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Social communication guides decision-making, which is essential for survival. Social
transmission of food preference (STFP) is an ecologically relevant memory paradigm
inwhich an animallearns a desirable food odour from another animal in asocial
context, creating along-term memory"?. How food-preference memory is acquired,
consolidated and stored is unclear. Here we show that the posteromedial nucleus of
the corticalamygdala (COApm) serves as acomputational centre inlong-term STFP
memory consolidation by integrating social and sensory olfactory inputs. Blocking
synaptic signalling by the COApm-based circuit selectively abolished STFP memory
consolidation without impairing memory acquisition, storage or recall. COApm-
mediated STFP memory consolidation depends on synaptic inputs from the
accessory olfactory bulb and on synaptic outputs to the anterior olfactory nucleus.
STFP memory consolidation requires protein synthesis, suggesting a gene-expression
mechanism. Deep single-cell and spatially resolved transcriptomics revealed robust
but distinct gene-expression signatures induced by STFP memory formationin the
COApm that are consistent with synapse restructuring. Our data thus define a neural
circuit for the consolidation of a socially communicated long-term memory, thereby
mechanistically distinguishing protein-synthesis-dependent memory consolidation

from memory acquisition, storage or retrieval.

Duringsocial interactions, animals transmitinformation such as fear,
pain and food preferences through sensory and behavioural cues' .
Social transmission of food preference (STFP) serves to convey infor-
mation about food safety between social conspecifics'?, creating
along-lasting food-odour memory (STFP memory) that overrides
innate food preferences. Although STFP memory formationis known
to involve multiple brain regions®™, it is unclear how the combina-
tion of food odour and social interactioninduces STFP memory. The
specific roles of various brain regions in different stages of STFP
memory formation—memory acquisition, consolidation, storage and
recall—arelargely unknown, as are the underlying circuits. The acces-
sory olfactory bulb (AOB) and main olfactory bulb (MOB) are likely to
mediate social and odour-sensation inputs, respectively, during STFP
training, but how their signals are integrated is unclear. The AOB and
MOB project to distinct downstream brain regions® that engage in
extensive, often reciprocal connections. These connections could
integrate olfactory information from the MOB with social information
from the AOB, but the precise mechanisms involved have not been
studied. Short-term memory is generally thought to be consolidated
into long-term memory in at least two phases: an initial molecular
consolidation phase that involves a protein-synthesis-dependent
mechanism; and a later systems consolidation phase that involves
sleep-dependent interactions between the cortex, amygdala and
hippocampus'®. Which circuits and mechanisms mediate memory

consolidation, however, and whether such circuits and mechanisms
are distinct from those that mediate long-term memory storage and
retrieval, remains unclear.

Here we identify a cortical circuit centred on the posteromedial
nucleus of the cortical amygdala (COApm) that selectively mediates
theearly protein-synthesis-dependent phase of STFP memory consoli-
dationwithoutbeinginvolved in STFP memory acquisition, storage or
retrieval. We show that, in contrast to the ventral hippocampus, which
is required for encoding contextual odour-related information, and
the orbitofrontal cortex (OFC), which is essential for later phases of
STFP memory consolidation and/or retrieval®, the COApm circuit
is exclusively essential for initial STFP memory consolidation, thus
documenting a separable consolidation mechanism for long-term
STFP memory. Moreover, we show that STFP memory consolidation
involves COApm-specific changes in the expression of genes that
encode synaptic proteins, thereby describing the gene-expression
architecture of a defined memory consolidation process in an iden-
tified circuit.

STFP training activates COApm neurons

C57BL/6) or CD1 mice exhibit an innate preference for cocoa- over
cinnamon-flavoured food, whichis reversed by STFP training® (Fig.1a,b
and Extended Data Fig. 1a). Such reversal could not be induced by
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exposing mice to cinnamon odour or cinnamon-scented mouse sur-
rogates, suggesting that the social context of STFP training is essential'®
(Extended Data Fig. 1b,c). STFP memory lasts for months, independ-
ent of whether itis tested in asingle trial after a prolonged interval or
repeatedly in weekly trials" (Extended Data Fig. 1d,e). Thus, STFP is
an ecologically relevant one-trial learning paradigm that produces
along-lasting appetitive memory of socially communicated infor-
mation. Here, we used only male mice, because female mice exhibit
oestrous-dependent changes in STFP behaviour?®?* (see Supplemen-
tary Discussion section1).

Givenits social context, we hypothesized that STFP memory acqui-
sition might not involve only the MOB, which senses odours, but also
the AOB, which senses social pheromone signals®. The AOB is recipro-
cally connected to the COApm®*?, an enigmatic three-layered cortical
nucleus that is implicated in suppressing male mating when a female
mouse is unhealthy*. Retrograde tracing revealed that most layer-3
neurons of the COApm (around 65%) and asmaller percentage of layer-2
neurons (around 17%) extend ipsilateral excitatory projections to the
AOB (Fig. 1c and Extended Data Fig. 1f-0). Optogenetic mapping, in
turn, showed that the AOB-projecting layer-3 neurons of the COApm,
but not the AOB-nonprojecting neurons, also receive monosynaptic
excitatory inputs fromthe AOB (Fig.1d-fand Extended Data Fig. 1p,q).
Inaddition, both AOB-projecting and AOB-nonprojecting layer-2 neu-
rons of the COApmreceive synaptic AOBinputs. Thus, afeedback circuit
connects COApm neurons to the AOB, such that excitation of layer-3
COApm neurons by AOB mitral cells leads to feedback inhibition of

Fig.1|STFPselectively activates neuronsinthe COApm that form
synaptic connections with the AOB. a, Innate food preference (n =15 mice,
P=0.0043, two-tailed Wilcoxon signed-rank test). b, STFP training (n = 11 mice,
t,n=2.464,P=0.0335, two-tailed paired Student’s t-test). Dem., demonstrator.
¢, Retrograde tracing showing that COApm neurons project to the AOB (left,
schematics; middle, representativeimage (scale bar,1 mm); right, percentage
of AOB-projecting neurons in the ipsi-and contralateral COApm (n =3 mice;
F;5=523.7,P=1.6 x10"%; one-way ANOVA with post-hoc Tukey test; statistical
detailsarereportedin Supplementary Table 6). AP, anterior/posterior to
bregma; vHip, ventral hippocampus. d-f, AOB-projecting COApm neurons
receive excitatory inputs from the AOB. d, Schematic of experimental strategy.
e, Sample traces (left) and amplitude (right) of monosynaptic currents
(layer2(L2):tdT",n=17,tdT,n=13;layer 3 (L3): tdT",n=15,tdT,n =20, cells;
P=4.1x10" Kruskal-Wallis with post-hoc two-stage linear step-up test,
adjusted Pvalue). PSCs, postsynaptic currents. f, Optogenetic COApm current
inhibition by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), D-(-)-2-amino-
5-phosphonopentanoic acid (APV) and picrotoxin (PTX) (n=9 cells, for PTX +
CNQX+APVversusPTX, P=0.0039, two-tailed Wilcoxon signed-rank test).
g-j, AOB-projecting COApm neurons are selectively activated during long-
term STFP memory consolidation. g, Schematic of experimental strategy
forlabelling STFP-training-activated COApm neurons using FOS expression.
i.p., intraperitoneal; TAM, tamoxifen. h, Representative COApm images

(red, TRAPed cells; green, retrogradely labelled COApm-AOB projection
neurons).Scalebar, 200 pm. i,j, Quantification of activated ‘TRAPed’ cell
densitiesinlayers2 (i) or 3 (j) of allimages acquired (left, all neurons; right,
AOB-projecting and AOB-nonprojecting neurons) (g-j: homecagen=3,
conspecificn=4,food choicen=3,STFP failed n=6, STFP success n=5mice;
ileft,F, ,,=3.567,P=0.0291;jleft, F, = 6.114, P= 0.0035, one-way ANOVA
with post-hoc Tukey test; iright, F, ;,= 6.337, P=7.1x10"% jright F, ;,= 8.749,
P=6.9 x107%i,jright, two-way ANOVA with post-hoc Tukey test). All data
aremean ts.e.m. For detailed statistics, see Supplementary Tables 5and 6;
#,*P<0.05; ##,**P<0.01;***P< 0.001.

these mitral cells through recurrent excitation of AOB granule cells, a
notion supported by previous studies®>°.

Given the abundant synaptic connections between the AOB and
the COApm, we asked whether STFP memory formation activates
COApmneurons. We used TRAP2 mice expressing tamoxifen-inducible
Cre-ERT2 from the endogenous Fos gene, which enables tempo-
rally controlled activity-dependent Cre expression®. We crossed
TRAP2 mice with Ai75 reporter mice that express Cre-dependent
tdTomato (tdT) and activated Cre-ERT2 using intraperitoneal
tamoxifen injections after STFP training, a time when memories are
being consolidated. As controls, we used home cage, scented food
only (food choice) or social interactions only (conspecific interac-
tion) conditions combined with tamoxifen injections (Fig. 1g). In
all experiments, we retrogradely labelled AOB-projecting COApm
neurons using AOB infections with EGFP-expressing retro-AAVs
to determine whether activated tdT* neurons project back to the
AOB (Fig.1g).

Successful STFP training, but not STFP training failures, strongly
activated AOB-projecting but not AOB-nonprojecting COApm neu-
ronsinlayers 2 and 3 (Fig. 1h—j and Extended Data Fig. 1Ir-w). Neither
scented food alone nor social interactions alone activated COApm
neurons above home-cage backgrounds. These results suggest that
STFP training, but not olfaction or social interaction alone, stimulates
AOB-COApm projections.

STFP memory formation requires the COApm

Next, we asked whether COApm activity is required for STFP memory
formation. We silenced all synaptic signalling of COApm neurons using
AAVs expressing tetanus toxin light chain (TeNT), which blocks neu-
rotransmitter release by cleaving synaptobrevins®*3*, TeNT-induced
silencing of the COApm before STFP training completely abolished
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long-term STFP memory measured three weeks after training, but
had no significant effect on recent STFP memories measured on
the day of training (Fig. 2a and Extended Data Fig. 2a). Notably,
TeNT-induced silencing of the COApm one day after STFP training
also abolished long-term STFP memory measured three weeks after
training, independent of whether or not recent STFP memories were
tested onthe day of STFP training (Fig. 2b and Extended Data Fig. 2b,c).
TeNT-induced silencing of the COApm did not alter body weights, food
consumption or behavioural parameters such as social interactions,
open field activity or fear conditioning. Silencing the COApm also did
notimpair olfaction as monitored by odorant sensitivity, odour prefer-
ence, innate food preference, buried food tests or a non-associative
olfactory memory task (Extended Data Fig. 2d-m and Supplementary
Table 1). Moreover, measurements of olfactory responses using FOS
staining showed that the COApm was not activated by aversive or
attractive odours alone, in contrast to the adjacent posterolateral
corticalamygdala (COApl), whichis known to sense odours® (Extended
Data Fig. 2n). Together, these results reveal that the COApm is not
required for olfaction, social interactions, olfactory learning or STFP
memory acquisition, but is selectively essential for long-term STFP
memory formation.

