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Abstract

Per- and polyfluoroalkyl substances (PFAS) are chemicals with important applications; they are 

persistent in the environment and may pose human health hazards. Regulatory agencies are 

considering restrictions and bans of PFAS; however, little data exists for informed decisions. 

Several prioritization strategies were proposed for evaluation of potential hazards of PFAS. 

Structure-based grouping could expedite the selection of PFAS for testing; still, the hypothesis 

that structure-effect relationships exist for PFAS requires confirmation. We tested 26 structurally 

diverse PFAS from 8 groups using human-induced pluripotent stem cell-derived hepatocytes and 

cardiomyocytes, and tested concentration-response effects on cell function and gene expression. 

Few phenotypic effects were observed in hepatocytes, but negative chronotropy was observed for 8 

of the 26 PFAS. Substance- and cell type-dependent transcriptomic changes were more prominent 

but lacked substantial group-specific effects. In hepatocytes, we found up-regulation of stress-

related and extracellular matrix organization pathways, and down-regulation of fat metabolism. 

In cardiomyocytes, contractility-related pathways were most affected. We derived phenotypic 

and transcriptomic points of departure and compared them to predicted PFAS exposures. The 

conservative estimates for bioactivity and exposure were used to derive bioactivity-to-exposure 

ratio (BER) for each PFAS, most (23 of 26) PFAS had BER>1. Overall, these data suggests that 

structure-based grouping of PFAS may not be sufficient to predict their biological effects. Testing 

of individual PFAS may be needed for scientific-based decision-making. Our proposed strategy of 
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using two human cell types and considering phenotypic and transcriptomic effects, combined with 

dose-response analysis and calculation of BER, may be used for PFAS prioritization.
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Introduction

Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals that contain carbon-

fluorine bonds with distinct end functional groups (Carlson et al., 2022). The Organisation 

for Economic Co-operation and Development (OECD) maintains an inventory of PFAS 

that contains over 4,700 substances (OECD, 2018), albeit estimates exceeding 10,000 

PFAS have also been reported (Williams et al., 2017). PFAS are widely used in industrial 

applications and consumer products and many of them are highly persistent, water soluble 

and mobile, leading to environmental dispersal and accumulation in the water, soil, wildlife, 

and ultimately humans.

While some PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic 

acid (PFOS), have been studied extensively and reports of their adverse health effects are 

abundant (Fenton et al., 2021; Meneguzzi et al., 2021), the vast majority of PFAS lack 

toxicity data. For example, a systematic evidence map of available epidemiological and 

animal bioassay evidence for a set of ~150 PFAS that were prioritized in 2019 by the 

U.S. EPA for in vitro toxicity and toxicokinetic testing showed that only 45 compounds 

had some data in either animal or epidemiology studies (Carlson et al., 2022). However, a 

growing body of evidence suggests that other PFAS may also pose human health hazards 

(National Toxicology Program, 2019a, b). Because of the growing concern about the 

persistence of PFAS and the potential that they may be hazardous to both human health 

and the environment, on 13 January 2023 health and environmental protection authorities in 

Denmark, Germany, the Netherlands, Norway and Sweden proposed restrictions on PFAS as 

a class (ECHA, 2023). Because of the considerable data gaps on virtually all PFAS, there is 

a significant need for and interest in accelerating the process of generating toxicology and 

exposure data that will inform decision-making.

One of the key needs in PFAS risk assessment is a scientifically-supported strategy for 

prioritization of PFAS for testing. In both the United States and Europe, regulatory bodies 

proposed a pragmatic approach of grouping PFAS into categories followed by selection of 

representative compounds for further study (ECHA, 2023; U.S. EPA, 2021). A common 

approach is to group PFAS based on structural similarities (Buck et al., 2011; Sha et al., 

2019; Wang et al., 2017; OECD, 2018). This approach has been applied to define groups of 

PFAS for risk assessment (Patlewicz et al., 2019; Buck et al., 2021). For example, the US 

EPA has established a workflow for PFAS evaluation that prioritized a subset of compounds 

to maximize information to support read-across within structure-based groupings (Patlewicz 

et al., 2019; Carlson et al., 2022).
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The canonical read-across approach assumes that the chemical’s toxicological properties 

can be inferred from those of a structurally similar chemical (Ball et al., 2016). Structure-

property relationships are used to estimate the bioaccumulation potential of novel and 

emerging PFAS, as well as their protein binding and elimination rates (Cousins et al., 

2020; Cheng and Ng, 2018; Gomis et al., 2018). The structure-property relationships have 

been reported for human hepatocyte lipid accumulation and gene expression in a study of 

19 PFAS (Marques et al., 2022). Read-across approaches are already applied for PFAS 

management; for example, the State of Massachusetts proposed maximum contaminant 

level values for drinking water based on similarities in chemical structure and effects 

(Massachusetts Government, 2020). Still, questions remain whether grouping of PFAS based 

on structure alone is scientifically justifiable.

Additional data, including that from in vitro studies, may provide a biological dimension 

for informing class-based approaches for read-across and/or within-group prioritization for 

additional testing. Indeed, toxicity and toxicokinetic data are being generated using in 
vitro testing and computational methodologies to inform PFAS hazard characterization (US 

EPA, 2019; Patlewicz et al., 2019; Kreutz et al., 2023; Dawson et al., 2023; Patlewicz et 

al., 2022; Carstens et al., 2023). In addition, gene expression data offer a comprehensive 

understanding of chemical-induced bioactivity, delivering not only mechanistic insights 

but also dose-response information (Reardon et al., 2023; Johnson et al., 2022). Several 

studies have tested effects of PFAS on gene expression in human liver spheroids and 

demonstrated that both mechanistic insights and dose-response information can be used for 

ranking/prioritization and comparison to the effects in rodent liver (Rowan-Carroll et al., 

2021; Reardon et al., 2021).

Based on the regulatory need to group PFAS and previous studies demonstrating the value 

of in vitro studies for dose-response analysis, we tested 26 PFAS from 8 structurally diverse 

groups in two human cell types from organs that are known to be targets for PFAS. We 

evaluated a hypothesis that structure-based grouping of PFAS can be substantiated using in 
vitro bioactivity data from both phenotypic and transcriptomic endpoints, and that these data 

may be also used for risk-based prioritization of PFAS. To address this hypothesis, we tested 

concentration-response effects on both cell function and gene expression in human induced 

pluripotent stem cell (iPSC)-derived hepatocytes and cardiomyocytes. The selection of these 

two cell types was informed by current knowledge and research gaps. Liver toxicity is one 

of the most studied effects of PFAS exposure (National Academies of Sciences Engineering 

and Medicine, 2022). Additionally, the potential cardiotoxic effects of PFAS exposure are 

currently understudied (National Academies of Sciences Engineering and Medicine, 2022), 

underlining the need for further investigation using in vitro models (Burnett et al., 2021a). 

Phenotypic and transcriptomic points of departure were derived to quantify the bioactivity of 

tested PFAS, and a transcriptomic pathway enrichment analysis was performed to determine 

potential similarities in the molecular effects of substances within and between chemical 

classes. Finally, the transcriptomic and phenotypic PODs were compared to exposure data to 

derive bioactivity-to-exposure ratios (BER).
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Materials and Methods

Chemicals and Biologicals

Test PFAS (n = 26, Tab. 1) were obtained from the United States National Toxicology 

Program as 20 mM stocks in 100% tissue culture grade dimethyl sulfoxide (DMSO). 

The PFAS were selected based on preliminary bioactivity data, from which high and low 

rank chemicals were then selected in a smaller subset of PFAS with diverse structures 

for additional in vitro screenings. The PFAS were assigned into sub-categories using the 

head-group/side-chains to determine their classification as previously suggested (OECD, 

2018; Buck et al., 2011; Buck et al., 2021). Tested PFAS, abbreviations, and their chemical 

structure-based category information are listed in Tab. 1. Tissue-culture grade DMSO (CAS# 

67–68-5, sc-358801) was used as the vehicle for all studies and was obtained from Santa 

Cruz Biotechnology (Dallas, TX, USA).

Cell-specific positive controls were used for both the iPSC-derived hepatocytes (iPSC-Hep) 

and cardiomyocytes (iPSC-CM). The positive controls for the iPSC-Hep were rotenone 

(CAS# 83–79-4, Cat# 45656–250MG), amiodarone (CAS# 19774–82-4, Cat# A8423–1G), 

acetaminophen (CAS# 103–90-2, Cat# A5000–100G), and CCCP (carbonyl cyanide 3-

chlorophenylhydrazone, CAS# 555–60-2, Cat# C2759–100MG); all were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Isoproterenol, sotalol, and propranolol (Molecular 

Devices, San Jose, CA, USA) were used as the positive controls for the iPSC-CM. Tetra-

octyl ammonium bromide (TAB, CAS#14866–33-2, Cat# D2438) was obtained from Sigma-

Aldrich (St. Louis, MO, USA) and used as a positive control for both cell types.

Human iPSC-Hep and iPSC-CM cells were obtained from FUJIFILM Cellular Dynamics 

(Cat# C1023 and Cat# C1006, respectively; Madison, WI, USA), along with their 

corresponding plating and maintenance media. Additional reagents including RPMI medium 

(Cat# 11875–093), dexamethasone (Cat# A13449), B27 supplement (Cat# 17504–044), 

gentamicin (Cat# 15750–060), and penicillin-streptomycin (Cat# 15140–122) were obtained 

from Gibco (Waltham, MA, USA). Oncostatin-M was from R&D Systems (Cat# 295-

OM-010, Minneapolis, MN, USA).

For cell culture, we used tissue-culture-grade 384-well plates (for iPSC-CM, Cat# 3764, 

Corning Life Sciences, Kennebunk, ME, USA) and collagen I pre-coated 384-well plates 

(for iPSC-Hep, Cat# 354664, Corning Life Sciences). Other reagents included gelatin (Cat# 

G1890–500G), Trypan Blue 0.4% solution (Cat# T8154–100ML), and D-PBS (Cat# D8537) 

were obtained from obtained from Sigma-Aldrich.

Cell Culture

Cells were plated and maintained in tissue culture-treated 384-well plates according to 

instructions provided by FUJIFILM Cellular Dynamics and as described previously (Sirenko 

et al., 2014; Grimm et al., 2015). Briefly, iPSC-Hep were thawed for 3 min in a water bath 

at 37°C. The thawed cells were then transferred to a 15 mL tube, 9 mL of plating media was 

then added. The plating media contained RPMI medium with 2% (v/v) of iCell Hepatocyte 

Medium Supplement, 0.1 μM of dexamethasone, 2% (v/v) of B27 supplement, 25 μg/mL of 

gentamicin, and 20 ng/mL of Oncostatin-M. The cells were then counted using an automated 
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cell counter and subsequently diluted to reach the final cell density of 7.2 × 105 cells/mL. 

The cell suspension was then transferred to collagen I pre-coated 384-well plates, yielding 

a final seeding density of 18,000 cells/well. Cells were plated in the inside wells (a total 

of 308-wells) and the outer-wells were filled with PBS to help insulate the inner wells 

and avoid evaporation. Plates were kept at room temperature for 30 min before they were 

placed in the incubators at 37°C and 5% CO2. Four hours post-plating, the plating medium 

was exchanged with 25 μL of fresh plating medium. Thereafter, the plating medium was 

exchanged daily until day 5 post-plating. On day 5, the plating medium was exchanged with 

maintenance medium made from RPMI medium containing 2% (v/v) of iCell Hepatocyte 

Medium Supplement, 0.1 μM of dexamethasone, 2% (v/v) of B27 supplement, 25 μg/mL of 

gentamicin, and 20 ng/mL of Oncostatin-M; this medium was used for the remainder of the 

experiment and replaced every other day until the chemical exposure on day 7.

