos θ> ≥ 0.99)

Least 
Supercell 

Size
4 NA 5 NA 6 5 11

Least 
Training 
Sample 

Size

57 NA 89 NA 54 58 206
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