Because a subset of COApm neurons are connected to, and acti-
vated by, AOB neurons (Fig. 1), we asked whether AOB inputs into the
COApm govern STFP memory formation. We first investigated the
role of AOB-projecting versus AOB-nonprojecting COApm neurons in
long-term STFP memory formation using selective silencing of these
COApm neuron subsets. We injected retro-AAVs expressing Cre into
the AOB and AAVs expressing Cre-inducible (‘Cre-on’) or Cre-blockable
(‘Cre-off’) TeNT into the COApm, thereby selectively inactivat-
ing AOB-projecting or AOB-nonprojecting neurons, respectively.
Long-term STFP memory tests showed that only AOB-projecting but
not AOB-nonprojecting COApm neurons were required for long-term
STFP memory formation (Fig. 2c,d and Extended DataFig. 20). Electro-
physiological measurements validated the effectiveness of the Cre-off
TeNT-induced silencing of AOB-nonprojecting neurons (Extended
Data Fig. 2p). Furthermore, we confirmed with a different odour
pair—cumin versus thyme—that AOB-projecting COApm neurons are
required for long-term STFP memory formation, demonstrating that
the COApm acts in long-term STFP memory formation independent
of odour (Extended Data Fig. 2q-s). Moreover, selective inactivation
of COApm neuronsthat are activated during long-term STFP memory
formation by stereotactically injecting TRAP2 mice with AAVs encod-
ing Cre-dependent TeNT and inducing Cre-ERT2 after successful
STFP training using tamoxifen also ablated long-term STFP memory
(Extended Data Fig. 2t). Thus, only COApm neurons that are synapti-
cally connected with the AOB are required for long-term STFP memory
formation.

We next investigated whether the AOB input into the COApm is
required for long-term STFP memory formation. We addressed this
questionbyinjectingthe COApmwithretro-AAVs expressing Creand the
AOB with AAVs expressing Cre-on TeNT. Silencing COApm-projecting
AOB neurons with this approach impaired long-term STFP memory
formation when instituted before STFP training, but not when per-
formed after training (Fig. 2e,fand Extended Data Fig. 2u,v)—different
from COApm neurons, the silencing of which after STFP training still
blocked long-term STFP memory formation (Fig. 2b). Thus, the AOB-
COApm projectionis essential for long-term STFP memory formation
only during memory acquisition, whereas the COApmiitselfis required
after memory acquisition.

Several brainregions have beenimplicated in STFP memory forma-
tion, including the OFC®'°", medial prefrontal cortex (mPFC)10136-38,
ventral hippocampus®'°2¥3*1 and basolateral amygdala (BLA)***.
TeNT silencing of these brain regions one day after STFP train-
ing revealed that, besides the COApm, only the OFC is required for
long-term STFP memory, whereas the ventral hippocampus, BLA and
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Fig.2|Silencing of COApm or OFC neurons, but not of BLA, ventral
hippocampus or mPFCneurons, blocks long-term STFP memory formation.
Allpanels analyse the effects of the indicated manipulations on STFP memory
formation, with a-fdepicting the experimental strategy on the leftand
summary graphsontherightand g-jfollowing thesamestrategyasb.a,b, TeNT
silencing of the COApm three weeks before (a) or one day after (b) training
(a,GFP,n=22,TeNT, n=15; middle, P=0.0012; right, P=5.4 x10"5;b, GFP,n =10,
TeNT,n=8; middle, t,=4.374,P=0.0033; right, t,, =4.626, P=2.8 x10™).

c,d, TeNT silencing of AOB-projecting (c), but not of AOB-nonprojecting (d)
COApm neurons impairs long-term STFP memory (¢, GFP,n=11, TeNT,n =15,
middle, P=4.3x107 right, P=0.0090;d, GFP,n =15, TeNT,n=11).e,f, TeNT
silencing of AOB neurons projecting to the COApm instituted three weeks
before (e) or1day after (f) STFP training (e, GFP,n=10, TeNT,n=9; e middle,
P=0.0195; eright, t,,=3.447,P=0.0031;f, GFP,n=9; TeNT,n=7).g-j, TeNT
silencing one day after STFP trainingin the OFC (g), ventral hippocampus (h),
BLA (i) or mPFC (j) (g, GFPn=7,TeNT n=8, left, t,=4.774, P=0.0020, right,
P=0.0012; h,GFPn=14,TeNTn=10;i,GFPn=9,TeNTn=8;j, GFPn=10, TeNT
n=_8).Dataaremean + s.e.m. Statistics: two-tailed paired Student’s t-test: b,f.g,i
(middle-TeNT); two-tailed unpaired Student’s t-test: b,e,i (right); two-tailed
Wilcoxonsigned-ranktest:a,c,d,e,h,j(middle), b,f,i (middle-GFP); two-sided
Mann-Whitney test: a,c,d,f,g,h,j (right), with #,*P < 0.05; ##, **P < 0.01; ###,
***p<(0.001.For detailed statistics, see Supplementary Tables Sand 6.

mPFC are not (Fig. 2g-j and Extended Data Fig. 2w). Consistent with

previous studies®o!!

,silencing the OFC seven days after STFP training

also impaired long-term STFP memory (Extended Data Fig. 2x).



The COApm consolidates STFP memory

We next sought to understand whether the COApm’s essential role
in long-term STFP memory formation operates in memory consoli-
dation, storage or retrieval. To address this question, we inhibited
AOB-projecting COApm neurons in a temporally controlled manner
using chemogenetics with hM4Di, an inhibitory receptor activated
by clozapine N-oxide (CNO)** (Fig. 3a-c and Extended Data Fig. 3a).
Chemogenetic suppression of COApm neurons for three weeks after
STFP training blocked long-term STFP memory (Fig. 3d and Extended
DataFig.3b). However, chemogenetic suppression of COApm neurons
applied during the STFP memory test at the end of week 3 or during
the last week before the three-week STFP memory test did not impair
long-term STFP memory (Fig. 3e,fand Extended Data Fig. 3b). By con-
trast, suppressing COApm neuron activity during the first week after
STFP training also potently blocked long-term STFP memory (Fig. 3g
and Extended Data Fig. 3b). Chemogenetic suppression of COApm
neurons did notimpair social behaviours (Extended DataFig.3c). CNO
administration to mice expressing only GFP or saline administration
to mice expressing hM4Di had no effect on STFP memory (Fig. 3 and
Extended Data Fig. 3b). Moreover, chemogenetic suppression of the
COApm after STFP training with the cumin versus thyme food pair
also blocked long-term STFP memory, confirming a general role of
the COApm in memory consolidation independent of the odour pair
(Extended DataFig.3d). Thus, activity of COApm neuronsis selectively
required for long-term STFP memory formation during the first week
after STFP training, which suggests that the COApm has arole only in
memory consolidation and not in memory storage or retrieval.

The robust impairment of long-term STFP memory by a one-week
suppression of COApm neuron activity after STFP training (Fig. 3g)
raises the question of whether the COApm might, after all, be involved
in STFP memory acquisition, which we might have missed when we
routinely tested STFP memory acquisition immediately after STFP
training. We therefore examined the effect of a 24-h or 48-h chemo-
genetic suppression of COApm neurons on STFP memory acquisition,
but observed no effect on STFP memories (Extended DataFig. 3e,f). By
contrast, chemogeneticsilencing of the ventral hippocampusfor48 h
after STFP training significantly impaired STFP memory acquisition
(Extended Data Fig. 3g). Thus, the COApm is indeed dispensable for
STFP memory acquisition, whereas the ventral hippocampus is essen-
tial, consistent with FOS expression data'® ™2, Furthermore, suppression
of the activity of COApm terminals in the AOB after STFP training did
notimpair long-term STFP memory (Extended Data Fig. 3h). Consistent
with the TeNT-silencing experiments of the AOB (Fig. 2f and Extended
DataFig.2v), AOB-COApm connections do not contribute to long-term
memory formation after memory acquisition.

Finally, we asked whether memory consolidation by the COApm
affects its electrophysiological properties. We injected the AOB of
mice with retro-AAVs expressing tdTomato before STFP training or
control treatments (Extended DataFig. 3i). Subsequent current-clamp
recordings fromlayer-3 AOB-projecting COApm neuronsin acuteslices
showed that neurons from mice with successful STFP training, but not
from mice with unsuccessful STFP training or uncued controls, exhib-
itedasignificantincrease inintrinsic excitability at one and three weeks
after STFP training without changes in passive electrical properties or
action potential parameters (Extended Data Fig. 3j-r). Parallel optoge-
netic measurements of synaptic responses mediated by AOB-COApm
projections did not reveal changes in the AMPA/NMDA ratio or in the
I/Vrelationship of AMPA-mediated excitatory postsynaptic currents
(EPSCs) (Extended Data Fig. 3s).

Spatial transcriptomics of STFP memory

Long-term memory formation, but not memory acquisition, requires
denovo transcription of DNA and protein synthesis*. Consistent with
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Fig.3|AOB-projecting COApm neurons mediate long-term STFP memory
consolidation through proteinsynthesis. a-c, Experimental chemogenetics
approach forsilencing of COApm AOB-projecting neurons. a, Injection
strategy. b, Timeline (letters refer to panels d-g). ¢, Representative sagittal
AOB (left) and coronal (right) brain sections (red, Cre-tdTomato expressed via
retro-AAVsinjectedinto the AOB; green, DIO-hM4Di-GFP in the COApm and
transported to AOB axon terminals). AOBgr, AOB granule cells; AOBmi, AOB
mitral cells. Scale bars, 0.5 mm (left); 1 mm (right). d-g, Effect of temporally
controlled chemogenetic suppression of COApm neuron activity. CNO was
administered for the entire three weeks (d), 40 min before test (e), during the
third week (f) or during the first week (g) (d, CNO-GFP, n =12 mice; CNO-
hM4Di, n=9; saline-GFP, n =10; saline-hM4Di, n=7; F; ;,=6.985,P=8.7x107%;
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f, CNO-GFP, n=11; CNO-hM4Di, n = 8; saline-GFP, n =10; saline-hM4Di,n = 8;
g,CNO-GFP,n=10; CNO-hM4Di, n = 8; saline-GFP, n =10; saline-hM4Di,n=7;
F33,=9.772,P=1.1x10"*.h,i, Effect of anisomycin (ANI) administered into
the COApm (h) or OFC (i) immediately (immed.) after STFP training (day O).
Left, experimental design; middle, percentage of cinnamon-flavoured food
eatenonday O and after 3weeks; right, memory retentionindices (h, saline
n=9,ANIn=10, middle, t,=3.888,P=0.0037; right, t;,=3.002, P=0.0080;
i,salinen=9,ANIn=8, middle, P=0.0078, right, t,;=5.486,P= 6.3 x107).
Dataare mean + s.e.m. Statistics: two-tailed paired Student’s t-test: h (middle),
i (middle-saline); two-tailed unpaired Student’s t-test: h,i (right); two-tailed
Wilcoxonssigned-rank test: i (middle-ANI); one-way ANOVA with Tukey
post-hoc test:d,g; Kruskal-Wallis with post-hoc two-stage linear step-up

test: e, f.#,*P < 0.05; ##,**P < 0.01; ###, ***P < 0.001. For detailed statistics,
see Supplementary Tables 5and 6.

sucharequirement, localadministration of the protein-synthesis inhibi-
tor anisomycin*®into the COApm or OFC after STFP training abolished
long-term STFP memory tested three weeks later (Fig. 3h,i). Thus, the
essential roles ofthe COApmand OFCinlong-term STFP memory forma-
tionare protein-synthesis dependent, raising the question of whether
similar or different changes ingene expressioninthe COApmand OFC
are involved. To address this question, we performed single-cell spa-
tially resolved transcriptomics analyses using multiplexed error-robust
fluorescenceinsitu hybridization (MERFISH), comparing the COApm
withthe OFC and the ventral hippocampus, whichwe included because
of the ventral hippocampus’s distinct involvement in STFP memory
acquisition but not long-term memory consolidation (Fig. 4a). As
controls, we used home-cage mice and mice that had been exposed
to cinnamon odour without a social interaction.