For experiments in iPSC-CM, plates were prepared by adding 25 μL of 0.1% (w/v) gelatin 

solution per well and incubated for 2 h at 37°C and 5% CO2. Vials containing iPSC-CM 

were thawed for 3 min in a water bath at 37°C. The contents of a single vial were then 

added to a 15 mL conical tube and an additional 9 mL of plating medium containing 1:500 

(v/v) penicillin/streptomycin solution was added. An aliquot of the cell suspension was used 

to count the cells, further dilutions were done if necessary to yield the target viable cell 

seeding density of 2 × 105 viable cells/mL. Immediately, before plating, the gelatin solution 

was fully aspirated from the plates and 25 μL of cell suspension was added to each of 

the 308 wells, resulting in an estimated cell density of 5,000 viable cells/well. The outer 

wells were filled with PBS to help insulate the wells and avoid evaporation. Plates were 

kept at room temperature in the hood for 30 min and then placed in the incubator at 37°C 

and 5% CO2. Forty-eight hours after cell seeding, the plating medium was exchanged by 

removing 17.5 μL/well and replacing it with 32.5 μL of maintenance medium containing 

1:500 penicillin/streptomycin. Maintenance medium was subsequently changed every other 

day for the remaining 12 days in culture until the chemical exposure and assays. On the 

evening before chemical addition, the medium was removed and replaced by 25 μL of fresh 

maintenance medium.

To evaluate the functional and cytotoxic phenotypes in iPSC-Hep, they were exposed to 

the PFAS for 48 hours for the functional, cytotoxic, and genomic endpoints. The iPSC-CM 

were exposed to the PFAS for 90 minutes and for 24 hours for the gene expression studies. 

For the functional and cytotoxic phenotypes, various stains and images were collected at 

the respected timepoints as detailed below, and for the genomic endpoints cell lysates were 

collected at the respective timepoints for transcriptomic analyses.

Plate Design

A 200× chemical master plate was first prepared in 100% cell culture-grade DMSO, 

the chemicals were then transferred to the 5× working plate (2.5% DMSO and 97.5% 

cell-specific culture medium). For the final assays (1×), 12.5 μL of the solutions in the 

working plate were added to the assay plate that contained cells in 50 μL of cell-specific 

medium, yielding a final concentration of 0.5% DMSO. Each assay plate contained 308 

wells with cells and (i) each chemical (n = 26) and concentration (PFAS were tested in 4 
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final concentrations of 0.1, 1, 10, and 100 μM), (ii) vehicle (DMSO at final concentration 

of 0.5%) wells (n = 14), (iii) media-only wells (n = 6), and (iv) wells with cell type-specific 

positive controls (n = 20). The entire chemical layout was repeated twice per 384-well plate. 

The top tested concentration (100 μM) was not used for the genomic assays.

Phenotype Assays

On day 7 post-plating, iPSC-Hep were exposed to test chemicals for 48 hours. Chemical 

transfer from the master plate (200×) to the working plate (5×) and then to the assay plate 

(1×) was done using automated liquid handling of the FLIPR Tetra (Molecular Devices, San 

Jose, CA). After a 48-hour exposure at 37°C and 5% CO2, the medium was replaced with 

medium containing fluorescent dyes—MitoTracker, Hoechst 33342, and Calcein AM—to 

assess mitochondrial, nuclear, and cytoplasmic endpoints. Following a 15-minute incubation 

at 37°C, the medium with dyes was replaced with fresh maintenance medium. The plates 

were then transferred to the ImageXpress Micro Confocal High-Content imaging system 

(Molecular Devices) for image analysis. Data for functional and cytotoxic endpoints was 

extracted using MetaXpress Software Multiwavelength Cell Scoring Module (Molecular 

Devices).

On day 14 post-plating, for the iPSC-CM, Ca2+ flux was measured before and after chemical 

exposure using the EarlyTox Cardiotoxicity Kit (Molecular Devices) as detailed in (Grimm 

et al., 2015). First, the Ca2+ dye reagent (25 μL) was added to each well and incubated 

at 37°C for 2 hours. A baseline read was recorded using the FLIPR Tetra. Chemicals 

were then immediately added from the working plate (5×), transferring 12.5 μL to the 

assay plate (1×) (total volume of 62.5 μL) using the automated liquid handling of the 

FLIPR Tetra from the 5× working plate, the plates were then incubated for 90 minutes 

at 37°C. The Ca2+ flux was measured again, and the medium with chemicals was then 

replaced with the medium containing fluorescent dyes, specifically MitoTracker (2 μg/mL) 

and Hoechst 33342 (200 nM). After a 15-minute incubation with the fluorescent probes, the 

medium was replaced with fresh maintenance medium and the plates were transferred to the 

ImageXpress Micro Confocal High-Content imaging system (Molecular Devices) for image 

acquisition. The imaging data were subsequently analyzed using the MultiWavelength Cell 

Scoring Module available on the MetaXpress software and the data from relevant endpoints 

were extracted using both MetaXpress Software on the ImageXpress Micro Confocal High-

Content Imaging System for cytotoxic endpoints and Screenworks 4.0 software on the 

FLIPR Tetra for the functional endpoints (Molecular Devices). The raw data for both cell 

types and all phenotypes are available as Supplementary Files 1 and 2.

Derivation of the Phenotypic Points of Departure (pPODs)

For pPOD derivation, first, normalization of phenotypic readouts to their respective vehicle 

(0.5% DMSO) controls was conducted. The vehicle-treated (0.5% DMSO) samples were 

then screened to identify any outliers (measurements falling outside of the inter-quartile 

range), and outliers were removed if present. Vehicle control-scaled data for each test 

substance and phenotype were then fitted to a curve with a nonlinear logistic (Hill) function 

to determine POD values (Sirenko et al., 2017), defined as the concentrations at which the 

fitted curve exceeds certain thresholds above or below the mean of vehicle-treated controls 
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(benchmark responses for each phenotype are detailed in Tab. 2). For iPSC-Hep, the choice 

of one standard deviation “benchmark response” was based on US EPA guidance (Wignall 

et al., 2014) and empirical observations that generates consistently high classification 

accuracy (Sirenko et al., 2017). For iPSC-CM, the POD values were derived based on 

the criteria consistent with human clinical cardiotoxicity phenotypes as previously described 

(Blanchette et al., 2020).

TempO-Seq Library Preparation and Sequencing

Following chemical exposure, the wells were completely aspirated and 10 μL/well of 

2× lysis buffer (BioSpyder Technologies, Carlsbad, CA) was added to each well and 

plates were placed on an orbital plate shaker at room temperature for 10 minute to 

facilitate cell lysis. Then, adhesive seals were placed on the plates and the lysates were 

frozen in the 384-well plates and stored at −80°C until further processing. The Templated 

Oligonucleotide Sequencing Assay (TempO-Seq™, BioSpyder Technologies) was used as 

the RNA sequencing technology and gene expression was evaluated using the human 

TempO-Seq Whole Transcriptome panel (BioSpyder Technologies) consisting of 22,537 

protein-coding probes. Detailed protocols for TempO-seq are provided by the manufacturer 

and have been previously reported elsewhere (Grimm et al., 2016; House et al., 2017). 

Briefly, an aliquot (2 μL) of the cell lysate was transferred to a 96-well plate, in which the 

samples first underwent annealing to match detector oligos, followed by nuclease digestion 

of excess oligos, detector oligo ligation, which are subsequently amplified with the tagged 

primers according to manufacturer instructions (BioSpyder Technologies). The amplified 

samples were then pooled and purified into a sequencing library using a PCR clean-up 

kit (Clontech, Mountain View, CA). The libraries were sequenced (single-end, 50 bp in 

length) using HiSeq 2500 v.2 (Illumina, San Diego, CA). The reads were then aligned 

to target probe sequences to generate a gene count matrix using the analysis pipeline 

detailed elsewhere (House et al., 2017) including the STAR aligner (Dobin et al., 2013) with 

the maximum number of allowed mismatches of 3, insertion/deletion open, and extension 

penalty of 0.

Gene Expression Data Analysis

Probe read count data for transcripts with more than one probe in the TempO-Seq assay 

was first summed to gene level. Quality control steps with the following criteria were 

performed: 1) genes with fewer than 5 mean counts across the entire sample space (n = 330
for iPSC-Hep and n = 220 for iPSC-CM) were removed, 2) samples with mean expression 

across all genes lower than 25 were removed, 3) outliers in vehicle control samples were 

identified and removed using mean correlation at <0.85 as the criteria to ensure the stability 

of further transcriptomic dose-response and differential expression analyses, 4) in addition, 

principal component analysis (PCA) was conducted on vehicle control samples using raw 

counts to identify any remaining outliers. After these quality control steps, 330 samples and 

10,205 genes were retained for further analyses in iPSC-Hep, and 202 samples and 15,112 

genes in iPSC-CM.

Bioconductor’s DESeq2 package (Love et al., 2014) was used to perform differential gene 

expression analysis and to rank genes based on the log2-fold-change values by contrasting 
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the samples from the highest tested concentration (10 μM) of each PFAS substance and the 

vehicle controls. The ranked genes were then analyzed using Gene Set Enrichment Analysis 

(GSEA) approach (Subramanian et al., 2005) to derive enriched Reactome pathways (Jassal 

et al., 2020) as implemented in the gsePathway functions of R package ReactomePA version 

1.16.2 (Yu and He, 2016). To enhance the interpretability, an additional data integration 

step was implemented to group significantly enriched gene sets from lower-level pathways 

into common higher-level nodes based on the REACTOME pathway hierarchy (Jassal et al., 

2020).

Analysis of variance (ANOVA) for categorical effects on individual genes was performed 

using the aov command in R. For those genes that were significant (FDR q-value< 0.05), 

a two-tailed post-hoc Tukey test was conducted using the TukeyHSD command in R as 

a guide to describe the categorical gene expression effects between individual PFAS sub-

groups.

Supervised Category Analysis Using Prediction Analysis of Microarrays

A machine-learning statistical model was trained to predict the structure-based PFAS 

categories using the Prediction Analysis of Microarrays (PAM) approach. The approach 

performs class prediction via nearest shrunken centroid for a high-dimensional vector and 

works for any quantitative set of features. The analysis utilized gene expression log-2-fold-

change profiles as predictors, along with bioassay measurements (phenotypic PODs) in 

both cell types, performed using pamr version 1.56.1 (Tibshirani and Efron, 2002). PFAS 

categorical predictions were made using expression data alone and phenotypic PODs alone 

in each cell type, as well as a combination of expression data and phenotypic PODs in both 

cell types. For this analysis the FTCA “group” with only one PFAS member was removed, 

as it is not suitable for cross-validation. The cross-validated matching accuracy, derived 

from the associated confusion matrix, was computed to show the proportion of matches 

between predicted category assignments using training data only, and true assignments. 

The proportion of matches expected under chance was determined by 1 million random 

permutations of group assignments, with a mean of 0.21 and 95th percentile of 0.32. Thus, 

a cross-validated matching prediction proportion in excess of 0.32 would be considered 

significant at the 0.05 level.

Transcriptomic Benchmark Dose Modelling and Derivation of the Transcriptomic Points of 
Departure (tPODs)

The Bioconductor’s DESeq2 package (Love et al., 2014) was utilized to assemble the 

complete normalized count matrix as detailed above. The normalized counts data (counts + 

1 to zero-protect the data for further analyses on the logarithmic scale) were processed using 

the BMDExpress (v.2.3) software (Phillips et al., 2019) for transcriptomic benchmark dose 

modelling as detailed in (Tsai et al., 2023). Data were first pre-filtered with Williams’ trend 

test (p-value ≤0.05 within each transcript and substance) and an absolute fold change ≥1.5 

(compared with vehicle controls); genes that did not pass these criteria at any dose were 

removed from further analysis. Next, data were analyzed using Hill (version 2.18), power 

(version 2.19), linear (version 2.21), polynomial 2 (version 2.21), and exponential (2, 3, 4, 

and 5, version 1.11) models. A benchmark response of 1 standard deviation was used at 
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the individual gene level to derive a benchmark dose (BMD). The best-fit model for each 

transcript was selected based on the following parameters: (1) maximum iterations of 250; 

(2) confidence level of 0.95; (3) constant variance; Hill models with a k parameter <1/3 of 

the lowest positive dose were flagged and then the next best model with a p-value >.05 was 

used; and (5) a nested chi-squared cutoff value of 0.05 to select the best polynomial models 

followed by minimum Akaike Information Criterion value and a goodness-of-fit p-value 

>0.05. The BMD output data files from BMDExpress are available as Supplementary Files 3 

and 4.

Transcripts that had BMD upper bound (BMDU) to BMD lower bound (BMDL) ratio >40 

or a model fit p-value <0.1were excluded from further analyses. Vehicle control samples 

were assigned a “dose” one log10 unit below the lowest dose tested to allow plotting on the 

logarithmic scale, as well as allowing capping the BMD values at the lowest dose tested. In 

addition, BMD values were also capped at the highest dose tested.

For derivation of tPOD for each tested substance, the lowest gene set median gene BMD was 

used based on features that passed the criteria described above in accordance with previously 

published guidance (National Toxicology Program, 2018). Gene sets were represented by 

both enriched pathways (Reactome and KEGG annotations) and Gene Ontology (GO) 

biological process and were identified using xgr package version 1.1.8 in R (Fang et al., 

2016). The gene set background list included all interrogated genes retained after low count 

removal. Subsequently, the lowest median BMD value from any gene set was selected as the 

tPOD for each tested PFAS and cell type.

Selection of CRGs that were Common Across Multiple PFAS

To assess whether different PFAS had similar concentration-response effects at the gene 

level, we employed permutation-based significance testing. Specifically, for each cell type 

separately, the binary recorded matrix was established, with individual CRGs as rows 

and PFAS as columns, where 0 indicated no significant concentration-response for each 

gene-PFAS pair, and 1 indicated that a PFAS elicited concentration-response of a transcript. 

Then, the data matrix was permuted column-wise, shuffling the elements of each column 

randomly. For each permutation iteration, the sum of each row (instances of a gene declared 

as CRG) across all PFAS was calculated. This process was repeated 10,000 times to 

construct a null distribution for each gene. The row sums from each permutation were stored 

for each iteration. The empirical p-value for each gene was then computed by comparing the 

observed sum for each gene (data from the actual experiment) to the null distribution. Genes 

with empirical p-values < 0.05 were considered statistically significant.

Derivation of the Bioactivity-to-Exposure Ratios (BER)

To compare the bioactivity derived from in vitro assays and exposure levels, in vitro–to–in 
vivo extrapolation was performed using the equation detailed below (Eq. 1) to convert 

exposure dose level (mg/kg/day) to μM units. The equation was adopted from (Wetmore et 

al., 2012), where the original format was to convert an in vitro bioactivity value (μM) to an 

oral equivalent dose (mg/kg/day).
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Exposure estimates (μM) = 95tℎ percentile exposure prediction (mg/kg/day) × Css (μM)
1 (mg/kg/day)

(Eq. 1)

This conversion used either human steady-state plasma concentrations (Css) from the 

httk R package (Pearce et al., 2017); or the predicted fraction unbound data from recent 

publications (Kreutz et al., 2023; Smeltz et al., 2023). See Css and exposure values for 

18 PFAS that had available data from either source in Tab. S1. To ensure consistency and 

conservative assumptions when integrating Css data from various sources, intrinsic clearance 

was set to zero during the derivation of Css values. The BERs (Paul Friedman et al., 2020) 

were computed by dividing POD values from the in vitro experiments (this study, μM) by 

the 95th percentile exposure predictions (μM, as calculated using Eq. 1) for the general 

U.S. population, as derived from the ExpoCast Systematic Empirical Evaluation of Models 

version 3 (SEEM3) framework (Ring et al., 2019). The equation for BER calculation was 

detailed below (Eq. 2)

Bioactivity − to − Exposure Ratios (BER) = Points of departure (μM)
Exposure estimates (μM)

(Eq. 2)

Results

This study tested a hypothesis that structure-based grouping of PFAS can be substantiated 

using in vitro bioactivity data from both phenotypic and transcriptomic endpoints, and 

that these data may be used for risk-based prioritization of PFAS. The study’s overall 

design and data analysis workflow are depicted in Fig. 1. Specifically, we evaluated 26 

PFAS (Tab. 1) that belong to 8 sub-groups based on established nomenclature (OECD, 

2018; Buck et al., 2011; Buck et al., 2021). Bioactivity of PFAS compounds was 

tested using iPSC-hepatocytes (iPSC-Hep) and iPSC-cardiomyocytes (iPSC-CM), cells 

selected to be representative of organs of concern for potential adverse effects of PFAS 

(National Academies of Sciences Engineering and Medicine, 2022). Both phenotypic and 

transcriptomic data were analyzed to identify points of departure (PODs) and potential 

underlying mechanisms of PFAS effects. For risk characterization, we calculated bioactivity-

to-exposure ratios (BERs) using conservative exposure estimates and the lowest POD.

Phenotypic Effects of PFAS in iPSC-Hep and iPSC-CM

PFAS compounds (Tab. 1) were tested in iPSC-Hep and iPSC-CM in concentration response 

(0.1, 1, 10, and 100 μM) and both functional and cytotoxicity phenotypes were evaluated 

(Tab. 2). Fluorescent imaging of the cytoplasm, nuclei and mitochondria were used as 

relevant phenotypes in iPSC-Hep (Grimm et al., 2015; Sirenko et al., 2014). In iPSC-CM, 

Ca2+ flux was used as the primary indicator of the ion channel activity and beat frequency 

(Sirenko et al., 2017; Sirenko et al., 2013). Fig. 2A shows representative Ca2+ flux traces 

for iPSC-CM that were treated with vehicle (spontaneous frequency of ~30 beats per 

minute) or two representative PFAS that elicited negative chronotropy effects at the highest 
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concentration tested (100 μM) – perfluorobutanesulfonic acid (PFBS, 24 beats per minute) 

and perfluorotridecanoic acid (PFTiDA, 12 beats per minute). Dose-response modeling 

was performed on the data from each phenotype and PODs were derived using phenotype-

specific benchmark responses as indicated in Tab. 2.

Fig. 2B depicts a heatmap of phenotypic PODs (pPOD) for each individual PFAS in 

both iPSC-Hep and iPSC-CM. In this supervised analysis, PFAS were arranged by their 

respective chemical structure group (Tab. 2), by cell type and phenotype. In iPSC-Hep, only 

two PFAS elicited concentration-response phenotypic effects – PFOA and PFHx2Et2OA; 

both compounds increased mean cell area which is indicative of cell enlargement most likely 

due to fatty accumulation. In iPSC-CM, 8 PFAS elicited effects that reached a benchmark 

response (Tab. 2) for two phenotypes – decreased peak frequency (PFBS, PFDS-Na, 8:2 

FTS, PFOA, PFTeDA, PFTiDA, NH4PFOA, and PFMPA), and QT prolongation (PFDS-

Na). No patterns in phenotypic effects of tested PFAS in either cell type were evident 

with respect to PFAS chemical structure-based classes except for negative chronotrope, 

where by there were relatively higher number of substances in PFCA and PFSA groups 

with effects; however, one-way ANOVA showed no significant difference among classes 

(p = 0.22). In addition, no significant correlation was found between pPOD and either chain 

length (Spearman ρ = − 0 . 15, p = 0.50 in iPSC-CM; ρ = − 0 . 02, p = 0.94 in iPSC-Hep) or 

molecular weight (ρ = − 0 . 29, p = 0.15 in iPSC-CM; ρ = 0 . 06, p = 0.76 in iPSC-Hep) for the 

tested PFAS.

Transcriptomic Effects of PFAS in iPSC-Hep and iPSC-CM

While few concentration-response phenotypic effects were observed at the whole cell level, 

gene expression was evaluated to determine whether PFAS had molecular-level effects in 

both iPSC-Hep and iPSC-CM. These analyses (Fig. 1) included (i) determination of the 

effects at gene and pathway level at the highest concentration tested for gene expression 

analysis (10 μM), (ii) analysis of the concentration-response at the gene level (vehicle, 0.1, 

1 and 10 μM), and (iii) derivation of the transcriptomic PODs at the pathway/gene set level 

(tPODs).

First, we used raw gene expression data for each PFAS (10 μM) to conduct a principal 

components analysis (PCA). When all samples (PFAS and vehicle, in both cell types) were 

included in the PCA analysis (Fig. S1), the greatest separation was observed between cell 

types, as expected. While vehicle-treated samples were most distinguishable from PFAS-

treated ones in iPSC-Hep, some compounds exhibited effects in both cell types. Therefore, 

differential gene expression was analyzed separately by cell type and compared to vehicle-

treated samples. Two PCAs are shown in Fig. 3 to visualize such analyses for each cell 

type. Individual PFAS were colored by their chemical structure-based class (Tab. 1). This 

analysis showed that differential gene expression effects of PFAS exhibited little grouping 

by their chemical structure-based class in both cell types. To further investigate the grouping 

effects from gene expression data, ANOVA analyses were performed on log-2-fold-change 

values for individual genes derived from comparing the highest concentration and control 

samples. Only a very few genes (9 out of 10,205) in iPSC-Hep were found to be exhibit 

significant differences across the groups, whereas no gene showed significance in iPSC-CM. 
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The results indicate minimal effects on expression corresponding to the structure-based 

categories in both iPSC-Hep and iPSC-CM. The list of genes and the between-group 

comparisons that passed the post-hoc Tukey tests are presented in Supplementary File 5. 

Furthermore, to directly assess the potential correspondence of multiple features in gene 

expression and phenotypic bioactivity data to the structure-based groups, the PAM approach 

(see Methods) was used to fit a machine-learning model for PFAS categorical predictions 

(Supplementary Figures 2 and 3). However, the prediction accuracy was not significant 

across all data types tested: transcriptomic data, phenotypic POD data, and a combination of 

both.

Second, as a surrogate measure of the potency of the tested PFAS’ effect on transcription, 

we evaluated concentration-response for each compound by determining the number of 

concentration responsive genes (CRGs) in each cell type (Fig. 4). Higher counts of CRGs 

may be interpreted as greater bioactivity. In iPSC-Hep, the number of CRGs affected by 

PFAS ranged from 116 (representing 1.1% of the total number of expressed genes in this 

cell type) to 542 (5.3%). In iPSC-CM, the numbers of PFAS-effected CRGs varied more 

widely, from 83 (0.5% of the total number of expressed genes in this cell type) to 2,027 

(13.4%). The bar plots in Fig. 4 show that the number of CRGs for individual PFAS were 

substance- and the cell type-specific and not dependent on their chemical structure-based 

class (p = 0.26 in iPSC-Hep; p = 0.75 in iPSC-CM using one-way ANOVA). No significant 

correlation was found between the number of CRGs and either chain length (ρ = − 0 . 08 in 

iPSC-CM; ρ = 0 . 14 in iPSC-Hep) or molecular weight (ρ = − 0 . 17 in iPSC-CM; ρ = 0 . 17 in 

iPSC-Hep) for tested PFAS.