Nature | Vol 632 | 8 August 2024 | 369



Article

a f
Subjects Behaviour training Tissue collection 100 m—
coApm: L T yomecage | Collection of Crvostat i cing’ !
" Virus injection . | Home cag:I i fond . 1C°|§gilr?: of Cry(astgt §I|0|ng:
! -2 weeks v @ — = Plain foo 1 / / A
: : Odi 1 : 1 N_Gpr83 N Gad1/Cnr1 %
lour P 1
! ' 130 min N_Crtac1
mCocoa food i ! |
| B = - onTood | ' - (e
‘ STFP 1 ! ' Spatially N_Prox1 N_CRYM 6.7%
(& ) {
: CQ“? _, mCocoa food ! | \. | resolved 0 N.Syt6 N_Lypd1
¢ - eCinnamon food | ! - | transcriptomics 0 : : - /4 15.8%
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L L L :
Home Odour STFP
e cage N_Egri 0 16.1%
N_Sorl1
e N_Gad1/Nacc2
|_Gad1/Nacc:
N_Pixnd1 16.9%
g 20
<
% N_Rora
9 UMAPT N_Gad1/Sst 18.6%
2 0
3
Neuronal marker genes: ®Cnr1 ®Crtac1 Crym ®Egri ®Gpr83 eLypdl ®Nacc2 ®Otof ®Plxnd1 @Prox1 ®Rora ®Sorll ®Sst @Syt6
Cell types: © N_CRYM @ N_Ctrac1 N_Egr1 N_Gad1/Cnr1 N_Gad1/Nacc2 N_Gad1/Sst @ N_Gpr83 N_Lypd1 N_Otof @ N_PIxnd1 @ N_Prox1 N_Rora N_Sorl1 e N_Syt6
g COApm 100 VHip 100 OFC
# %532 ] [ 8 23% L Cell types:
N_Gad1/Cnr1 41% N_Gad1/Cnri S 238 N_Gad1/Crri N_Otof
y N_Gpre3 ¢ 5.5% N_Gpr83 I 5% N_Gpr83 #N_Crtact
. 80 11.8% N! Crtact 80 N_Crtac1 ¥ N_Gad1/Cnr1
N_Crtact b g 16.1% # N_Gad1/Nacc2
N_Prox1  N_CRYM N_Proxt  N-CRYM NProxt £ NCRYM N_Gad1/Sst
N_Lypd1 ¢ N_Lypd1 N_syte - -
60 N_Syt6 60 1 60 N_Egr1
o N_Syt6 14.7%
< 24.4% : N_CRYM
% N_Egrt N_Egr1 u N_Prox1
40 711% 40 N_Egr1 Nis 40 21.1% " N_Gpr83
i N_Sorl1 g N_Sorlt N=Sorlt el ¥ N_Sorl1
; NOtof \ pixnat N_Otof | it N_Gagfilacc2 = N_Pixnd1
N_PIxnd1 N_Gadi/Nacc2 20 N_Gad1/Nacc2 20 41.4% i 20 N_Lypd1
| 28.2% uN_Syt6
N_Rora N_Rora N_Rora N_Rora
N_Gad1/Sst N_Gad1/Sst N_Gad1/Sst
UMAP1 UMAP1 UMAP1
j COApm vHip
h i ® $ & $
S S S S
Enriched Q\o'b& Obo ‘5« & ‘?‘&q@ Ot’o <<Q
Regulatedy, tdT* Regulated 4 taT* Regulated {, STFP Regulated 4 STFP i L;Tp? LyBgL
Pixpd1 150 1 ea{‘jc_t'? d9rops Extl1
> 2 condition Ncor2
kR Vim tdT = Gpg8§ Tbc1d17
The1d17 lafbp6
1004 Kcng\s iched aam? G a’gmg
Cakntc Pcdh1 “Ncam2 e C"’SL; st
Ker M: ag
Hivep2 100 Palm Megf9 Gm37ad Gsn
— ‘ _ . Tpbg! Islr
T » T Snhg11 Minus Kcng3 Cldn11
2] Cah13!  pricg ) Ptprn Cel Baiap3 Mdh2 |
g ¥ Neor2 % Spockt “”" elsr3 /Calb1 Enriched FTOI/Z SM‘?gfg
g Rtndrit g T~ Rinarip,. serincd "7 ptora T 9enes  cacngs e
T 504 Wis1 Firt1 3 ! g \ Rspi /H. > in tdT Sic7a10 Ptdss2
S Pxip1 50 4 Slcasal AP ivep: Lmo. Rgs5
) Pecht?\ Mpumg /61 Zs 10 Tmx1 Nob
Cdknic Baia, Rtn. =7 Zgupy” 2'¢7al0_—Cdrlos Foxp2 Pd
Crym Gm26917 nf111 / ”gy‘%fgg 1 Sosb Dkt Stads
Popirib, Myl4 ) Odrd LM %{”/ ps o Keng3
Vit | Sapcit Gorss _ Daam2| o Popirib —_ DTG0 DT ppr, S Hexb
\ - st, . 1 iy Myl4 Ncam2 Prss23
Meis2 !, Selplg L7 A ><>o Act! Prox1
0 R 4 04 Tbe1d17 ot Sog2Cal g in Lol Nek7 Spock1 Shank1
Kenglot1 Cldn10 Rtndri1 Prke,
T T T T - T T T T T R A
2 - 0 1 105 -2 -1 0 1 2 ndri2 ctr:
Celsr1
log,-transformed FC log,-transformed FC Celsr3 wna
Pixnd1 28, S
Megf9 E .- .
Syngri xpression |

Fig.4|Spatially resolved transcriptomics reveals neuronal composition
and STFP-training-induced changesin gene expressioninthe COApm,
ventralhippocampus and OFC. a, Experimental strategy. For analyses of the
COApm andthe ventral hippocampus, AOB-projecting neurons were labelled
byinjectingthe AOBwith AAV2retro-hSyn-tdTomato two weeks before STFP
training, whereas analyses of the OFC were performed using uninjected wild-
type (WT) mice (n=4 mice per group). b, AOB-projecting (tdT") neuron density
inthe COApm and ventral hippocampus quantified by MERFISH (4 mice per
group; mean £ s.e.m.).c-e, Spatial representations of neuronal markers and
cell-typeidentificationinbrain sections containing the COApmand ventral
hippocampus (c,d) or the OFC (e) (c,e, left, MERFISH fluorescent images
(dark background); right, neuron types (white background); d, top, magnified
COApmimage (fromc); bottom, spatial localization of tdT" neuronsin the

We selected 336 genes (Supplementary Table 2) from single-cell
RNA sequencing (scRNA-seq) data (see below) as custom probes and
measured the spatial representations of neuron types in the three
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COApm).Scalebars,1mm (c); 0.2 mm (d); 0.5 mm (e). f,g, Unbiased clustering
ofall neurons (n=978,574; f) or separately of COApm, ventral hippocampus
and OFC neurons (g) in auniform manifold approximation and projection
(UMAP) format with cell cluster percentages on theright. h,i, Volcano

plots showing DEGs in comparisons of AOB-projecting (tdT") versus AOB-
nonprojecting (tdT) COApm neuronsinthe STFP training group (h) orin
comparisons of AOB-projecting COApm neurons in STFP training versus odour
groups (i) (false discovery rate (FDR) <1x 10™° by the Benjamini-Hochberg
method; fold change (FC) > +0.5).j, Schematic (left) and heat map of enriched
genes (right) detected in excitatory AOB-projecting (tdT') neuronsin the
COApm (left) and ventral hippocampus (right). Genes related to synapse

formationareinbold.

brain regions (Fig. 4b-e). We labelled AOB-projecting neurons in the
COApm (around 50%) and ventral hippocampus (around 18%) by inject-
ing the AOB with retrograde tdTomato, and used wild-type mice for



OFC sections because the OFC does not project to the AOB* (Figs. 1c
and 4b and Extended Data Fig. 4c).

Unbiased clustering of more than 1.6 million cells in all sections
revealed 16 cell types comprising 978,574 neurons and 5 non-neuronal
celltypes (Fig.4fand Extended Data Fig. 4a-d). Cell types were largely
conserved across the three brain regions, with different relative frequen-
cies (Extended DataFig.4d,e). Neurons were subclusteredinto 14 types,
revealing distinct excitatory neuronbut relatively conservedinhibitory
neuron cluster compositions across the three brain regions (Fig. 4g
and Extended Data Fig. 4f). The cluster compositions in the COApm
were similar in the three experimental groups (Extended DataFig. 4g),
suggesting that STFP training does not affect its cellular architecture.

Comparisons of differentially expressed genes (DEGs) in COApm
excitatory neurons that either project (tdT") or do not project (tdT")
to the AOB (both mainly located in clusters N_Otof and N_Crtacl;
Fig. 4g,h and Extended Data Fig. 4h,i) identified significant changes
in STFP-trained mice (Fig. 4h) but not in home-cage (Extended
DataFig. 4j) or odour-only mice (Extended Data Fig. 4k), consistent with
theselective activation of COApm neurons by STFP training (Fig. 1g—j)
and the requirement for protein synthesis in the COApm for long-term
STFP memory consolidation (Fig. 3h). Robust gene-expression changes
were detected in comparisons of tdT" neurons between STFP-trained
and home-cage or odour-only mice (Fig. 4i, Extended Data Fig. 4l and
Supplementary Table 3). Notably, astrocytes also exhibited significant
STFP-specific gene-expression changes, whereas microglia did not
(Extended Data Fig. 4m,n).

We next analysed the changes in gene expressionin the ventral hip-
pocampus, which also projects to the AOB?** (Figs. 1c and Fig. 4b and
Extended Data Fig.4c). Most tdT" neurons in the ventral hippocampus
are Crtacl' neurons located in the ventral CAl subdivision (Extended
DataFig.5a-e). Comparisons of DEGs betweentdT" and tdT” excitatory
neurons withinatraining cohort suggested more extensive changesin
the odour group (Extended Data Fig. 5g) thanin the home-cage or STFP
groups (Extended Data Fig. 5f,h). Moreover, a comparison of DEGs in
tdT' excitatory neuronsacross the three groups uncovered more robust
changesin STFP versus odour thanin STFP versus home cage oringlia
comparisons (Extended Data Fig. 5i-1). Thus, gene-expression changes
inthe ventral hippocampus are induced mainly by odour perception.

Finally, we examined changes in gene expression in the OFC, which
is required for STFP long-term memory formation over a broad time
window®'*!! (Fig. 2g and Extended Data Fig. 2x). DEG computationsin
excitatory and inhibitory neurons between the three behavioural con-
ditions uncovered a trend towards gene-expression changes induced
by odour and maintained by STFP training (Extended Data Fig. 6a-i).
Heat maps of OFC STFP-enriched genes (Extended Data Fig. 6k) and of
COApm STFP-training-induced genesin the OFC (Extended DataFig. 6l)
againrevealed a gene signature dominated by odour exposure instead
of by STFP training. Moreover, unlike the COApm, the OFC did not show
significant gene-expression changesin the MERFISH spatially resolved
transcriptome of astrocytes and microglia (Extended Data Fig. 6j).

The finding that odour- but not STFP-training-induced DEGs
dominate in the ventral hippocampus and OFC indicates that the
STFP-training-induced gene-expression programs probably differ
betweenthe COApm, ventral hippocampus and OFC, as we confirmed
inadirectanalysis (Fig. 4j and Extended Data Figs. 40, 5m-p and 6k,1).
Gene-expression changes after odour stimulation, by contrast, are
more consistent (Extended Data Fig. 5m,0). Overall, these results sug-
gest that gene-expression signatures in the COApm are selectively
activated by STFP training and differ from those of the OFC and ventral
hippocampus, which are often activated by odour stimulation alone.