Third, we examined whether there were similarities in CRGs among PFAS. For this, 

we employed permutation-based significance testing to determine whether some genes 

were concentration-responsive across multiple PFAS, beyond chance variation expected 

when comparing thousands of genes. An empirical p-value was calculated by permutation 

analysis. Fig. 5 shows the top 50 genes that were most frequently concentration-responsive 

(either up- or down-regulated) to PFAS in each cell type. In this figure, genes are ranked 

by the frequency of them being identified as a significant CRG in response to PFAS 

treatment. Almost all the transcripts identified in this analysis were upregulated in response 

to PFAS and they were also highly cell-type specific. Only one transcript, ADAMTS9, 

encoding disintegrin and metalloproteinase with thrombospondin motifs, a gene that is 

expressed ubiquitously in multiple cell types, was significantly concentration-responsive to 

PFAS treatment in both iPSC-Hep and iPSC-CM. Genes known to play a role in xenobiotic 

metabolism or muscle contraction pathways were among the top 50 CRGs in iPSC-Hep 

or iPSC-CM, respectively. While many of the effected genes were shared among PFAS in 

each cell type, no gene was shared among more than half of tested compounds. The gene 

in highest commonly shared frequency – CDH6 in iPSC-Hep and NDUFA10 in iPSC-CM – 

was significant in concentration-responsive effects in 10 (38%) and 9 (35%) of tested PFAS, 

respectively. Still, depending on the gene, anywhere from ~25% to ~40% of the tested PFAS 

shared common concentration-response effects on gene expression. It is also noteworthy that 

almost all the shared CRGs in both cell types were showing upward concentration response 

trends.
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Fourth, because we observed that common individual CRGs are known to be involved in 

the mechanisms of hepato- (Rusyn et al., 2021) and cardio- (Lind et al., 2021) toxicity, 

we aimed to investigate shared pathway-based effects of PFAS and whether these effects 

are dependent on their chemical structure-based class. For this, we employed the Gene 

Set Enrichment Analysis approach (Subramanian et al., 2005) to overcome the limitations 

associated with the utilization of arbitrary thresholds during the selection of significant 

differentially expressed genes. This method involves evaluation of cumulative changes in 

gene expression across entire sets of genes, rather than focusing on specific genes that 

exceed a predetermined significance threshold. To execute this analysis, we utilized ranked 

log2-fold change values obtained by comparing expression levels of each gene at the 

highest concentration tested with that in vehicle controls. A complete list of gene sets 

that were significant is included in Supplementary Files 6 and 7, and the corresponding 

heatmaps using the data were included in Supplementary Figures 4 and 5. To enhance 

clarity and interpretability of the outcome of this analysis, an additional data integration 

step was undertaken to group significantly enriched gene sets from lower-level pathways 

into common higher-level nodes based on the REACTOME pathway hierarchy (Jassal et 

al., 2020). This organization allowed for a clearer depiction of the common mechanistic 

events that were affected by tested PFAS. Fig. 6 shows that as many as 25 and 18 (out 

of 26 tested) PFAS exhibited similarity in a number of pathway-level effects in iPSC-Hep 

and iPSC-CM, respectively. In iPSC-Hep, significantly enriched and upregulated pathways 

included extracellular matrix organization, translation, RNA and general metabolism, and 

cellular response to stress. Pathways for plasma lipoprotein assembly, remodeling, and 

clearance were consistently down-regulated in iPSC-Hep by the majority of tested PFAS. In 

iPSC-CM, all significant pathways were upregulated and the top effected one was related to 

muscle contraction, followed by several pathways that are related to energy supply, events 

that are required for efficient muscle contraction. We also examined whether chemical 

structure-based class-specific effects could be discernable at the pathway level in either cell 

type using heatmap to visualize the enriched pathways versus individual PFAS but found 

none (data not shown), indicating similarity in transcriptomic effects for PFAS as a class at 

the pathway level rather than the similarity in sub-group.

Fifth, we calculated transcriptomic PODs (tPODs) at the pathway/gene set level. Recent 

studies demonstrated the value of using transcriptomic data for dose-response analysis in 

addition to their traditional use for mechanistic interpretation (Farr and Dunn, 1999; Johnson 

et al., 2020; LaRocca et al., 2017; Vinken et al., 2017). We used the most sensitive pathway 

method to derive tPODs, a common approach to dose-response modeling in transcriptomic 

datasets (National Toxicology Program, 2018). For each substance, the tPOD is a benchmark 

dose of the median gene in the most sensitive pathway/gene set effected by PFAS treatment 

(see Methods). Fig. 7 shows a comparison between tPODs and numbers of CRGs for 

each PFAS and cell type. A wide range in tPODs was observed among PFAS in each 

cell type. In iPSC-Hep, only 3 (12%) of 26 tested PFAS had no tPOD, and 23 PFAS 

had tPOD <10 μM. A significant negative correlation was observed between tPODs and 

the number of CRGs in iPSC-Hep – as the number of CRGs increased, the tPODs value 

decreased (correlation coefficient, r = − 0.5, p-value < 0.01). In iPSC-CM, 10 (38%) of 26 

tested PFAS were without tPOD, and 16 PFAS had tPOD < 10 μM. No correlation was 
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found between tPODs and CRGs. In both cell types, tPODs were not clustering by their 

chemical structure-based class. No significant correlation was found between the tPODs and 

either chain length (ρ = − 0 . 16 in iPSC-CM; ρ = 0 . 003 in iPSC-Hep) or molecular weight 

(ρ = − 0 . 06 in iPSC-CM; ρ = − 0 . 05 in iPSC-Hep) for tested PFAS.

Risk Characterization and Prioritization of PFAS Using In Vitro PODs

The analyses presented above showed that the hypothesis that structure-based grouping 

of PFAS can be substantiated using in vitro bioactivity data from both phenotypic and 

transcriptomic endpoints was not confirmed with the data from cell types we tested. 

However, in vitro data collected in these studies did show that PFAS elicit both phenotypic 

and transcriptomic bioactivity. Therefore, we reason that these data may be used for risk-

based prioritization of PFAS. One approach is to prioritize PFAS for further testing using 

either phenotypic or transcriptomic PODs alone – the “protective” approach (Woodruff 

et al., 2023). The other is to combine the “protective” bioactivity-derived PODs and 

conservative exposure predictions to derive chemical-specific BERs (Paul Friedman et al., 

2020). Fig. 8 presents both considerations as possible means for prioritization and risk 

characterization of PFAS. Fig. 8A plots the minimum (most protective) pPODs and tPODs 

for each tested PFAS separately for each cell type. The transcriptomics-based PODs were 

more sensitive (i.e., protective) overall to treatment with PFAS. Specifically, tPODs were 

lower than pPODs not only on average across all 26 tested PFAS, but also for 25 and 21 

compounds in iPSC-Hep and iPSC-CM, respectively.

Next, the overall minimum POD for each substance (either tPOD or pPOD, from either cell 

type) was used to calculate the BERs (Fig. 8B). We used 95th percentile of the exposure 

estimates from ExpoCast (Wambaugh et al., 2013), where available, for each PFAS; these 

were converted to concentrations as detailed in Methods. Data for both bioactivity and 

exposure predictions were available for 18 out of 26 PFAS; therefore, only these substances 

are included in Fig. 8B. Only 3 PFAS exhibited BERs lower than 1 (PFBS, 8:2 FTS 

and NH4PFOA); most substances ranged between 1 and 100. This suggests that when 

most conservative parameters are used for both bioactivity and exposure, several PFAS 

compounds could be identified as of potentially high concern and may warrant additional 

studies to refine estimates of both human health hazard and exposure.

Discussion

Grouping and read-across are widely used approaches, albeit to a varying degree of success, 

in evaluation of hazards and risks of chemicals that have data gaps (Ball et al., 2016). 

These approaches are pragmatic means to address the daunting task of evaluating PFAS, 

an overwhelming majority of which have no data to inform traditional hazard and risk 

evaluations. One commonly invoked grouping strategy for PFAS involves prioritization 

based on chemical structure features, which are believed to be most important in 

determining both toxicokinetic and bioactivity properties (Buck et al., 2011; Sha et al., 2019; 

Wang et al., 2017; OECD, 2018; Patlewicz et al., 2019; Buck et al., 2021). In this context, 

our study aimed to use both transcriptomic and phenotypic data from two human-health 

relevant (in terms of organs with known or potential PFAS hazardous effects) organotypic 
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(in terms their functionality) in vitro cell models to evaluate the association between 

structural groupings and bioactivity. In addition, regardless of whether structure-based 

grouping could be substantiated, we evaluated whether concentration-response analysis from 

both the transcriptomic and phenotypic data, combined with exposure estimates, may offer 

a sensible approach for risk-based prioritization of PFAS for additional exposure and hazard 

testing.

Relationship Between PFAS Structure-Base Classes and In Vitro Bioactivity

Several previous studies reported correlations between specific structural features of PFAS 

and their biological effects in vitro. For example, a study that examined effects of 142 

PFAS in HepG2 cells (Houck et al., 2021) reported that PPAR activity correlated with 

physicochemical properties such as presence of the negatively charged structures and acidic 

hydrogen atoms; they also observed that RXRβ activation was associated with linear shapes 

and carboxylate groups. In another study of 15 PFAS (Zhang et al., 2014) the authors 

demonstrated that the binding affinity of PPAR gamma in HepG2 cells was linked to the 

chain length. Similarly, a study of 13 PFAS (Amstutz et al., 2022) found that increasing 

carbon chain length led to higher cytotoxicity in HepG2 cells. PFAS molecular weights were 

significantly correlated with protein binding association constants and contributed to lipid 

accumulation (Marques et al., 2022). In addition, a study of 147 PFAS identified a trend 

between molecular weight and bioactivity related to in vitro immunosuppression (Houck et 

al., 2023), and a study of 160 PFAS discovered that compounds with long carbon chains (8 

or more carbons), high carbon to fluorine ratio, or containing a carboxylic acid moiety were 

more likely to exhibit developmental neurotoxicity in vitro (Carstens et al., 2023).

Still, little is known regarding structure-based group similarities in bioactivity even though 

the latter is a common hypothesis (Buck et al., 2011; OECD, 2018; Patlewicz et al., 2019; 

Buck et al., 2021). Our study examined potential associations between structural features 

detailed in previous studies and bioactivity in both iPSC-Hep. While we found few effects 

in iPSC-Hep, the most noteworthy observation with respect to whole cell bioactivity effects 

in our study comes from the data in iPSC-CM, a cell type that has not been studied 

with diverse PFAS previously. Our observation that 8 of 26 tested PFAS had effects on 

the beat frequency is novel and one that warranted additional mechanistic investigation 

using transcriptional data. Regardless of the cell type, however, we found little evidence of 

grouping similarity in the phenotypic effects. Moreover, in contrast to previous findings, our 

analysis also revealed no significant correlation between PFAS molecular weight or carbon 

chain lengths and bioactivity. The lack of significant correlations could be due to the number 

of PFAS used in this study or the cell types used. Further research using larger libraries 

of PFAS and additional cell types may be needed to confirm potential structure-activity 

relationships.

Mechanistic Similarity in the Transcriptomic Effects of PFAS

To further test whether molecular-level events may show evidence of similarity in biological 

responses to different PFAS, we used gene expression data. Indeed, demonstration of similar 

mode of action (MOA) has been suggested as a crucial consideration for attaining confident 

categorization/grouping of PFAS for human health risk assessment (Anderson et al., 2022). 
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Accordingly, we focused on the analysis of gene expression data in several ways, including 

concentration-response analysis and mechanistic interpretation. Previous studies of diverse 

PFAS in human hepatocytes or liver-derived cancer cell lines observed accumulation of 

intracellular lipids for several PFAS at concentration as low as 0.1 μM (Marques et al., 

2022; Louisse et al., 2023). Similarly, gene expression studies in liver cells suggested that 

PFAS’ structural features may be associated with lipid accumulation-related gene expression 

effects, including the relative potency of these effects (Reardon et al., 2021; Marques et al., 

2022). These studies examined the relationships based on specific structural features, such as 

aliphatic chain length and molecular weight; they were not based on head group/side chain 

classification (OECD, 2018; Buck et al., 2011; Buck et al., 2021).

In our study, transcriptomic data in iPSC-derived hepatocytes confirmed the disruption of 

lipoprotein transport as the most prominent molecular event elicited by many of the tested 

PFAS. This observation aligns well with previous in vivo animal and epidemiological studies 

that established linkages between PFAS and alterations in serum lipoproteins and liver 

steatosis (Ho et al., 2022; David et al., 2023; Bijland et al., 2011). Indeed, a number of in 
vivo (Bijland et al., 2011; Curran et al., 2008; Das et al., 2017; Menger et al., 2020; Wan et 

al., 2012) and in vitro (Bjork et al., 2011; Hickey et al., 2009; Naile et al., 2012; Reardon 

et al., 2021; Rowan-Carroll et al., 2021) studies documented the disruptive impact of PFAS 

on lipid metabolism in the liver. Furthermore, gene expression data from iPSC-derived 

hepatocytes also suggested that PFAS may contribute to liver fibrosis, potentially via the 

upregulation of TGF-β. This finding is in support for the reported epidemiological and in 
vitro associations between fibrosis indicators and PFAS exposure (Cheng et al., 2023; Qi 

et al., 2023). However, our data show that these pathways were neither commonly enriched 

across all tested PFAS, nor was the significant enrichment associated with the chemical 

structure-based classes. It remains unclear whether the lack of an effect by some tested 

compounds was due to the tested concentrations being insufficient (highest concentration 

examined for gene expression was 10 μM), the choice of a liver cell type, or if some 

PFAS do not act on these pathways. In vitro models often require higher concentrations 

to demonstrate significant mechanistic results, whether in the case of human primary 

hepatocytes (Reardon et al., 2021; Rowan-Carroll et al., 2021; Marques et al., 2022; Robarts 

et al., 2022) or liver cancer cell lines (Solan and Lavado, 2023; Louisse et al., 2023; 

Robarts et al., 2022). Future research is needed to expand the range of tested PFAS, consider 

a broader spectrum of concentrations, and inclusion of more complex and physiologically-

relevant liver model systems (Soldatow et al., 2013).

As we noted previously, published data on the possible associations between PFAS and 

cardiovascular adverse outcomes is less clear and not as abundant as that for liver. Some 

epidemiological studies showed the association between PFAS exposure and cardiovascular 

diseases (Meneguzzi et al., 2021); however, the evidence regarding associations between 

PFAS and overt cardiovascular disease remains limited and inconsistent (Schillemans et al., 

2023). A better understanding of potential underlying molecular events in cardiomyocytes 

may help explain inconsistencies in epidemiological data; however, studies of heart-derived 

cells in toxicology are few (Burnett et al., 2021a). Mechanistic -omics and laboratory animal 

studies do indicate the potential for associations of some PFAS with multiple molecular 

pathways that could contribute to cardiovascular disease, but more information is needed 
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(Schillemans et al., 2023). For example, while some studies suggested that PFAS may affect 

developmental pathways during cardiomyocyte differentiation (Cheng et al., 2013; Davidsen 

et al., 2022; Davidsen et al., 2021; Tang et al., 2017; Zhang et al., 2016), few reports have 

been published to show effects on adult cells, especially of human origin, and a relatively 

small number of PFAS has been tested in human cardiomyocytes in culture (Burnett et al., 

2021b).

In addition, while iPSC-derived cardiomyocytes are a useful model for cardiotoxicity 

screening, both in studies of cell function (Burnett et al., 2021a; Burnett et al., 2019; Chen et 

al., 2021; House et al., 2021) and in gene expression studies (House et al., 2022; Tsai et al., 

2023; Grimm et al., 2018), gene expression effects from PFAS exposure in cardiomyocytes 

have not been reported. In this respect, our study provides a unique dataset that showed that 

PFAS exposure can perturb gene expression in iPSC-CM with patterns that were distinct 

from those in iPSC-Hep. Specifically, not only did we observe acute effects on the beat 

frequency, but we also observed that genes and pathways related to muscle contraction 

and energy supply were significantly affected, also in concentration-response manner (see 

below), by several PFAS. These findings suggest that further investigation is needed of 

PFAS-associated effects in human cardiomyocytes.

Using Transcriptomic Data for Concentration-Response Analysis

A number of studies in the past decade showed that the PODs derived from gene 

expression data in short-term animal studies are correlated with PODs from traditional 

apical (histopathology or clinical chemistry) endpoints in sub-chronic and chronic animal 

studies (Thomas et al., 2011; Johnson et al., 2020). More recently, gene expression data have 

been suggested to be of potential use to set accepTab. exposure limits for environmental 

chemicals – the US EPA has proposed to use transcriptomic reference values (TRV) as 

a novel EPA Transcriptomic Assessment Product (ETAP) (U.S. EPA, 2023). Therefore, 

transcriptomic data are not only regarded as useful in mechanistic interpretation, but also 

for dose-response step in risk assessment (Nyffeler et al., 2022; Harrill et al., 2021; Tsai et 

al., 2023; Johnson et al., 2022). Interestingly, a study by (Reardon et al., 2021) examined 

PFAS-associated in vitro tPODs in primary human liver spheroids and demonstrated that 

they may be more “protective” in comparison to apical PODs derived from animal studies 

for most chemicals analyzed, which further demonstrated the value of the use of in vitro 
transcriptomic data in risk assessment.

Accordingly, we aimed to analyze gene expression data in this study with respect to 

concentration-response. Several previous publications explored gene expression effects of 

PFAS (Houck et al., 2021; Reardon et al., 2021; Rowan-Carroll et al., 2021; Louisse et al., 

2023; Marques et al., 2022; Behr et al., 2020), but few conducted formal transcriptomic 

benchmark dose analysis and derived points of departure. Two studies used primary human 

liver spheroids and assessed in vitro transcriptomic dose responses of PFAS treatment 

(Reardon et al., 2021; Rowan-Carroll et al., 2021). Specifically, Reardon et al (2021) 

found that PFAS-elicited transcriptomic effects (tPODs) ranged from 8.2 μM to 19.5 μM. 

Rowan-Carroll et al. (2021) reported that tPODs ranged from 8.2 μM to 53.5 μM. Compared 

with these two studies, tPODs derived herein were at the lower end (0.03 μM to 10 μM), 
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suggesting that iPSC-Hep could be a more sensitive in vitro model for screening-level risk 

assessments.

In addition to deriving the tPODs, we also sought to explore the relationship between a 

common tPOD derivation approach – the most sensitive pathway/gene set – that captures 

molecular pathway/gene set-level bioactivity and the number of CRGs effected by each 

compound in either cell type. The number of CRGs following chemical exposure has been 

used as a quantitative indicator of chemical’s potency to enable comparative analysis across 

and within chemicals/groups (House et al., 2022; House et al., 2017). In addition, CRGs 

have been proposed to be useful for establishing quantitative thresholds to classify chemicals 

based on their potential to induce specific outcomes (Ramaiahgari et al., 2019). Our findings 

indicated that concordance between tPODs and numbers of CRGs was only observed in 

iPSC-Hep, but not in iPSC-CM. This finding suggests that associations between tPOD-based 

potency (derived from the most sensitive pathway/gene set) with the overall transcriptomic 

effect (as determined by the number of CRGs) is cell-type specific. The lack of correlation 

observed in iPSC-CM may be in part explained by the comparatively smaller evidence base 

on gene expression effects of chemicals in cardiomyocytes and thus, not as advanced of an 

understanding of the molecular pathways/gene sets that may be impacted (Hudson et al., 

2012; Khatri et al., 2012). While in vivo and in vitro studies have demonstrated comparable 

tPOD values using different derivation approaches, these tPODs were often derived from 

few tissues (Farmahin et al., 2017; Thomas et al., 2013) or specific cell types (Reardon 

et al., 2023). The cell type-specificity observed in this study underscores the necessity for 

further research to determine what impact certain tPOD derivation approaches, and tissues 

or cells from which they originate, may have on the sensitivity of these “alternative” PODs 

especially as they are proposed for wider use in decision-making (U.S. EPA, 2023).

Prioritization and Risk Characterization of PFAS using pPODs and tPODs

The BER approach has been proposed as a high-throughput means of identifying potential 

risks and guiding the prioritization of substances for higher-tier evaluations (Wetmore 

et al., 2015; Sipes et al., 2017; Paul Friedman et al., 2020). Here we applied a highly 

conservative approach by using the minimum POD for each individual PFAS for the BER 

derivation, regardless of cell type and assay. We found that both iPSC-Hep and iPSC-CM 

contributed equally to the lowest PODs, and transcriptomic data contributed 14 of 18 lowest 

PODs. These findings underscore the value of both the cell models and also emphasize the 

importance of incorporating both the phenotypic and transcriptomic data for prioritization of 

PFAS using “protective” in vitro data.

We found that the BERs for most PFAS tested in this study ranged from 1 to 100. The 

overall range of BERs for PFAS in this study is consistent with previous in vitro PFAS 

studies that took a risk-based approach to interpretation of their in vitro data. For example, 

(Burnett et al., 2021b) demonstrated relatively narrow margins of exposure (<100) for most 

PFAS tested using iPSC-CM phenotypic assays. Rowan-Carroll et al. (2021) also reported 

a BER for PFOA within one order of magnitude of our study. It should be noted that 3 

compounds (PFBS, 8:2 FTS and NH4PFOA) in our study had the BERs lower than 1. 

This apparent indication of a potential high risk was examined further. Both NH4PFOA 

Doris Tsai et al. Page 18

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and PFBS had the highest exposure prediction values after IVIVE transformation (20.5 and 

0.43 μM, respectively) among all 26 tested compounds; 8:2 FTS had a very low tPOD 

(0.04 μM). We need to acknowledge the limitations with the BER approach for PFAS. 

First, this study utilized two cell types that represent liver and heart to derive quantitative 

estimates of bioactivity. While hepatocytes and cardiomyocytes are the primary functional 

cells in these organs, they may not fully represent complex cell-cell interactions in vivo. 

Therefore, our bioactivity data may not adequately capture organ-level effects. Additional 

studies in more complex in vitro models, as well as cells that represent other tissues, are 

needed. Second, exposure values used in our study were based on in silico predictions 

rather than empirical data. Third, multiple data sources that we used to inform IVIVE 

have limitations with respect to the uncertainties in chemical-specific kinetic information 

for PFAS (Kreutz et al., 2023; Smeltz et al., 2023). Collectively, the uncertainty in BER 

estimates for PFAS is considerable and more confident toxicokinetic data is needed for 

these substances. In addition, despite our best efforts to maximize the number of PFAS 

for which BERs could be calculated, there were still 8 out of 26 PFAS with insufficient 

exposure prediction or Css data for the extrapolation. This underscores the importance of 

establishing PFAS-specific toxicokinetic and exposure data for large scale risk prioritization. 

Still, despite the limitations in the IVIVE process and subsequent BER calculation, the 

overall workflow herein effectively utilizes existing data and computational tools to enable 

an informative risk characterization approach that could also be applied for prioritizing 

PFAS.

Conclusion

This study pursued two main objectives, (i) to integrate transcriptomic and phenotypic data 

from two human in vitro cell models to gain insights into structure-effect relationships 

for PFAS, and (ii) to characterize potential risks of PFAS based on both bioactivity 

and predicted exposures. We observed that a number of PFAS had effects on iPSC-CM, 

supporting limited epidemiological data on the potential for these chemicals to have adverse 

effects on the heart rhythm. Even though a number of cell type- and substance-specific 

effects were observed, these effects did not align with the structure-based classification; 

we found that many of the tested PFAS elicited similar gene expression signatures. These 

results imply that existing classification proposals may not be suitable for “dimensionality 

reduction” among PFAS and show that additional research is needed to identify appropriate 

groupings for read-across. While our data revealed a relatively low risk for almost all 

tested compounds, even when using most conservative estimates for hazard and exposure, 

we also acknowledge considerable uncertainties in this approach because of the paucity 

of relevant toxicokinetic and exposure information. Overall, our results suggest that 

future considerations of hazards and risks of PFAS may require testing of the individual 

compounds, rather than representative members of various groups, and that additional 

studies are needed to inform grouping strategies and risk characterization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Doris Tsai et al. Page 19

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

The authors appreciate technical assistance with the experiments from Dr. Sarah D. Burnett (CTEH) and valuable 
discussions with Drs. Weihsueh A. Chiu (Texas A&M University) and George Daston (Procter & Gamble).

Funding

This work was supported, in part, by grants from the National Institute of Environmental Health Sciences (P42 
ES027704 and T32 ES026568) and US Environmental Protection Agency (STAR RD83580201 and RD84045001). 
This publication contents are solely the responsibility of the grantee and do not necessarily represent the official 
views of the funding agencies. Further, funding agencies do not endorse the purchase of any commercial products 
or services mentioned in the publication.

Data availability

Gene expression data and experimental metadata are available in the Gene 

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE244110, 

reviewer token: ytangkkadbkvzgf). All supplementary data described in this manuscript are 

made public.