STFP memory consolidation genes

We next investigated which gene-expression changes in the COApm
inform its unique function in memory consolidation. We applied the

same experimental design that was used in the MERFISH spatially
resolved transcriptomics experiments to full-length scRNA-seq experi-
ments using a Smart-seq2 protocol (Fig. 5a), which enabled an average
sequencing depth of 1.5 million reads per cell.

Unbiased classifications identified 1,694 neurons (Fig. 5b and
Extended Data Fig. 7b) and 1,621 non-neuronal cells in four clusters
(Extended Data Fig. 7c). All cell types were consistently found in
the three experimental groups (Extended Data Fig. 7a,d). Subclus-
tering revealed six neuron clusters (COA1-COA6) comprising glu-
tamatergic (clusters 1, 2 and 4) and GABAergic neurons (clusters 3
and 5) (Fig. 5b,c and Extended Data Fig. 7e,f). Most AOB-projecting
COApm neurons, identified by tdTomato expression, were found in
cluster 1 (Fig. 5c). Clusters 2 and 6 are markedly different from pre-
viously described cortical neurons. Cluster 2 neurons express high
levels of Mroh2a, which encodes an intracellular HEAT domain pro-
tein, and co-express neuronal stem cell markers (Notchl1, Nestin and
Cdk1) with mature neuronal markers (Extended Data Fig. 7g,h). Clus-
ter 6 neurons contain high levels of mRNAs that encode olfactory
receptors (Olfr471, Olfr597 and Olfr606, also known as Or5p5c-psl,
0Or52ab2and Or51114, respectively) and pheromone-binding proteins
(Mup18 and Mup20) (Extended Data Fig. 7f,h), suggesting that they
are related to olfactory information transduction and pheromone
signalling.

Integrated analysis of the transcriptomes of the COApm and the
PFC*8, another cortical area for which deep scRNA-seq data are avail-
able, revealed nine neuronal cell types that only partly overlapped
(Extended DataFig. 7j-r), whereas their glia cell types were nearly iden-
tical (Extended Data Fig. 7i). Thus, the COApm and PFC are notably
different, consistent with their distinct functions (Supplementary
Discussion section 2).

To assess STFP-induced transcriptional changes, we compared
the transcriptomes of cluster 1 COApm neurons that either project
(tdT") ordonot project (tdT") to the AOB (Fig. 5d,e and Extended Data
Fig. 8a-c). In the home cage and odour-only conditions, only a small
number of genes were selectively enriched (Sorli1, Cpne7 and Lamp$5)
orde-enriched (Cdhi3 and Cartpt) intdT" neurons, with no major dif-
ferences between the two conditions (Extended Data Fig. 8a-c). Thus,
odour itselfdid notsignificantly affect COApm transcription. Of note,
STFP traininginduced marked transcriptional changes in tdT* versus
tdT neurons of cluster 1 (Fig. 5d,e), including genes that are related
to synapse formation (for example, Firt1). Pairwise comparisons con-
firmed that STFP training stimulated significantly more transcriptional
changes than did odour stimulation in COApm neurons (Extended
Data Fig. 8e), consistent with the MERFISH spatially resolved tran-
scriptomics results.

To further characterize the STFP-induced DEGs in AOB-projecting
COApm neurons, we identified exclusive DEGs by removing DEGs that
are also present in tdT neurons or in odour and home-cage condi-
tions, resultingin aset of ‘STFP-specific DEGs’ (Fig. 5f and Supplemen-
tary Table 4). Notably, the top 15 most upregulated genes included
a strong enrichment of synaptic cell-adhesion molecules (Celsr3,
Rtn4rll, Rtn4rl2, Plxnd1, Ptprn and Pcdhl) and transcription factors
(Ncor2and Hivep2) (Fig. 5f). The changes in the expression of synaptic
cell-adhesion molecules align well with the MERFISH spatially resolved
transcriptomics findings (Fig. 4 and Extended Data Fig. 40), which
suggests that synapse restructuring is a central component of STFP
memory consolidation.

Besides neurons, astrocytes exhibited substantial gene-expression
changes induced by STFP memory formation but not by odour stimu-
lation (Extended Data Fig. 8f), suggesting that astrocytes are actively
involved in STFP memory consolidation, consistent with the MERFISH
data. Thus, our data corroborate the notion that memory consolidation
does not simply consist of signal integration in neurons but includes
transcriptional remodelling of the overall neuronal state accompanied
by related changes in surrounding glia*®*.
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Fig.5|DeepscRNA-seqreveals that STFP training induces marked changes
ingeneexpressionin COApm neurons. a, Experimental strategy. b, Unbiased
clustering shownin UMAP plots of scRNA-seq transcriptomes of COApm
neurons.c, COApm neuronsubtypes are identified by distinct marker genes,
with expression of tdTomato highly enriched in cluster 1.d, Volcano plots
showing DEGs detected in the STFP-trained mouse group in comparisons of
AOB-projecting (tdT") and nonprojecting (tdT") excitatory neurons (cluster1)

The COApm-AON circuit consolidates memory

Togaininsightinto how amemory that was consolidated in the COApm
is subsequently computationally processed and stored, we mapped
synapticinputand output connections of the COApmusingretrograde
pseudotyped rabies virus*® and SynaptoTag tools®. We analysed both
AOB-projecting and AOB-nonprojecting COApm neurons (Extended
DataFigs.9 and 10). Consistent with previous reports”?, we found that
COApm neurons formreciprocal connections with olfactory cortices,
the ventral hippocampus and various amygdalar areas (Extended Data
Figs.9and10). Notably, the piriform cortex emerged as a major source
of COApm inputs, supporting the notion that the COApm integrates
contextual olfactory sensory and social cues (Extended Data Fig. 9).
Moreover, the medial nucleus of the anterior olfactory nucleus (AONm),
which is known to contribute to STFP memory formation®, is among
the foremost projection targets of AOB-projecting COApm neurons.
Combining thecircuitand transcriptomics data, we thus hypothesized
that STFP-related social information is transferred from the AOB to the
COApm, where it is integrated with sensory odour information from
the ventral hippocampus and the piriform cortex and then transmitted
viathe AONm to higher-order cortices for memory storage (Fig. 6¢).
To test this hypothesis, we inactivated AONm neurons that receive
COApm inputs by infecting the COApm with AAVI-Cre and the AONm
with AAV-DJs DIO-TeNT or GFP (Fig. 6a). Silencing of AONm neurons
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ofthe COApm (FDR <1x 1072 by the Benjamini-Hochberg method). e, Top
upregulated DEGs (ranked by Pvalue) in AOB-projecting (tdT") neurons.
f,STFP memory-specific DEGs. Left, computation strategy; right, heat map
ofidentified STFP-specific DEGs in the home cage, odour and STFP-training
groups (see Supplementary Table 4 for details). Genes related to synapse
formationareinbold.

after STFP training disrupted long-term STFP memory, indicating that
the AONm is essential for the transmission of memory consolidation
signals from the COApm (Fig. 6a and Extended Data Fig. 10i).

To independently confirm this conclusion, we again used chemo-
genetics (Fig. 6b). We expressed hM4Di in COApm AOB-projecting
neuronsthatalso project tothe AONm. After training, we infused CNO
locally into the AONm via stereotactic manipulations, with GFP and
saline controls (Extended Data Fig. 10j). Inhibiting the COApm output to
the AONm again selectively impaired long-term STFP memory (Fig. 6b
and Extended Data Fig. 10j), validating the conclusion that COApm-
AONm projections communicate STFP memory consolidation. Note
that we found that asimilar experiment for the AOB does not decrease
memory consolidation (Extended Data Fig. 3h), which serves as an
additional control for the AONm manipulations.

Summary

Here we show that STFP memory is rapidly consolidated in a defined
cortical nucleus, the COApm, whose selective role in STFP memory
formation seems to be to mediate protein-synthesis-dependent
computations that synthesize social and olfactory inputs. We pro-
pose that social inputs are transmitted directly from the AOB to the
COApm, whereas olfactory inputs are transmitted indirectly from the
MOB via the piriform cortex and ventral hippocampus. We show that
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details of statistics, see Supplementary Tables 5and 6. #,*P< 0.05,**P< 0.01.

approximately half of COApm neurons form synaptic connections with
the AOB and AON that are selectively essential for memory consolida-
tion but not for short-term memory acquisition or long-term memory
storage and recall. By contrast, the AOB is only required during STFP
training, whereas the AON has multiple roles in STFP. The selective
function of COApm neurons in long-term STFP memory consolida-
tiondiffers from that of other brainregions tested, and involves major
changes in gene expression as analysed by deep scRNA-seq and spa-
tially resolved transcriptomics. These gene-expression changes are
unique to the COApm when compared to the ventral hippocampus
and OFC, both of which contribute to STFP memory formation. The
COApm might perform further behavioural functions in mice that,
givenits dense direct AOB and indirect MOB inputs, are also likely to
involve anintegration of social and olfactory information, such as that
which occurs during mating®. Thus, we propose that the COApm func-
tions as acomputational memory consolidation centre. This suggests
that long-term memory formation can be deconstructed into several
protein-synthesis-dependent phases that are localized to distinct neu-
ral circuits, which, atleast in the case of the COApm circuit, caninvolve
arestructuring of synapses (Fig. 6¢).
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Methods

Animal procedures

C57BL/6J (Jax stock: 000664), Ai75 (Jax stock: 025106), Ail4 (Jax
stock: 007914), Sunl-sfGFP (Jax stock: 030952)%, vGAT-Cre (Jax
stock: 028862), PV-Cre (Jax stock: 008069), vGluT2-Cre (Jax stock:
028863), SST-Cre (Jax stock: 013044) and CAMKII-Cre (Jax stock:
005359) mice were purchased from The Jackson Laboratory and bred
in house. Genotyping for each line was performed using primers
recommended by The Jackson Laboratory (https://www.jax.org/).
TRAP2 mice™ (a gift from L. Luo’s laboratory, also Jax stock: 030323)
were crossed for specific experiments with Ai75 or C57BL/6) mice.
Only male mice were used for experiments, and all mouse lines were
maintained on a C57BL/6) background. Heterozygotes for Fos* "R
and Ai75 alleles were used inbehaviour tests. Mice were ordered from
TheJackson Laboratory, and acclimated at the Stanford animal facil-
ity for at least two weeks. Mice were fed ad libitum on the ENVIGO
(T2918.15) diet throughout the study. Mice were housed in groups with
up to five mice per cage and on 12-h light-dark cycles (07:00-19:00,
light) before behaviour experiments. After STFP training, test mice
were single-housed until food-choice tests were done. All behaviour
experiments were performed during the same circadian period by
experimenters unaware of the subject identity. All protocols and
husbandry conditions were approved by the Administrative Panel on
Laboratory Animal Care at Stanford University under the guidelines
of the National Institutes of Health for the care and use of laboratory
animals.

Pharmacological agents

Tamoxifen (Sigma, T5648) stock solutions were prepared by dissolv-
ing tamoxifen in corn oil (Sigma, C8267) in the presence of ethanol,
which was then evaporated before use in a speed vac as described*.
Tamoxifen was administered intraperitoneally once daily at 150 mg
per kg from day 1 to day 5 after STFP training. CNO (Tocris, 4936)
or saline vehicle was administered intraperitoneally at 2 mg per
kg twice daily or 40 min before the food-choice test. For experi-
ments in which CNO was injected during the entire three weeks or
only during the third week, CNO injections were stopped 24-48 h
before the three-week food-choice test. For the CNO terminal infu-
sion into the AONm, 200 nl CNO at 2.5 pg nl™ was delivered bilater-
ally through an infuser connected to a microinfusion pump (WPI,
SP101I), which was left in place for an additional 2 min to allow the
drug to fully diffuse before extraction. CNO or vehicle saline was
microinfused twice daily from day 1 to day 7 after STFP training
for the experiments in Fig. 6b. Anisomycin (Sigma A9789) was pre-
pared as described® and infused into the OFC through an infuser or
stereotactically injected into the COApm immediately after STFP
training.

Plasmid construction and AAV preparations

AAV-DO _DIO (Addgene 37120), TeNT, non-floxed SynaptoTag and
Cre-on SynaptoTag constructs were described previously*****, For
Cre-off SynaptoTag and Cre-off TeNT, the elements between the two
loxPs were flipped®. For HA-Cre, the GFP moiety of Cre-GFPwas replaced
withanHA tag. Plasmids were converted into adeno-associated viruses
(AAVs) with the AAV-DJ*¢, AAV2retro™ or AAVI(AAV1-Cre)* serotype.In
brief, helper plasmid (phelper) and capsid plasmids (pDJ or AAV2retro)
were co-transfected with virus plasmid into HEK293T cells (ATCC, CRL-
11268) using calcium phosphate. Then, 72 h after transfection, cells
were collected and lysed, and the supernatant was loaded onto aniodix-
anol gradient medium (Accurate, AN1114542) and ultracentrifuged at
65,000 rpm at 4 °C for 3 h. AAVs were then extracted from the 40%
iodixanol layer, washed, concentrated, aliquoted and stored at—80 °C
until use. hSyn-DIO-hM4Di-IRES-GFP AAVs were a gift from X. Chen’s
laboratory at Stanford University.

Stereotactic injections and cannulaimplantation

Eight-week-old mice were anaesthetized with 250 mg per kg tribromoe-
thanol (Sigma, T48402). Carprofen (5 mg per kg) was injected subcu-
taneously before and after surgery as an anti-analgesic. The following
coordinates were used (AP, anterior to bregma; ML, lateral to midline;
DV, ventral to dura; in mm): (1) COApm, AP -2.80, ML +2.85, DV -5.1;
(2) AONm, AP +2.33, ML £0.5, DV -3.0; (3) mPFC, AP +2.0, ML 0.3, DV
-2.0; (4) OFC, AP +2.7, ML +1.2, DV -1.8; (5) BLA, AP -1.4, ML £3.4, DV
-4.5; (6) ventral hippocampus, two sets of coordinates were used, AP
-3.3,ML £3.2, DV -3.2and -2.0; AP -3.3, ML +2.5, DV -3.6 and -1.8. For
the AOB, AP was recognized by both the distance from bregma+4.0 mm
and posterior to the inferior cerebral vein, ML + 0.88, DV —0.88. Before
injecting the AOB, the skull was adjusted at an angle of around 30°, which
made the bregma higher than the lambda, and surgeries were care-
fully conducted to avoid damaging the inferior cerebral vein. Viruses
were injected through abeveled glass pipette connected to a nanolitre
injector (WPI, NL2010MC2T) at arate of 0.1-0.25 pl per min. Injection
started 1 min after the glass pipette had reached the DV depth, and the
glass pipette was removed slowly 10 min after the injection was done.

For AONm drug infusions, the bilateral guide cannula (2.1 mm in
length, 1.2 mm centre to centre) was implanted above the AONm and
used with aninfuser (33 gauge, 1.0 mm projection). For AOB drug infu-
sions, the bilateral guide cannula (0.88 mm in length, 2 mm centre to
centre) was implanted above the AOB and used again with an infuser
(0.5 mm projection). For OFC infusions, the bilateral guide cannula
(1.3 mminlength, 2.2 mm centre to centre) was implanted above the
OFC and also used with an infuser (0.5 mm projection). Because the
implantation of a cannula above the COApm will damage the ventral
hippocampus that is also essential for the STFP memory acquisition,
we stereotactically injected anisomycininto the COApmimmediately
after STFP training.

Biocytinlabelling to map local dendrites of neurons was performed
by patching neurons and filling them with biocytin, followed by imag-
ing. Neurons were identified after labelling them with two approaches,
infection of the AOB of C57BL/6) mice with a mixture of AAV expressing
anterograde EYFP and AAV2retro-hSyn-tdTomato viruses, or infec-
tion of Sun1-sfGFP mice with amixture of AAV expressing anterograde
mCherry and AAV2retro-hSyn-Cre-HA viruses.

The intervals between virus injections and analyses are stated in
the figures, except for the SynaptoTag tracing experiments, in which
eight-week-old C57/BL6) mice were injected with viruses and analysed
six to eight weeks afterwards.

Behavioural tests

Production of flavoured food pellets and innate food-preference
tests. The production of flavoured food pellets and the innate
food-preference tests were performed as described”. In brief, scented
food pellets were made using food powders produced in ablender
from normal mouse chow (ENVIGO, T2918.15). Food powders were
mixed with ground cinnamon (McCormick; final concentration of1%),
cocoa powder (Hershey’s, 100%, non-sweetened; final concentration
of2%*°), ground cumin (McCormick; final concentration of 0.5%) or
ground thyme (McCormick; final concentration of 0.75%%). For in-
nate food-preference tests, mice naive to the odours used were fasted
for15-18 hand then given two food choices (cocoa versus cinnamon,
or cumin versus thyme) for one hour. The food pellet was weighed
before and after the test. The proportion of each flavoured food con-
sumed was calculated as the ratio to the total food consumed. In all
figures, cinnamon-flavoured food is represented by a solid circle,
cocoa-flavoured food by a solid square, cumin-flavoured food by a
hollow circle and thyme-flavoured food by a hollow square.

STFP training and tests. STFP was performed as illustrated in the
schematic of Fig. 1a,b, with habituation, training and food-choice test
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sessions as described”***°-% using two odour pairs (cinnamon versus
cocoa*™* or cumin versus thyme?®). During habituation, both demon-
strator (blue cartoon for cinnamon and yellow green for cumin) and
observer mice (subject, brown cartoon) were singly housed innew cages
with food deprivation for 12-15 h. Before STFP training, demonstrator
mice were fed 1% cinnamon-flavoured or 0.5% cumin-flavoured food pel-
lets for one hour. Only demonstrators that consumed morethan0.2 g
food were used in subsequent STFP training sessions. Afterwards (dur-
ing STFP training), demonstrator mice were allowed to socially interact
with observer mice for 30 minin the absence of food. Food-choice tests
(STFPmemory tests) were performed immediately after STFP training
and/or later asdescribed inthe figures with the observer mice that had
been continuously single-housed and had been food-deprived for
12-15h before the tests. In the food-choice tests, mice were offered
cinnamon- and cocoa-flavoured or cumin- and thyme-flavoured food
pellets for one hour. The food pellets were weighed before and after
food-choice tests and the percentage of flavoured food eaten by observ-
er mice was calculated. Inallfigures, datafrom three-week food-choice
tests were shaded in grey to differentiate from the day O food-choice
test data. Thememory retentionindex was calculated as the ratio of the
per cent cued food eaten in the 24-h, 48-h or 3-week food-choice test
tothe cued food eatenin the day O test. For the behaviour conducted
in Extended Data Fig. 1b, observer mice were directly exposed to 1%
cinnamon odour for 10 min. For Extended Data Fig. 1c, observer mice
socially interacted with atoy demonstrator scented with 1% cinnamon
food powder instead of areal demonstrator.

Note thatinstandard experiments (except where noted otherwise),
observer mice were subjected to afood-choice testimmediately after
thetraining session (day O test). Observer mice were considered to be
successfully STFP trained when the consumed cued food percentage
exceeded 50%, and mice that did not learn the food odour as docu-
mented inthe day O test were excluded from further analyses (except for
the experiments in which memory acquisition was examined (Fig.2a,e)
or no day O test was performed (Extended Data Fig. 2c)). The success
rate of STFP training was 70-90% for the cocoa and cinnamon odour
pair,and around 50% for the cumin and thyme odour pair®® (Extended
Data Fig. 2r). After the day O test, observer mice underwent only one
additional food-choice test, at 24 h, 48 h or 3 weeks (‘STFP test’ in all
schematics), with the following exceptions: for the experiments in
Extended Data Fig. 1b,c,e, multiple food-choice tests were performed,
whereas for the experiments in Extended Data Figs. 1d and 2¢, no day
0 test was performed because these experiments aimed to ensure
that the day O test did not influence long-term memory formation. In
experiments using conspecific interaction controls or uncued food
controls, demonstrator mice were fed with unscented food pellets but
the procedure was otherwise the same.

Social behaviour during STFP training. Social behaviour during
STFP training was recorded and analysed as described***%. Observ-
ers’ sniffs of the demonstrator’s muzzle, body and anogenital region,
as well as self-grooming bouts and fighting bouts, were annotated
on a frame-by-frame basis using a MATLAB code BehaviorAnnotator
(https://github.com/pdollar/toolbox). Pearson correlation analyses
were performed between the behaviours scored and the percentage
of consumed cued food™*®,

Buried food test. After food deprivation for 15-18 h, atest mouse was
putintothe centre of anew cage. A single normal food pellet was buried
1cmunder thebeddinginarandom corner. Thelatency the test mouse
took tofind the food pellet was video-recorded and measured offline®.
The assay was finished within 5 min, so the latency for a test mouse that
failed to dig up the pellet was recorded as 300 s.

Olfactory preference test. A2 x 2-cm filter paper scented with water,
2-phenylethanol (10%, v/v) or 2-methylbutyric acid (10%, v/v)*” was

sequentially provided to atest mouse after habituation. Each scented
filter paper was placed in the cage at the opposite side of the test mouse
for 3 min. The mouse behaviour was video-recorded and the total inves-
tigation time of the filter paper was scored blindly. The water-scented
filter paper result was subtracted as the baseline from the total inves-
tigation time for the other two odours®,

Olfactory sensitivity test. A 2 x 2-cm filter paper containing a series
of dilutions of isoamyl acetate in water (0, 0.001%, 0.01% and 0.1%)
was placedin the opposite corner of the test mouse in a cage after cage
habituation for 3 min. The sniffing time of each test mouse as a meas-
urement of exploratory behaviour was video-recorded and quantified
offline®®,

Mapping odour-sensitive neurons using FOS staining. B6 mice
were exposed to water, 2-phenylethanol or 2-methylbutyric acid ap-
plied to a2 x2-cm filter paper for 3 min, and then returned to their
home cage. Ninety minutes after odour exposure, mice were anaes-
thetized and perfused. Brain slices from the mice were immunostained
for FOS.

Non-associative olfactory memory. Non-associative olfactory mem-
ory was analysed as described®. In brief, cinnamon extract or anise
extract was mixed with distilled water to a final concentration of 1%.
On day 1, mice were allowed to freely sniff the odours in the chamber
of the open field test used above for 10 min as an initial preference
test. Onday 2, mice were first exposed to the cinnamon odour in their
home cage for 15 min. Then, after 30 min, the mice were returned to the
chamber with the anise and cinnamon odoursin two differentrandom
corners foranother 10 min of sniffing. The anise preference index was
calculated by dividing the investigation time of anise by that of cinna-
mon. The non-associative memory index was calculated by dividing the
anise preferenceindex of the second day (pre-exposure) by that of the
first day (naive). Behaviour was recorded using the Viewer Il tracking
system, and analysed on a frame-by-frame basis usinga MATLAB code
BehaviorAnnotator (https://github.com/pdollar/toolbox) according
tothe previous description.