References

Amstutz VH, Cengo A, Gehres F. et al. (2022). Investigating the cytotoxicity of per- and 
polyfluoroalkyl substances in HepG2 cells: A structure-activity relationship approach. Toxicology 
480, 153312. 10.1016/j.tox.2022.153312 [PubMed: 36075290] 

Anderson JK, Brecher RW, Cousins IT et al. (2022). Grouping of PFAS for human health risk 
assessment: Findings from an independent panel of experts. Regul Toxicol Pharmacol 134, 105226. 
10.1016/j.yrtph.2022.105226 [PubMed: 35817206] 

Ball N, Cronin MT, Shen J. et al. (2016). Toward Good Read-Across Practice (GRAP) guidance. 
ALTEX 33, 149–166. 10.14573/altex.1601251 [PubMed: 26863606] 

Behr AC, Plinsch C, Braeuning A. et al. (2020). Activation of human nuclear receptors by 
perfluoroalkylated substances (PFAS). Toxicol In Vitro 62, 104700. 10.1016/j.tiv.2019.104700 
[PubMed: 31676336] 

Bijland S, Rensen PC, Pieterman EJ et al. (2011). Perfluoroalkyl sulfonates cause alkyl chain 
length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production 
in APOE*3-Leiden CETP mice. Toxicol Sci 123, 290–303. 10.1093/toxsci/kfr142 [PubMed: 
21705711] 

Bjork JA, Butenhoff JL and Wallace KB (2011). Multiplicity of nuclear receptor activation by 
PFOA and PFOS in primary human and rodent hepatocytes. Toxicology 288, 8–17. 10.1016/
j.tox.2011.06.012 [PubMed: 21723365] 

Blanchette AD, Burnett SD, Grimm FA et al. (2020). A Bayesian Method for Population-wide 
Cardiotoxicity Hazard and Risk Characterization Using an In Vitro Human Model. Toxicol Sci 
178, 391–403. 10.1093/toxsci/kfaa151 [PubMed: 33078833] 

Buck RC, Franklin J, Berger U. et al. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the 
environment: terminology, classification, and origins. Integr Environ Assess Manag 7, 513–541. 
10.1002/ieam.258 [PubMed: 21793199] 

Buck RC, Korzeniowski SH, Laganis E. et al. (2021). Identification and classification of commercially 
relevant per- and poly-fluoroalkyl substances (PFAS). Integr Environ Assess Manag 17, 1045–1055. 
10.1002/ieam.4450 [PubMed: 33991049] 

Burnett SD, Blanchette AD, Grimm FA et al. (2019). Population-based toxicity screening in human 
induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 381, 114711. 
10.1016/j.taap.2019.114711 [PubMed: 31425687] 

Burnett SD, Blanchette AD, Chiu WA et al. (2021a). Human induced pluripotent stem cell (iPSC)-
derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for 

Doris Tsai et al. Page 20

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE244110


hazard identification and risk characterization. Expert Opin Drug Metab Toxicol 17, 887–902. 
10.1080/17425255.2021.1894122 [PubMed: 33612039] 

Burnett SD, Blanchette AD, Chiu WA et al. (2021b). Cardiotoxicity Hazard and Risk Characterization 
of ToxCast Chemicals Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes from 
Multiple Donors. Chem Res Toxicol 34, 2110–2124. 10.1021/acs.chemrestox.1c00203 [PubMed: 
34448577] 

Carlson LM, Angrish M, Shirke AV et al. (2022). Systematic Evidence Map for Over One Hundred 
and Fifty Per- and Polyfluoroalkyl Substances (PFAS). Environ Health Perspect 130, 56001. 
10.1289/EHP10343 [PubMed: 35580034] 

Carstens KE, Freudenrich T, Wallace K. et al. (2023). Evaluation of Per- and Polyfluoroalkyl 
Substances (PFAS) In Vitro Toxicity Testing for Developmental Neurotoxicity. Chem Res Toxicol 
36, 402–419. 10.1021/acs.chemrestox.2c00344 [PubMed: 36821828] 

Chen Z, Jang S, Kaihatu JM et al. (2021). Potential Human Health Hazard of Post-Hurricane Harvey 
Sediments in Galveston Bay and Houston Ship Channel: A Case Study of Using In Vitro 
Bioactivity Data to Inform Risk Management Decisions. Int J Environ Res Public Health 18, 
13378. 10.3390/ijerph182413378 [PubMed: 34948986] 

Cheng W, Yu Z, Feng L. et al. (2013). Perfluorooctane sulfonate (PFOS) induced embryotoxicity and 
disruption of cardiogenesis. Toxicol In Vitro 27, 1503–1512. 10.1016/j.tiv.2013.03.014 [PubMed: 
23562911] 

Cheng W. and Ng CA (2018). Predicting Relative Protein Affinity of Novel Per- and Polyfluoroalkyl 
Substances (PFASs) by An Efficient Molecular Dynamics Approach. Environ Sci Technol 52, 
7972–7980. 10.1021/acs.est.8b01268 [PubMed: 29897239] 

Cheng W, Li M, Zhang L. et al. (2023). Close association of PFASs exposure with hepatic 
fibrosis than steatosis: evidences from NHANES 2017–2018. Ann Med 55, 2216943. 
10.1080/07853890.2023.2216943 [PubMed: 37323015] 

Cousins IT, DeWitt JC, Gluge J. et al. (2020). Strategies for grouping per- and polyfluoroalkyl 
substances (PFAS) to protect human and environmental health. Environ Sci Process Impacts 22, 
1444–1460. 10.1039/d0em00147c [PubMed: 32495786] 

Curran I, Hierlihy SL, Liston V. et al. (2008). Altered fatty acid homeostasis and related toxicologic 
sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). J Toxicol Environ 
Health A 71, 1526–1541. 10.1080/15287390802361763 [PubMed: 18923995] 

Das KP, Wood CR, Lin MT et al. (2017). Perfluoroalkyl acids-induced liver steatosis: Effects on 
genes controlling lipid homeostasis. Toxicology 378, 37–52. 10.1016/j.tox.2016.12.007 [PubMed: 
28049043] 

David N, Antignac JP, Roux M. et al. (2023). Associations between perfluoroalkyl substances 
and the severity of non-alcoholic fatty liver disease. Environ Int 180, 108235. 10.1016/
j.envint.2023.108235 [PubMed: 37776622] 

Davidsen N, Rosenmai AK, Lauschke K. et al. (2021). Developmental effects of PFOS, PFOA and 
GenX in a 3D human induced pluripotent stem cell differentiation model. Chemosphere 279, 
130624. 10.1016/j.chemosphere.2021.130624 [PubMed: 34134420] 

Davidsen N, Ramhoj L, Kugathas I. et al. (2022). PFOS disrupts key developmental pathways during 
hiPSC-derived cardiomyocyte differentiation in vitro. Toxicol In Vitro 85, 105475. 10.1016/
j.tiv.2022.105475 [PubMed: 36116746] 

Dawson DE, Lau C, Pradeep P. et al. (2023). A Machine Learning Model to Estimate Toxicokinetic 
Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in Multiple Species. Toxics 11, 
10.3390/toxics11020098

Dobin A, Davis CA, Schlesinger F. et al. (2013). STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29, 15–21. 10.1093/bioinformatics/bts635 [PubMed: 23104886] 

ECHA (2023). Per- and polyfluoroalkyl substances (PFAS). https://echa.europa.eu/hot-topics/
perfluoroalkyl-chemicals-pfas, Acessed on: July 11

Fang H, Knezevic B, Burnham KL et al. (2016). XGR software for enhanced interpretation of genomic 
summary data, illustrated by application to immunological traits. Genome Med 8, 129. 10.1186/
s13073-016-0384-y [PubMed: 27964755] 

Doris Tsai et al. Page 21

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas
https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas


Farmahin R, Williams A, Kuo B. et al. (2017). Recommended approaches in the application of 
toxicogenomics to derive points of departure for chemical risk assessment. Arch Toxicol 91, 2045–
2065. 10.1007/s00204-016-1886-5 [PubMed: 27928627] 

Farr S. and Dunn RT (1999). Concise review: gene expression applied to toxicology. Toxicol.Sci 50, 
1–9. [PubMed: 10445747] 

Fenton SE, Ducatman A, Boobis A. et al. (2021). Per- and Polyfluoroalkyl Substance Toxicity and 
Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. 
Environ Toxicol Chem 40, 606–630. 10.1002/etc.4890 [PubMed: 33017053] 

Gomis MI, Vestergren R, Borg D. et al. (2018). Comparing the toxic potency in vivo of 
long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int 113, 1–9. 10.1016/
j.envint.2018.01.011 [PubMed: 29421396] 

Grimm FA, Iwata Y, Sirenko O. et al. (2015). High-Content Assay Multiplexing for Toxicity Screening 
in Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Hepatocytes. Assay Drug Dev 
Technol 13, 529–546. 10.1089/adt.2015.659 [PubMed: 26539751] 

Grimm FA, Iwata Y, Sirenko O. et al. (2016). A chemical-biological similarity-based grouping of 
complex substances as a prototype approach for evaluating chemical alternatives. Green Chem 18, 
4407–4419. 10.1039/c6gc01147k [PubMed: 28035192] 

Grimm FA, Blanchette A, House JS et al. (2018). A human population-based organotypic in vitro 
model for cardiotoxicity screening. ALTEX 35, 441–452. 10.14573/altex.1805301 [PubMed: 
29999168] 

Harrill JA, Everett LJ, Haggard DE et al. (2021). High-Throughput Transcriptomics Platform for 
Screening Environmental Chemicals. Toxicol Sci 181, 68–89. 10.1093/toxsci/kfab009 [PubMed: 
33538836] 

Hickey NJ, Crump D, Jones SP et al. (2009). Effects of 18 perfluoroalkyl compounds on mRNA 
expression in chicken embryo hepatocyte cultures. Toxicol Sci 111, 311–320. 10.1093/toxsci/
kfp160 [PubMed: 19617454] 

Ho SH, Soh SXH, Wang MX et al. (2022). Perfluoroalkyl substances and lipid concentrations in the 
blood: A systematic review of epidemiological studies. Sci Total Environ 850, 158036. 10.1016/
j.scitotenv.2022.158036 [PubMed: 35973530] 

Houck KA, Patlewicz G, Richard AM et al. (2021). Bioactivity profiling of per- and polyfluoroalkyl 
substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology 
457, 152789. 10.1016/j.tox.2021.152789 [PubMed: 33887376] 

Houck KA, Friedman KP, Feshuk M. et al. (2023). Evaluation of 147 perfluoroalkyl substances for 
immunotoxic and other (patho)physiological activities through phenotypic screening of human 
primary cells. ALTEX 40, 248–270. 10.14573/altex.2203041 [PubMed: 36129398] 

House JS, Grimm FA, Jima DD et al. (2017). A Pipeline for High-Throughput Concentration Response 
Modeling of Gene Expression for Toxicogenomics. Front Genet 8, 168. 10.3389/fgene.2017.00168 
[PubMed: 29163636] 

House JS, Grimm FA, Klaren WD et al. (2021). Grouping of UVCB substances with new approach 
methodologies (NAMs) data. ALTEX 38, 123–137. 10.14573/altex.2006262 [PubMed: 33086383] 

House JS, Grimm FA, Klaren WD et al. (2022). Grouping of UVCB substances with dose-response 
transcriptomics data from human cell-based assays. ALTEX 39, 388–404. 10.14573/altex.2107051 
[PubMed: 35288757] 

Hudson NJ, Dalrymple BP and Reverter A. (2012). Beyond differential expression: the quest for causal 
mutations and effector molecules. BMC Genomics 13, 356. 10.1186/1471-2164-13-356 [PubMed: 
22849396] 

Jassal B, Matthews L, Viteri G. et al. (2020). The reactome pathway knowledgebase. Nucleic Acids 
Res 48, D498–D503. 10.1093/nar/gkz1031 [PubMed: 31691815] 

Johnson KJ, Auerbach SS and Costa E. (2020). A Rat Liver Transcriptomic Point of Departure 
Predicts a Prospective Liver or Non-liver Apical Point of Departure. Toxicol Sci 176, 86–102. 
10.1093/toxsci/kfaa062 [PubMed: 32384157] 

Johnson KJ, Auerbach SS, Stevens T. et al. (2022). A Transformative Vision for an Omics-Based 
Regulatory Chemical Testing Paradigm. Toxicol Sci 190, 127–132. 10.1093/toxsci/kfac097 
[PubMed: 36165699] 

Doris Tsai et al. Page 22

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Khatri P, Sirota M. and Butte AJ (2012). Ten years of pathway analysis: current approaches and 
outstanding challenges. PLoS Comput Biol 8, e1002375. 10.1371/journal.pcbi.1002375

Kreutz A, Clifton MS, Henderson WM et al. (2023). Category-Based Toxicokinetic Evaluations of 
Data-Poor Per- and Polyfluoroalkyl Substances (PFAS) using Gas Chromatography Coupled with 
Mass Spectrometry. Toxics 11, 463. 10.3390/toxics11050463 [PubMed: 37235277] 

LaRocca J, Johnson KJ, LeBaron MJ et al. (2017). The interface of epigenetics and toxicology in 
product safety assessment. Current Opinion in Toxicology 6, 87–92. 10.1016/j.cotox.2017.11.004

Lind L, Araujo JA, Barchowsky A. et al. (2021). Consensus on the Key Characteristics of 
Cardiovascular Toxicants. (submitted)

Louisse J, Fragki S, Rijkers D. et al. (2023). Determination of in vitro hepatotoxic potencies of a series 
of perfluoroalkyl substances (PFASs) based on gene expression changes in HepaRG liver cells. 
Arch Toxicol 97, 1113–1131. 10.1007/s00204-023-03450-2 [PubMed: 36864359] 

Love MI, Huber W. and Anders S. (2014). Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome Biol 15, 550. 10.1186/s13059-014-0550-8 [PubMed: 
25516281] 

Marques E, Pfohl M, Wei W. et al. (2022). Replacement per- and polyfluoroalkyl substances (PFAS) 
are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary 
human hepatocytes. Toxicol Appl Pharmacol 442, 115991. 10.1016/j.taap.2022.115991 [PubMed: 
35337807] 

Massachusetts Government (2020). Massachusetts PFAS Drinking Water Standard (MCL). https://
www.mass.gov/lists/massachusetts-pfas-drinking-water-standard-mcl, Acessed on: July 4th 2023.