Fear conditioning. Fear conditioning experiments were conducted to
evaluate contextual memory****, Onday 1, the test mouse was trained
inthe fear conditioning chamber by pairing a 30-s, 80-dB, 2-kHz tone
witha2-s,0.75-mAfoot shock. On day 2, contextual memory was tested
by placing the mice backinto the fear conditioning chamber for 5 min.
Onday 3, altered context and tone tests were performed in amodified
chamber in which the walls and the chamber bottom were covered
with plastic sheets with colourful paintings or stripes. The test mouse
was placed in the modified chamber for 5 min to measure altered
context memory, followed by 1 min of tone (80 dB, 2 kHz) to meas-
ure the tone-associated memory. All behaviour was video-recorded
and ‘freezing’ was quantified using FreezeView software (Coulbourn
Instruments).

Open field tests. Open field tests were performed by placing a test
mouse inthe centre of a40 x 40 x 40-cm open field box. The test mouse
was given 15 min for free exploration. Behaviour was video-recorded
and analysed using a BIOBSERVE Il tracking system. The centre zone
was defined as the central 20 x 20-cm square of the box centre manu-
ally during analysis, and the total distance travelled and time spent
exploring the centre area were measured.

Three-chamber social behaviour. Three-chamber social behaviour
was performed as described®. In brief, control and test mice express-
ing DREADDs or GFP were intraperitoneally injected with CNO 40 min
before the test. Mice were placed at firstin the central chamber to free-
ly investigate all three chambers for 10 min. During the subsequent
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sociability test, a sex- and age-matched stranger mouse (stranger 1)
was placed inside an upside-down wire pencil cup in one of the side
chambers and an empty cup in the other side, and the exploratory
behaviour of the test mouse was video-recorded for 10 min. During
the following social novelty test, asecond stranger mouse (stranger 2)
was placed into the empty pencil cup of the three-chamber set-up and
the exploratory behaviour of the test mouse was again video-recorded
foranother 10 min. The time mice spentineach chamber was analysed
using the BIOBSERVE Il tracking system.

Slice electrophysiology

Slicing. Mice were anaesthetized using isoflurane, and brains were
quickly removed into anice-cold sucrose-based cutting solution (in
mM: 228 sucrose, 26 NaHCO;, 11 glucose, 2.5KCI, 1NaH,PO,, 0.5 CaCl,
and 7 MgSO0,, oxygenated by 95% O, and 5% CO,). Coronal brain slices
(300 pm) containing the COApm were sectioned with a vibratome
(VT1200S, Leica Biosystems) and recovered in oxygenated artificial
cerebrospinal fluid (ACSF, in mM: 119 NaCl, 26 NaHCO,, 2.5 KCI, 10
glucose, 1NaH,PO,, 2.5 CaCl, and 1.3 MgSO,) first at 32 °C for 30 min
and then at room temperature for another 1 h. Slices were afterwards
transferred to an electrophysiological recording chamber in which
they were perfused with ACSF at 1 ml per minat 32 °C.

Optogenetic recordings. For verification of monosynaptic con-
nections between AOB inputs and COApm neurons, 1 pM TTX and
100 pM 4-AP were included in the ACSF, and recordings were done
as described®. The COApm was visualized with an upright micro-
scope (Olympus, BX51WI) under a 60x water immersion objective. A
473-nm blue laser light was delivered to the COApm for 1 ms through
a customized digital micromirror device-based photostimulation
optogenetic system®. Layer 2 and layer 3 were distinguished from
the distance to layer 1 and the intensity of neurons. Layer-2 tdT",
layer-2 tdT-, layer-3 tdT" and layer-3 td T neurons were all record-
ed through whole-cell voltage-clamp recordings. Glass pipettes
(2-3 MQ) were filled with internal solutions (in mM): 135 CsCl,
1EGTA,10 HEPES, 4 ATP-Mg, 0.1spermine, 0.3 GTP-Na and 7 phospho-
creatine (pH 7.2-7.30, osmolarity adjusted to 300-310). Picrotoxin
(PTX;50 uM), 50 uM APV and 20 pM CNQX were sequentially added in
ACSF to determine whether light-evoked postsynaptic currents were
inhibitory or excitatory. Neurons were clamped at =70 mV during
recordings.

Optogenetic analyses of AMPAR-mediated synaptic plasticity.
For optogenetic analyses of AMPAR-mediated synaptic plasticity, the
following internal solution was used (in mM): 135 CsMeSO;, 1EGTA,
10 HEPES, 4 ATP-Mg, 0.3 GTP-Na, 0.1 spermine and 7 phosphocre-
atine (pH 7.2-7.30, osmolarity adjusted to 300-310). In the AMPAR/
NMDART atio experiment, 1 pM TTX, 100 pM 4-AP and 50 uM PTX were
added in ACSF. Cells were held at =90 mV and given a 1-ms blue-light
photostimulation to record AMPAR responses and then switched to
+40 mVtorecord NMDAR responses. The peak of NMDAR-dependent
light-evoked responses was measured at 50 ms after the onset of cur-
rents. The AMPAR/NMDAR ratio was calculated as NMDAR currents
divided by the AMPAR currents. In AMPAR rectification experiments,
50 puM PTX and 50 pM APV were included in the ACSF with1pM TTX
and 100 pM 4-AP. Blue-light-evoked AMPAR currents were recorded
at-70 mV, 0 mVand +40 mV, respectively. The rectificationindex was
calculated by absolute values of AMPAR currents at -70 mV divided by
AMPAR currents at +40 mV.

Intrinsic excitability recordings. For intrinsic excitability recordings,
whole-cell current-clamp recordings were achieved in layer-3 tdT*
neurons using the following internal solution (inmM):135K-gluconate,
10 HEPES, 0.25EGTA, 1MgCl,, 4 ATP-Mg, 0.3 GTP-Na, 0.1spermine and
7 phosphocreatine (pH 7.2-7.30, osmolarity adjusted to 300-310).

PTX (50 pM), 20 pM CNQX and 50 pM APV were included in the ACSF
to block synaptic transmission®. After whole-cell recordings were
established under voltage clamp, cells were switched to current clamp.
Depolarizing currents from 0 pAto 250 pA (stepped by 50 pA,1s) were
injected, and action potentials were recorded under current clamp. The
current-frequency relationship was fitted with a single exponential
equation’inatransformed version: frequency =a x log;,(currentinjec-
tions) —a xlog,,(/,), where /, is the minimal current to elicit spikes. We
calculated input resistances using Ohm’s law. Specifically, we injected
currents ranging from -200 pA to +50 pA in 50-pA steps into neurons
under current clamp and recorded the resulting voltage changes. The
slope of the current-voltage relationship was then calculated as the
input resistance. Resting membrane potentials were monitored after
the stable establishment of whole-cell recordings without current in-
jections. Action potential properties were analysed using parameters
previously reported™.

Mini event recordings. To verify TeNT efficiency, mice were euthanized
one week after virus injection and miniature EPSCs (mEPSCs) were
monitored for 5 min in acute COApm brain slices in the presence of
1puM TTX and 50 pM picrotoxin.

Alljunction potentials were not corrected. Cells were rejected for
further analysis if series resistances changed more than 20% during
recordings. All electrophysiological datawere recorded using the Mul-
tiClamp 700B amplifier, digitalized at 10 kHz with Digidatal440, with
Clampex10.4, and analysed with Clampfit 10.4 (Molecular Devices).

Biocytinlabelling

During whole-cell recordings, biocytin (2 mg ml™, Sigma, B4261) was
included in CsCl-based internal solutions”. After recordings, record-
ingelectrodes were removed slowly and slices were immediately fixed
inice-cold 4% paraformaldehyde (PFA)/phosphate-buffered saline
(PBS) solutions. Slices were washed in PBS for 5 min three times and
then permeabilized and blocked in blocking buffer (containing 5%
goat serum + 0.3% Triton X-100 in PBS) at room temperature for 1 h.
Then Streptavidin Fluor 647 conjugate (S21374, Invitrogen, 1:1,000)
was added for 2 hincubation at room temperature. Slices were then
washed in PBS for 15 min, repeated four times, and were moved to PBS
with DAPI (Sigma, D8417) to stain for another 15 min. After staining was
done, slices were mounted onto Superfrost Plus slides with mounting
medium (Fluoromount-G, 0100-01, SouthernBiotech). Images were
taken with aNikon confocal microscope (A1Rsi, Nikon,Japan) equipped
witha 60x oil objective.

Immunohistochemistry

Mice were deeply anaesthetized with isoflurane and transcardially
perfused by PBS followed by ice-cold 4% PFA in PBS. For staining with
anti-glutamate and anti-GABA antibodies, brains were placed into 30%
sucrose/PBS solutions for cryoprotection without post-fixations. Oth-
erwise, brains were post-fixed in 4% PFA overnight and switched into
30% sucrose/PBS solutions for another two days before further process-
ing. Coronal COApm sections and sagittal AOB sections (both 40 um
thickness) were cut with a Lecia CM3050-S cryostat and incubated
firstatroomtemperature for1hinablockingsolution (5% goat serum
and 0.3% Triton X-100 in PBS) and then at 4 °C overnight with primary
antibodies (anti-glutamate, rabbit polyclonal, 1:1,000, Sigma-Aldrich
G6642; anti-GABA, rabbit polyclonal, 1:1,000, Sigma-Aldrich A2052;
anti-NeuN, mouse monoclonal, 1:1,000, Millipore, MAB377; anti-GFP,
rabbit polyclonal, 1:1,000, Invitrogen A11122; anti-mCherry, rat mono-
clonal, 1:1,000, Invitrogen M11217; anti-FOS, Synaptic System 226308,
guineapig,1:1,000). After 3x 15 min washing in PBS, sections were incu-
bated with fluorescent secondary antibodies (goat anti-rabbit Alexa
Fluor 488, Thermo Fisher Scientific, A11034; goat anti-rat Alexa Fluor
546, Thermo Fisher Scientific, A11081; goat anti-mouse Alexa Fluor 647,
Thermo Fisher Scientific, A21236; for biocytin labelling, Streptavidin
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Fluor 647 conjugate, S21374, Invitrogen) in blocking buffer for 2 h at
roomtemperature, washed 4x 15 minin PBS stained for 15 min with DAPI
(Sigma, D8417) and mounted onto Superfrost Plus slides with mounting
medium (Fluoromount-G, 0100-01, SouthernBiotech) for imaging.

SynaptoTag tracing of efferent synaptic connections from

the AOB

Three SynaptoTag constructs (non-floxed SynpatoTag, Cre-on Syn-
aptoTag, and Cre-off SynaptoTag) were used. AAVs of these con-
structs were injected into the COApm either without or with prior
injection of retro-AAVs encoding Cre recombinase into the AOB of
six-to-eight-week-old wild-type C57BL/6) mice. Whole-brain coronal
sections (40 pum) were collected from the beginning of the olfactory
bulb to the end of the cerebellum six to eight weeks after injections.
Every fifth section was stained with anti-GFP and anti-mCherry,
mounted onto the Superfrost Plus slidesin arostral to caudal sequence
and imaged using a Slide scanner (Olympus, VS200 or BX61VS) witha
10x objective. Mice were included in the analysis only when the virus
injection accurately targeted the COApm.

Retrograde trans-synaptic pseudotyped rabies virus tracing
Cell-specific monosynaptic rabies tracing was performed as
described®*’2 A 1:1 volume mixture of AAV5-CAG-DIO-TVA-mCherry
(avian tumour virus receptor A) and AAV8-CAG-DIO-G (glycoprotein)
was injected into the COApm (0.2 pl in total) unilaterally, whereas
AAV2retro HA-tagged Cre wasinjected into the AOB of the same hemi-
sphere of eight-week-old C57BL/6) mice. Two weeks after AAV injec-
tions, 0.2 pl of RVdAG (GFP-tagged G-deleted rabies virus) was injected
into the same COApm. Six days after RvdGinjection, mice were perfused
and fixed with PFA and their brains were analysed as described for the
SynaptoTag mapping, usingimmunohistochemistry for GFP to detect
input cells. All viruses used in rabies tracing were produced by the
Janelia Farm Viral Core Facility.

Imaging and image quantifications

Slides from the same experiments were imaged in parallel with the
same settings using an Olympus Slide scanner. Quantifications of
rabies and SynaptoTag tracings were performed as described” with
modifications. Brain regions were recognized under DAPI with the
help of Neurolnfo Software (MBF Bioscience) under the guidance of
the Franklin and Paxinos mouse brain atlas’ and the Allen Reference
Atlas (https://atlas.brain-map.org/). For Fig. 1c and Extended Data
Fig.1i,j, the percentage of neurons was quantified by NeuN staining. For
retrograde pseudotyped rabies virus tracings, cellbodies were counted
manually witha cell counter. Input brain regions were presented asthe
percentage of GFP-positive cellsamong the total GFP-positive cellsin
the wholebrain. For quantifications of presynaptic terminals using Syn-
aptoTag (Syb2GFP), the averaged intensity of GFP signals of each brain
region was measured by ImageJ and the background of each section
was subtracted. To correct the variations caused by the different levels
of virus injections and expression, the intensity of every brain region
was normalized to the intensity of the injection site in each mouse’s
COApm, which was identified by soma-expressed mCherry signals.
For TRAP2 mapping, the cell layers of the COApm were delineated
through the DAPI signal and the background of fluorescent channels.
Cells labelled by tdTomato, GFP or both tdTomato and GFP, or DAPI
only, were counted using the cell counter in ImageJ or CellProfiler.
The percentage of activated cells among projection neurons was cal-
culated as tdT" and GFP*/total GFP" cells x 100, and the percentage of
activated cells in nonprojection neurons was calculated as tdT" and
GFP/(DAPI-labelled cell nuclei - GFP* cells) x 100.

scRNA-seq and data analyses
Single-cell dissociation and flow cytometry (FACS). AAV2retro-
hSyn-tdTomato viruses were bilaterally injected into the AOB two weeks

before the experiments. On the experiment day, mice were treated as
follows: (1) mice in the ‘odour group’ were exposed to 1% cinnamon
odour on afilter paper and then given the cocoa and cinnamon food
choice; (2) mice in the STFP group were subjected to general STFP
protocols (see above); that is, were enabled to socially interact with
demonstrator mice who consumed 1% cinnamon-flavoured food and
were then given the cocoa and cinnamon food choice; (3) mice in the
home-cage group were not subjected to odour or STFP treatment, but
otherwise were processed in parallel with the other two groups, and
givennormal food chow instead of the cocoa- and cinnamon-flavoured
food pellets. All mice were single-housed and fasted. Thirty minutes
after treatments, mice were euthanized and single neurons from the
COApm were dissociated and sorted by fluorescence-activated cell
sorting (FACS) as described*®. In brief, mice were anaesthetized with iso-
flurane and decapitated quickly. Brains were removed intoice-cold cho-
line chloride-based ACSF (in mM:110 choline chloride, 24 NaHCO,, 20
glucose, 1.3NaH,P0O,, 2.5KCl, 0.5 CaCl,, 7 MgCl,, 3sodium-pyruvate,1.3
sodium-ascorbate, 2 thioureaand13.2 trehalose, oxygenated by 95% O,
and 5% CO,). Coronal brainslices (300 pm) were cut using a vibratome
(VT1200S, Leica Biosystems). Brain slices containing COApm were
collected, and COApmwas dissected under a fluorescence dissection
microscope as accurately as possible according to the boundaries of
the COApm, guided by retrogradely expressed tdTomato. Microdis-
sected COApm tissues were incubated at 34 °C in papain enzyme mix
containing DNase (LK003150, Worthington) with 800 nM kynurenic
acid for 20 min. The tissue was gently triturated with aP1000 pipette,
repeated every 15 min three times or until fully dissociated. After dis-
sociation, cell suspensions were centrifuged at 350g for 10 min at room
temperature. The supernatant was discarded and cell pellets were
carefully resuspended in 1 ml oxygenated EBSS (with 10% ovomucoid
inhibitor, 4.5% DNase and 800 nM kynurenic acid) and centrifuged,
and the cell pellets were washed with 1 ml ACSF including 0.1% RNAse
inhibitor. A70-pum cell strainer (Thermo Fisher Scientific, 352350) was
used toremove debris. Cells were stained with Hoechst (1:2,000; H3570,
Life Technologies) for 10 min, washed and resuspended in ACSF. Cells
werekeptoniceorat4 °Cbefore they were sorted by FACS using aSony
SH800 sorter directly into 384-well plates with lysis buffer containing
oligodT. Singlets were selected on the basis of Hoechst signals, and all
Hoechst-positive singlet cells were collected*® (see Supplementary
Fig.1for sorting strategy). Cells were sorted at a low rate, but each
plate was done within 25 min. After FACS, plates were sealed, centri-
fuged and immediately snap-frozen and stored at —80 °C until further
processing.

Library preparation and sequencing. The library was prepared
according to the Smart-seq-2 protocol in a 384-well format”™. In brief,
cDNA was amplified by 23 PCR cycles. A PicoGreen quantitation assay
inthe 384-well format was used to assess cDNA concentrations, which
were normalized to around 0.4 ng pl™ per sample automatically per-
formed by the TPPLabtech Mosquito HTS and Mantis (Formulatrix)
robotic platforms. An in-house Tn5 was used to prepare, pool and
clean libraries. Libraries were then sequenced on a Novaseq instru-
ment (Illumina) using 2x 100-bp paired-end reads and 2x 12-bp
index reads witha200-cycle kit. Averaged sample reads per cell were
1.5 million.

Bioinformatics and data analysis. First, sequences obtained from
Novaseqwere de-multiplexed using bcl2fastq. Next, reads were aligned
to the mouse mm10 genome (with tdTomato sequences added) aug-
mented with ERCC (External RNA Controls Consortium) sequences
using STAR (v.2.7.10a)’®. We determined gene counts using Feature-
Counts (v.2.0.0)””. We used standard algorithms and procedures for cell
filtering, feature selection, dimensionality reduction and clustering.
Genes were removed if they appeared in fewer than five cells. Cells
with fewer than 500 genes or with fewer than 150,000 reads were also
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removed. Inaddition, cells with more than 5% reads as ERCC, and more
than 5% mitochondrial transcripts, were also excluded from analysis.
We log-normalized counts for each cell and scaled using ScaleData if
necessary and appropriate*®. This resulted in a dataset of 3,315 total
cells,including 1,694 neurons.

Cells were visualized using UMAP. First, we aligned the raw data
from all groups using the first ten canonical components of the
‘canonical correlation analysis’ function from the Seurat package
(v.4.9.9)8. Principal component analysis was performed on pro-
jected genes into the principal component space. Single-cell prin-
cipal component scores and gene loadings for the first 30 principal
components were computed. Seurat’s FindClusters and Runumap
functions were then used to calculate two-dimensional UMAP
coordinates’,

We performed DEG analysis in three dimensions by applying the
Mann-Whitney U-test to various cell populations. We used a P< 0.01
and log,-transformed fold change (log,FC) >1in both the STFP ver-
sus odour and the STFP versus home-cage comparisons. First, we
identified DEGs between tdT™ and tdT" cells within neuron cluster 1,
separately in the three groups. Second, we analysed DEGs of neuron
clusters between groups—namely, odour versus home cage, STFP
versus home cage and STFP versus odour. Next, we identified exclu-
sive DEGs by removing DEGs that are also present in tdT neurons as
well as the odour and home-cage conditions. In detail, we identified
DEGs in comparisons of AOB-projecting (tdT*) neurons in the STFP
and the odour-only conditions. We then removed DEGs that are also
differentially expressed in non-AOB-projecting neurons, allowing
the identification of changes that were specific to AOB-projecting
neurons that are selectively essential for long-term STFP memory.
We also removed DEGs that were differentially expressed between
the odour-only and the home-cage conditions to ensure that DEGs
were not a consequence of an odour experience. These criteria pro-
duced a set of ‘STFP-specific DEGs’ (Supplementary Table 4 and
Fig. 5f). All raw P values were adjusted using Benjamini-Hochberg
correction®. All graphs and analyses were generated and performed
inR(v.4.2.2).

MERFISH spatially resolved transcriptomics

MERFISH experiments were performed as described”. The same behav-
ioural design as was used in the scRNA-seq experiment was applied
in the MERFISH experiment with three groups: (1) home-cage group;
(2) odour group; and (3) STFP group.

MERFISH gene selection. To determine the optimal genes for MER-
FISH, we combined insights from the scRNA-seq dataand the relevant
literature. Our strategy centred on pinpointing marker genes for
specific cell types using a comparative approach. (1) Identification
process: we used the Mann-Whitney-Wilcoxon test to compare each
gene’s expression between cells of a target population and all other
cells. We then adjusted the resulting Pvalues for multiple-hypothesis
testing, yielding FDR-adjusted Pvalues. (2) Selection criteria: the gene
must be expressed in a minimum of 30% of cells in the target popula-
tion. It should have an FDR-adjusted P value smaller than 0.001. Its
expressioninthe target population should be at least four fold higher
than the average in non-target cells. The proportion of cells express-
ing the gene in the target population should be at least twice as high
asinany other cell group. Marker genes were ranked on the basis of
their expression fold change compared with non-target cells. (3) We
retained the top five marker genes fromeach cell type for further con-
sideration. Beyond this data-driven approach, we also incorporated
established genes linked to microglia, astrocytes and oligodendrocyte
precursor cells (OPCs), as found in the literature. Furthermore, DEGs
associated with remote memory were included, culminatinginacom-
prehensive panel of 336 genes. Probes were designed using the Vizgen
platform.

Tissue processing for MERFISH. Mice were anaesthetized and eu-
thanized, and their brains were quickly dissected and frozen in OCT
and stored at —80 °C until sectioning. Ten-micrometre-thick coronal
sections containing the OFC or COApm and ventral hippocampus were
collected using aLeica CM3050-S cryostat and directly mounted onto
MERSCOPE slides for MERFISH analyses. Four coverslips of tissues were
collected per mouse.

Sample preparation and MERFISH imaging. Slides were processed
according to the MERSCOPE protocol (Vizgen). Slides were first washed
three timesin PBS, then permeabilized in 70% ethanol at 4 °C for 18 h.
Slides containing tissue sections were then washed with sample prepa-
ration wash buffer (PN20300001) and incubated with formamide wash
buffer (PN20300002) for 30 min at 37 °C. Next, slides were incubated
with the gene panel mix (RNA probes) at 37 °C for 48 h for hybridiza-
tion and washed twice for 30 min in formamide wash buffer at 47 °C
to remove excess coding and poly-A-anchor probes. The sections
were then cleared by embedding in 4% polyacrylamide gel, followed
by treatment with clearing premix (PN 20300003) at 37 °C for 36 h.
Sections were then washed twice in sample preparation wash buffer,
stained with DAPI/PolyT for an additional 15 min, washed with forma-
mide wash buffer, again washed in sample preparation wash buffer and
loaded into the MERSCOPE flow chamber. Images were captured atboth
20x and 63x magnifications.

MERFISH data processing and analysis. MERFISH imaging data
were processed using the MERIin pipeline®® with cell segmenta-
tion using CellPose®. Decoded molecules were registered and
assigned to each cell as a MERFISH data matrix for further analysis.
The MERFISH matrix for each section was concatenated, normal-
ized, log-transformed with Scanpy® and integrated using Harmony?®:,
Leiden® clustering was applied to generate cell clusters. DEGs identi-
fiedin comparisons between groups or between tdTomato-positive
and tdTomato-negative excitatory neurons were assessed using the
Mann-Whitney-Wilcoxon test.