Meneguzzi A, Fava C, Castelli M. et al. (2021). Exposure to Perfluoroalkyl Chemicals 
and Cardiovascular Disease: Experimental and Epidemiological Evidence. Front Endocrinol 
(Lausanne) 12, 706352. 10.3389/fendo.2021.706352 [PubMed: 34305819] 

Menger F, Pohl J, Ahrens L. et al. (2020). Behavioural effects and bioconcentration of per- and 
polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 245, 
125573. 10.1016/j.chemosphere.2019.125573 [PubMed: 31877453] 

Naile JE, Wiseman S, Bachtold K. et al. (2012). Transcriptional effects of perfluorinated compounds 
in rat hepatoma cells. Chemosphere 86, 270–277. 10.1016/j.chemosphere.2011.09.044 [PubMed: 
22071372] 

National Academies of Sciences Engineering and Medicine (2022). Guidance on 
PFAS Exposure, Testing, and Clinical Follow-Up. Washington, DC: The National 
Academies Press. https://nap.nationalacademies.org/catalog/26156/guidance-on-pfas-exposure-
testing-and-clinical-follow-up doi:10.17226/26156

National Toxicology Program (2018). NTP Research Report on National Toxicology 
Program Approach to Genomic Dose-Response Modeling: Research Report 5. https://
www.ncbi.nlm.nih.gov/pubmed/30321009 10.22427/NTP-RR-5, Acessed on:

National Toxicology Program (2019a). Toxicity studies of perfluoroalkyl sulfonates administered by 
gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats (revised). Toxic Rep Ser 10.22427/
NTP-TOX-96

National Toxicology Program (2019b). Toxicity studies of perfluoroalkyl carboxylates administered 
by gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats (revised). Toxic Rep Ser 10.22427/
NTP-TOX-97

Nyffeler J, Willis C, Harris FR et al. (2022). Combining phenotypic profiling and targeted RNA-Seq 
reveals linkages between transcriptional perturbations and chemical effects on cell morphology: 
Retinoic acid as an example. Toxicol Appl Pharmacol 444, 116032. 10.1016/j.taap.2022.116032 
[PubMed: 35483669] 

Environment Directorate, ORGANISATION FOR ECONOMIC COOPERATION AND 
DEVELOPMENT (2018). Toward a New Comprehensive Global Database of Per-and 
Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of Per 
and Polyfluoroalkyl Substances (PFASs). Acessed on: July 4th 2023.th

Patlewicz G, Richard AM, Williams AJ et al. (2019). A Chemical Category-Based Prioritization 
Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity 

Doris Tsai et al. Page 23

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.mass.gov/lists/massachusetts-pfas-drinking-water-standard-mcl
https://www.mass.gov/lists/massachusetts-pfas-drinking-water-standard-mcl
https://nap.nationalacademies.org/catalog/26156/guidance-on-pfas-exposure-testing-and-clinical-follow-up
https://nap.nationalacademies.org/catalog/26156/guidance-on-pfas-exposure-testing-and-clinical-follow-up
https://www.ncbi.nlm.nih.gov/pubmed/30321009
https://www.ncbi.nlm.nih.gov/pubmed/30321009


and Toxicokinetic Testing. Environ Health Perspect 127, 14501. 10.1289/EHP4555 [PubMed: 
30632786] 

Patlewicz G, Richard AM, Williams AJ et al. (2022). Towards reproducible structure-based chemical 
categories for PFAS to inform and evaluate toxicity and toxicokinetic testing. Comput Toxicol 24, 
100250. 10.1016/j.comtox.2022.100250

Paul Friedman K, Gagne M, Loo LH et al. (2020). Utility of In Vitro Bioactivity as a Lower Bound 
Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicol Sci 173, 
202–225. 10.1093/toxsci/kfz201 [PubMed: 31532525] 

Pearce RG, Setzer RW, Strope CL et al. (2017). httk: R Package for High-Throughput Toxicokinetics. J 
Stat Softw 79, 1–26. 10.18637/jss.v079.i04 [PubMed: 30220889] 

Phillips JR, Svoboda DL, Tandon A. et al. (2019). BMDExpress 2: enhanced transcriptomic 
dose-response analysis workflow. Bioinformatics 35, 1780–1782. 10.1093/bioinformatics/bty878 
[PubMed: 30329029] 

Qi Q, Niture S, Gadi S. et al. (2023). Per- and polyfluoroalkyl substances activate UPR pathway, 
induce steatosis and fibrosis in liver cells. Environ Toxicol 38, 225–242. 10.1002/tox.23680 
[PubMed: 36251517] 

Ramaiahgari SC, Auerbach SS, Saddler TO et al. (2019). The Power of Resolution: Contextualized 
Understanding of Biological Responses to Liver Injury Chemicals Using High-throughput 
Transcriptomics and Benchmark Concentration Modeling. Toxicol Sci 169, 553–566. 10.1093/
toxsci/kfz065 [PubMed: 30850835] 

Reardon AJF, Rowan-Carroll A, Ferguson SS et al. (2021). Potency Ranking of Per- and 
Polyfluoroalkyl Substances Using High-Throughput Transcriptomic Analysis of Human Liver 
Spheroids. Toxicol Sci 184, 154–169. 10.1093/toxsci/kfab102 [PubMed: 34453843] 

Reardon AJF, Farmahin R, Williams A. et al. (2023). From vision toward best practices: Evaluating 
in vitro transcriptomic points of departure for application in risk assessment using a uniform 
workflow. Front Toxicol 5, 1194895. 10.3389/ftox.2023.1194895 [PubMed: 37288009] 

Ring CL, Arnot JA, Bennett DH et al. (2019). Consensus Modeling of Median Chemical Intake for the 
U.S. Population Based on Predictions of Exposure Pathways. Environ Sci Technol 53, 719–732. 
10.1021/acs.est.8b04056 [PubMed: 30516957] 

Robarts DR, Venneman KK, Gunewardena S. et al. (2022). GenX induces fibroinflammatory gene 
expression in primary human hepatocytes. Toxicology 477, 153259. 10.1016/j.tox.2022.153259 
[PubMed: 35850385] 

Rowan-Carroll A, Reardon A, Leingartner K. et al. (2021). High-Throughput Transcriptomic Analysis 
of Human Primary Hepatocyte Spheroids Exposed to Per- and Polyfluoroalkyl Substances as a 
Platform for Relative Potency Characterization. Toxicol Sci 181, 199–214. 10.1093/toxsci/kfab039 
[PubMed: 33772556] 

Rusyn I, Arzuaga X, Cattley RC et al. (2021). Key Characteristics of Human Hepatotoxicants as 
a Basis for Identification and Characterization of the Causes of Liver Toxicity. Hepatology 74, 
3486–3496. 10.1002/hep.31999 [PubMed: 34105804] 

Schillemans T, Donat-Vargas C. and Akesson A. (2023). Per- and polyfluoroalkyl substances and 
cardiometabolic diseases: a review. Basic Clin Pharmacol Toxicol 10.1111/bcpt.13949

Sha B, Schymanski EL, Ruttkies C. et al. (2019). Exploring open cheminformatics approaches for 
categorizing per- and polyfluoroalkyl substances (PFASs). Environ Sci Process Impacts 21, 1835–
1851. 10.1039/c9em00321e [PubMed: 31576380] 

Sipes NS, Wambaugh JF, Pearce R. et al. (2017). An Intuitive Approach for Predicting Potential 
Human Health Risk with the Tox21 10k Library. Environ Sci Technol 51, 10786–10796. 10.1021/
acs.est.7b00650 [PubMed: 28809115] 

Sirenko O, Cromwell EF, Crittenden C. et al. (2013). Assessment of beating parameters in human 
induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity. Toxicol 
Appl Pharmacol 273, 500–507. 10.1016/j.taap.2013.09.017 [PubMed: 24095675] 

Sirenko O, Hesley J, Rusyn I. et al. (2014). High-content assays for hepatotoxicity using induced 
pluripotent stem cell-derived cells. Assay Drug Dev Technol 12, 43–54. 10.1089/adt.2013.520 
[PubMed: 24229356] 

Doris Tsai et al. Page 24

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sirenko O, Grimm FA, Ryan KR et al. (2017). In vitro cardiotoxicity assessment of environmental 
chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicol Appl 
Pharmacol 322, 60–74. 10.1016/j.taap.2017.02.020 [PubMed: 28259702] 

Smeltz M, Wambaugh JF and Wetmore BA (2023). Plasma Protein Binding Evaluations of Per- and 
Polyfluoroalkyl Substances for Category-Based Toxicokinetic Assessment. Chem Res Toxicol 36, 
870–881. 10.1021/acs.chemrestox.3c00003 [PubMed: 37184865] 

Solan ME and Lavado R. (2023). Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on 
human cytochrome P450 (CYP450) enzymes and human hepatocytes: An in vitro study. Curr Res 
Toxicol 5, 100116. 10.1016/j.crtox.2023.100116 [PubMed: 37575337] 

Soldatow VY, Lecluyse EL, Griffith LG et al. (2013). In vitro models for liver toxicity testing. Toxicol 
Res (Camb) 2, 23–39. 10.1039/C2TX20051A [PubMed: 23495363] 

Subramanian A, Tamayo P, Mootha VK et al. (2005). Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 
15545–15550. 10.1073/pnas.0506580102 [PubMed: 16199517] 

Tang LL, Wang JD, Xu TT et al. (2017). Mitochondrial toxicity of perfluorooctane sulfonate 
in mouse embryonic stem cell-derived cardiomyocytes. Toxicology 382, 108–116. 10.1016/
j.tox.2017.03.011 [PubMed: 28288859] 

Thomas RS, Clewell HJ 3rd, Allen BC et al. (2011). Application of transcriptional benchmark dose 
values in quantitative cancer and noncancer risk assessment. Toxicol Sci 120, 194–205. 10.1093/
toxsci/kfq355 [PubMed: 21097997] 

Thomas RS, Wesselkamper SC, Wang NC et al. (2013). Temporal concordance between apical 
and transcriptional points of departure for chemical risk assessment. Toxicol Sci 134, 180–194. 
10.1093/toxsci/kft094 [PubMed: 23596260] 

Tibshirani RJ and Efron B. (2002). Pre-validation and inference in microarrays. Stat Appl Genet Mol 
Biol 1, Article1.

Tsai HD, House JS, Wright FA et al. (2023). A tiered testing strategy based on in vitro phenotypic and 
transcriptomic data for selecting representative petroleum UVCBs for toxicity evaluation in vivo. 
Toxicol Sci 193, 219–233. 10.1093/toxsci/kfad041 [PubMed: 37079747] 

US Environmental Protection Agency (2021). National PFAS Testing Strategy: Identification of 
Candidate Per- and Polyfluoroalkyl Substances (PFAS) for Testing. https://www.epa.gov/system/
files/documents/2021-10/pfas-natl-test-strategy.pdf Acessed on: July 4th 2023.th

US Environmental Protection Agency (2023). Standard Methods for Development of EPA 
Transcriptomic Assessment Products (ETAPs): External Review Draft. https://www.epa.gov/
system/files/documents/2023-06/
ETAP%20Standard%20Methods%20Doc_BOSC%20Report_Draft%20Final_5_19_23_508%20Ta
gged.pdf Acessed on: July 4th 2023.th

US EPA (2019). Per, and Polyfluoroalkyl Substances (PFAS) Action Plan. Acessed on: July 4th 2023.

Vinken M, Knapen D, Vergauwen L. et al. (2017). Adverse outcome pathways: a concise introduction 
for toxicologists. Arch Toxicol 91, 3697–3707. 10.1007/s00204-017-2020-z [PubMed: 28660287] 

Wambaugh JF, Setzer RW, Reif DM et al. (2013). High-throughput models for exposure-based 
chemical prioritization in the ExpoCast project. Environ Sci Technol 47, 8479–8488. 10.1021/
es400482g [PubMed: 23758710] 

Wan HT, Zhao YG, Wei X. et al. (2012). PFOS-induced hepatic steatosis, the mechanistic 
actions on beta-oxidation and lipid transport. Biochim Biophys Acta 1820, 1092–1101. 10.1016/
j.bbagen.2012.03.010 [PubMed: 22484034] 

Wang B, Zhang R, Jin F. et al. (2017). Perfluoroalkyl substances and endometriosis-related infertility 
in Chinese women. Environ Int 102, 207–212. 10.1016/j.envint.2017.03.003 [PubMed: 28283302] 

Wetmore BA, Wambaugh JF, Ferguson SS et al. (2012). Integration of dosimetry, exposure, and 
high-throughput screening data in chemical toxicity assessment. Toxicol Sci 125, 157–174. 
10.1093/toxsci/kfr254 [PubMed: 21948869] 

Wetmore BA, Wambaugh JF, Allen B. et al. (2015). Incorporating High-Throughput Exposure 
Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing. 
Toxicol Sci 148, 121–136. 10.1093/toxsci/kfv171 [PubMed: 26251325] 

Doris Tsai et al. Page 25

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.epa.gov/system/files/documents/2021-10/pfas-natl-test-strategy.pdf
https://www.epa.gov/system/files/documents/2021-10/pfas-natl-test-strategy.pdf
https://www.epa.gov/system/files/documents/2023-06/ETAP%20Standard%20Methods%20Doc_BOSC%20Report_Draft%20Final_5_19_23_508%20Tagged.pdf
https://www.epa.gov/system/files/documents/2023-06/ETAP%20Standard%20Methods%20Doc_BOSC%20Report_Draft%20Final_5_19_23_508%20Tagged.pdf
https://www.epa.gov/system/files/documents/2023-06/ETAP%20Standard%20Methods%20Doc_BOSC%20Report_Draft%20Final_5_19_23_508%20Tagged.pdf
https://www.epa.gov/system/files/documents/2023-06/ETAP%20Standard%20Methods%20Doc_BOSC%20Report_Draft%20Final_5_19_23_508%20Tagged.pdf


Wignall JA, Shapiro AJ, Wright FA et al. (2014). Standardizing benchmark dose calculations to 
improve science-based decisions in human health assessments. Environ Health Perspect 122, 
499–505. 10.1289/ehp.1307539 [PubMed: 24569956] 

Williams AJ, Grulke CM, Edwards J. et al. (2017). The CompTox Chemistry Dashboard: a community 
data resource for environmental chemistry. J Cheminform 9, 61. 10.1186/s13321-017-0247-6 
[PubMed: 29185060] 

Woodruff TJ, Rayasam SDG, Axelrad DA et al. (2023). A science-based agenda for health-protective 
chemical assessments and decisions: overview and consensus statement. Environ Health 21, 132. 
10.1186/s12940-022-00930-3 [PubMed: 36635734] 

Yu G. and He QY (2016). ReactomePA: an R/Bioconductor package for reactome pathway analysis 
and visualization. Mol Biosyst 12, 477–479. 10.1039/c5mb00663e [PubMed: 26661513] 

Zhang L, Ren XM, Wan B. et al. (2014). Structure-dependent binding and activation of perfluorinated 
compounds on human peroxisome proliferator-activated receptor gamma. Toxicol Appl 
Pharmacol 279, 275–283. 10.1016/j.taap.2014.06.020 [PubMed: 24998974] 

Zhang YY, Tang LL, Zheng B. et al. (2016). Protein profiles of cardiomyocyte differentiation in 
murine embryonic stem cells exposed to perfluorooctane sulfonate. J Appl Toxicol 36, 726–740. 
10.1002/jat.3207 [PubMed: 26178269] 

Doris Tsai et al. Page 26

ALTEX. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
Overview of the study design and data analyses of the in vitro effects of 26 PFAS of 

iPSC-Hep and iPSC-CM. See abbreviations for PFAS classes in Tab. 1. Other abbreviations: 

DEG, differentially expressed genes; BMD, benchmark dose; CRG, concentration-response 

genes; POD, point of departure (t for transcriptomic and p for phenotypic data); IVIVE, in 

vitro-to-in vivo extrapolation.
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Fig. 2: 
Phenotypic effects of PFAS on iPSC-Hep and iPSC-CM. (A) Representative Ca2+ flux traces 

(90 minutes after treatment) for vehicle (0.5% DMSO), PFBS (100 μM), or PFTiDA (100 

μM) in iPSC-CM. (B) A heatmap illustrating phenotypic points of departure (pPOD) for the 

phenotypes (columns) evaluated in iPSC-Hep (on the left) and iPSC-CM (on the right) for 

each tested PFAS (rows). A darker color indicates a lower POD value. PFAS were grouped 

by chemical structure categories. See Tab. 1 for class and individual chemical abbreviations.
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Fig. 3: 
Principal Component (PC) Analysis of normalized gene expression data from iPSC-Hep 

(top) and iPSC-CM (bottom) treated with PFAS (10 μM). In both panels, a dot represents an 

individual sample, while the colors correspond to different PFAS categories as indicated in 

the legends. See Tab. 1. for class abbreviations.
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Fig. 4: 
Bar plots illustrating the number of concentration responsive genes (CRGs) in iPSC-Hep 

(displayed as blue bars on the left) and iPSC-CM (shown as orange bars on the right) for 

each tested PFAS. The PFAS are ordered based on their respective categories. See Tab. 1 for 

class and individual chemical abbreviations.
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Fig. 5: 
Bar plots displaying the top 50 common genes that exhibited concentration-responsive 

effects, ranked by the number of tested PFAS with significant impact (empirical p-value 

< 0.05, calculated using permutation) in iPSC-Hep (depicted as blue bars on the left) 

and iPSC-CM (illustrated as orange bars on the right. Bars with darker shades represent 

up-regulation and lighter shades represent down-regulation.
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Fig. 6: 
Bar plots presenting the top groups of Reactome pathways enriched in iPSC-Hep (depicted 

as blue bars on the left) and iPSC-CM (shown as orange bars on the right), ranked by the 

number of tested PFAS with significant effects (false discovery q < 0.1). Pathways are color-

coded, with darker shades indicating up-regulated pathways and lighter shades representing 

down-regulated pathways. The pathways showcased in this figure are summarized based 

on shared higher-level categories, capturing overarching hierarchical relationships within 

Reactome pathways. See Supplementary Files 6 and 7 for the full list of enriched pathways 

and their corresponding upper-level groupings.
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Fig. 7: 
Correlations between transcriptomic Point of Departure (tPOD) and the number of 

concentration response genes (CRGs, expressed as a fraction of total genes retained 

after low count removal, as described in Methods) in iPSC-Hep (top) and iPSC-CM 

(bottom) treated with PFAS. Both Pearson (r) and Spearman (rho) correlations, and their 

corresponding p-values are displayed. Each data point represents a distinct PFAS, and the 

colors indicate different categories (as shown in the inset). See Tab. 1 for PFAS class 

abbreviations.
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Fig. 8: 
Comparisons of the points of departure (PODs) derived from phenotypic (pPOD) and 

transcriptomic (tPOD) data, and the calculated bioactivity-to-exposure ratios (BER) based 

on the lowest POD for each tested PFAS. (A) POD comparisons. Box-and-whisker plots 

illustrate the POD values derived from phenotypic data (indicated by solid squares) and 

transcriptomic data (indicated by solid circles) for iPSC-Hep (blue) and iPSC-CM (orange). 

The boxes represent the interquartile range, the horizontal line represents the median value, 

and the whiskers extend to encompass the maximum and minimum values. Values for each 

tested PFAS are shown as individual symbols. (B) A dot plot displaying the BERs calculated 

using the lowest (either pPOD or tPOD) values for each tested PFAS with available in 
vitro-to-in vivo extrapolation data. The solid dots and solid squares correspond to POD 

values from phenotypic and transcriptomic data, respectively. The blue and orange colors 

correspond to iPSC-Hep and iPSC-CM, respectively. The grey lines represent BER at 1 and 

100. PFAS are grouped by their chemical structure-based class. See Tab. 1 for class and 

individual chemical abbreviations.
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Table 1.

PFAS tested in this study.

CASRN Chemical Name Chemical 
Abbreviation Category Category 

Abbreviation

2043-47-2 4:2 Fluorotelomer alcohol 4:2 FTOH
n:2 Fluorotelomer alcohols n:2 FTOH

678-39-7 8:2 Fluorotelomer alcohol 8:2 FTOH

375-73-5 Perfluorobutanesulfonic acid PFBS Perfluoroalkane sulfonic acids/
perfluoroalkane sulfonates PFSA

2806-15-7 Sodium perfluorodecanesulfonate PFDS-Na

39108-34-4 8:2 Fluorotelomer sulfonic acid 8:2 FTS
n:2 Fluorotelomer sulfonic acids n:2 FTSA

27619-97-2 6:2 Fluorotelomer sulfonic acid 6:2 FTS

355-80-6 1H,1H,5H-Perfluoropentanol PFPOH
Alcohols Alcohols

335-99-9 Dodecafluoroheptanol DDFHp

423-54-1 Perfluorooctanamide PFOAM

Perfluoroalkane amide/amines PFAN
13485-61-5 Nonafluoropentanamide PFNAM

41997-13-1 Perfluorohexanesulfonamide PFHxSA

307-31-3 Perfluorooctanamidine PFOAMD

356-02-5 3:3 Fluorotelomer carboxylic acid 3:3 FTCA Fluorotelomer carboxylic acids FTCA

335-67-1 Perfluorooctanoic acid PFOA

Perfluoroalkyl carboxylic acids/ 
perfluoroalkyl carboxylates PFCA

376-06-7 Perfluorotetradecanoic acid PFTeDA

72629-94-8 Perfluorotridecanoic acid PFTiDA

3825-26-1 Ammonium perfluorooctanoate NH4PFOA

335-76-2 Perfluorodecanoic acid PFDA

2058-94-8 Perfluoroundecanoic acid PFUnDA

375-95-1 Perfluorononanoic acid PFNA

1763-28-6 3,3-Bis(trifluoromethyl)-2-propenoic 
acid TFPrOA

375-85-9 Perfluoroheptanoic acid PFHpA

55621-21-1 Perfluoro-3,6-dioxaoctane-1,8-dioic 
acid PFHx2Et2OA

Perfluoroalkyl ether carboxylic 
acids PFECA377-73-1 Perfluoro-3-methoxypropanoic acid PFMPA

330562-41-9 Perfluoro-3,6,9-trioxatridecanoic acid PFPE-6

863090-89-5 Perfluoro(4-methoxybutanoic) acid PFMOBA
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Table 2.

Cell types used and in vitro readouts collected in this study.

Cell Type Phenotype Exposure Duration Benchmark Response 
for POD Derivation

Human induced pluripotent stem cell-derived hepatocytes 
(iPSC-Hep)

Total Cell Number

48 hrs
1 SD

Mitochondrial Integrity

Mitochondrial Intensity

Cytoplasmic Integrity

Cell Mean Area

Gene Expression See Methods

Human induced pluripotent stem cell-derived cardiomyocytes 
(iPSC-CM)

Total Cell Number

90 mins

10% Change

Positive Chronotropy 5% Change

Negative Chronotropy 5% Change

Asystole 95% Change

QT Prolongation 5% Change

Gene Expression 24 hrs See Methods
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