Statistics and reproducibility

Allexperiments and data analyses were performed on anonymized sam-
ples oranonymized animals, except for the viral tracing experiments,
in which the experimental condition can be identified on the basis of
the pattern of virus expression. For quantitative imaging experiments,
the number of replicates of ‘representative images’ is the same as the
number of replicates specified for the corresponding quantifications.
For non-quantitative imaging procedures, the number of replicatesis
the same as in the corresponding analysis experiments, or, as for all
experiments, the experiments were repeated at least three times. All
images and numbers were checked forinadvertent duplications using
duplication detection software, althoughin several instances the same
numbers resulted in different experiments and were retained. Statis-
tics tests were performed by Prism v.10 or SPSS v.28, or by R software
(for the scRNA-seq and MERFISH analyses). We first checked all data,
except for the scRNA-seq and MERFISH data, for normality distribu-
tion using the Shapiro-Wilk or Kolmogorov-Smirnov tests. Then, we
checked the equality of variances of all data using the Brown-Forsythe
test. Then, parametric or nonparametric tests were applied accord-
ingly with post-hoc tests for multiple comparisons. When datasets
passed normality and equal variances tests, parametric tests such as
two-tailed paired or unpaired Student’s ¢-tests, one- or two-way ANOVA
tests or repeated-measures ANOVA tests with Tukey post-hoc tests were
applied. If these were failed, nonparametric tests, such as two-tailed
unpaired Mann-Whitney or Wilcoxon matched-pairs signed-rank
tests or Kruskal-Wallis tests with post-hoc two-stage linear step-up
tests were applied, with the adjusted P value used to determine sig-
nificance in the post-hoc two-stage linear step-up test. For two-way
ANOVA tests, ifthe datawere not normally distributed, they were first
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transformed to ensure that they were in a Gaussian distribution. For
the two-tailed Student’s t-tests, effect size and 95% confidence inter-
val were calculated related to the standard deviation. In Supplemen-
tary Table 5, Cohen’s d = (mean of group B —mean of group A)/pooled
standard deviation. scRNA-seq and MERFISH data were processed and
analysedinR.

Allnumerical data are expressed as means + s.e.m.*P < 0.05,**P< 0.01
and **P < 0.001denote significance when comparing between groups
oranimals. #P < 0.05, ##P < 0.01 and ###P < 0.001 denote significance
for within-animal comparisons. All statistics areindicated in the figure
legends. Further details for statistics are provided in Supplementary
Tables 5 and 6, including effect sizes and confidence intervals. All
primary dataare deposited in publicly accessible repositories (https://
purl.stanford.edu/gy983cn1444).
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Extended DataFig.1|Further characterizations oflong-term STFP memory,
and description of AOB-projecting neurons inthe COApmand TRAP2
mapping of STFP-training-activated neuronsinthe COApm.a, CD1 mice
exhibitthe sameinnate food preference as C57BL/6 ) mice for cocoa over
cinnamon (left) and this innate food preference is similarly reversed by STFP
training (right) asshownin Fig.1a,b for C57BL/6 ) mice (for each section,
experimental strategies are shown on the leftand summary graphs of food
consumption on theright [left,innate food-preference measurements, n =14,
t;3=3.825,p=0.0021; right, STFP measurements,n=15,t,,=3.680,p=0.0025,
two-tailed paired Student t-test]). b,c. Exposure of C57BL/6  mice to cinnamon
odour alone (b) or toa cinnamon-scented fake mouse (c) does not alter
theirinnate preference for cocoa over cinnamon different from STFP (left,
experimental design; middle and right, percentage of cocoavs. cinnamon

food eaten (middle) or of cinnamon food eaten (right) at different time points
[b,n=17,3weeks, p=0.0110; 9 weeks, p=0.0063;¢c,n=9,day 0, p=0.0117,
two-tailed Wilcoxon signed-rank test]).d, Long-term STFP memory is sustained
beyond 3 weeks after aone-trial STFP training sessionin C57BL/6 ) mice even
when memory acquisitionis nottested onday O after STFP training (left,
experimental design; right, percentage of food eaten at the 3-week test
[n=10,p =0.0488, two-tailed Wilcoxon signed-rank test]). e, Long-term STFP
memory is sustained for at least 45 weeks after asingle STFP training session
asrevealed by retesting the same cohort of mice over a3-45week period (left,
experimental design; middle and right, percentage of cocoavs. cinnamon

food eaten (middle) or of cinnamon food eaten (right) at different time points
[n=9;dayO0,t;=2.718,p=0.0263, two-tailed paired Student t-test; 6 weeks,
p=0.0117;9 weeks, p = 0.0273;15weeks, p=0.0273; 30 weeks, p=0.0391,
two-tailed Wilcoxon signed-rank test]). f, Expanded representative images
ofthe COApm after unilateral retrograde labelling of COApm neurons using
retro-AAVsinjected into the AOB (from the boxed areas of Fig.1c, n = 3 mice).
g-1,Immunohistochemical staining of COApm neurons using antibodies to
glutamate (g-i) or GABA (j-1) demonstrates that all AOB-projecting COApm
neurons are glutamatergic and that only aminority of layer-2 neurons buta
majority of layer-3 neurons project to the AOB. AOB-projecting neuronsin the
COApmwereretrogradely labelled by stereotactically infecting the AOB of Ai75
reporter mice with AAV2retro-Cre (g,h,j,k, representative images of stained
COApm sections[scalebarsapplytoallimages of aset];i,l, percentage of
glutamate- (i) and GABA- positive neurons (I) in AOB-projecting tdT+and AOB-
nonprojecting tdT-neuronsin layers2and 3[i, F; s = 63.5,p = 6.4 x 10~°, one-way

ANOVA with Tukey post-hoctest; 1, p=0.0006, Kruskal-Wallis with post-hoc Two-
stage linear step-up test]; n =3 mice). m-o, Cell-type tracing of AOB-projecting
neurons of the COApmusing defined Cre-driver mouse lines demonstrates that
AOB-projecting neurons of the COApm are glutamatergic vGluT2- and CAMKII-
expressing neurons, whereas VGAT-, SST-and PV-expressing, presumptively
GABAergic, neuronsare notlabelled (m, experimental strategy whereby the
AOB of various Cre-driver lines wasinjected with retro-AAVs encoding tdTomato
intheabsence and GFPinthe presence of Cretoselectively label AOB-projecting
neurons with GFP; n, quantifications of GFP-positive cells as per cent of total
labelled cells [sum of GFP- and tdTomato-positive cells]; o, representative
images of COApm sections [n =3 mice for each group]). p, Representative
images of COApm sections (top) with reconstructed neurons filled with
biocytinto map the local dendrites of neurons. Layer2tdT+n =7, layer 2
tdT-n=6,layer3tdT+n =6, layer3tdT-n =3, cells.q, Summary graphs of the
neuronal capacitance correspondingto the layer-2 and layer-3 tdT+and tdT-
neuronsrecordedinFig.le (p =8.03 x 107, Kruskal-Wallis with post-hoc Two-
stage linear step-up test) (layer 2:tdT",n=17,tdT-,n=13; layer 3: tdT",n =15,
tdT-,n=20, cells). Note that only AOB-projecting tdT+layer-3 neurons that
constitute the vast majority of the AOB-projecting neurons of the COApm
exhibitanintrinsically higher capacity, suggesting alarger size. r-v, Further
characterization of TRAP2 mapping of activated COApm neurons in Fig.1h-j,
confirming thatonly STFP training but not odour by itself or the home cage
activates COApmneurons (r, merged representative images of TRAPed cells
(tdT", red) and EGFP (green) in COApm sections (top) and expanded single-
colour views of sections from STFP-trained mice (bottom), complementing
Fig.1h;s-v, cell density quantifications of layers 2 and 3 of the COApm, with
graphs showing the absolute (s) and GFP-normalized (t) density of cells
co-labelled for GFP+and tdT+[s, layer 2, F, ,,=3.733, p = 0.0249; layer 3,
F,16=6.430,p=0.0028;t, layer 2, p=0.0392 (Kruskal-Wallis with post-hoc
Two-stage linear step-up test), layer 3, F, ,,=4.517, p = 0.0124], or showing the
density of tdT+ cells lacking GFP (u) [layer 3, F, ,,=4.688, p = 0.0107], or
showing the total density of GFP+ cells (v)). One-way ANOVA with post-hoc
Tukey testexcept for tlayer 2. w, The total area of layers 2 and 3 of the mouse
COApm does not change after odour exposure or STFP training. Forsand w,
home cage n =3, conspecificn=4,food choicen=3,STFP failedn=6,STFP
successn=5mice. Dataare means +s.e.m. For details and statistical
comparisons, see Supplementary Tables5and 6. * #p < 0.05, **, ##p < 0.01,

e ###p < 0.001.
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Extended DataFig.2|See next page for caption.




Extended DataFig.2|Experimentsincluding extensive further controls
toshow that TeNT-induced silencing of COApm neurons specifically and
efficiently impairslong-term STFP memory. a,b, Percentage of food eaten
atday 0 and 3 weeks after STFP training (a, AAVs-TeNT-EGFP or EGFP were
injected 3weeks prior to STFP training in Fig.2a[Day O GFP,p=0.0003;3
weeks, GFP, t,,=4.854,p=8.5x10"%, GFP,n =22, TeNT, n =15]; b, mice with
successful STFP training were injected with the same AAVs one day after STFP
traininginFig.2b [day O, GFP,p = 0.0020, TeNT, t,=7.309, p = 0.0002; 3 weeks,
GFP,t,=8.721,p=1.1x10"], GFP,n =10, TeNT,n = 8). ¢, TeNT silencing of the
COApm after STFP training also blocks long-term STFP memory when usinga
one-trial test procedure that omits tests of short-term STFP memory acquisition
onday O (left, experimental strategy; middle, percentage of cocoa-and
cinnamon-flavoured food consumed at 3 weeks; right, percentage of cinnamon-
flavoured food eaten at 3 weeks in the middle [GFP, n =14; TeNT, n=10; middle,
cocoavs.cinnamon, GFP,p=0.0295; TeNT, n = 0.0645; right, p=0.0073]).

d-j, TeNT-induced silencing of the COApm has no effect oninnate food
preference (d), total food intake (e), body weight (f), buried food finding

test (g), olfactory sensitivity (h), contextual fear memory (i) and open field
behaviours of mice (j), demonstratingits selectivity for long-term STFP
memory formation withoutaltering olfaction (d,n=12,p = 0.0068; e, GFP,
n=36;TeNT,n=25;f, GFP,n=14; TeNT,n=10; g, GFP,n=19; TeNT, n=14; h, GFP,
n=11;TeNT,n=9;i,GFP,n=8; TeNT,n=6;j, GFP,n=8; TeNT,n=6).k, TeNT
silencing of the COApm does not impair non-associative olfactory memory
(left, experimental strategy; middle, anise preferenceindex of naive versus
pre-exposed mice does not differ between GFP (p = 0.0181) vs. TeNT groups
(p=0.0137); right, ratio of pre-exposed anise preference index/naive anise
preferenceindex [GFP,n=15; TeNT, n=10]).1, Quantifications reveal that TeNT
silencing of COApm neurons does not alter social behaviours (observers’
sniffing at demonstrators’ muzzle, body, and anogenital areas, observers’ self-
grooming, and total fighting bouts between observers and demonstrators as
scored during the 30-minute social interaction phase of STFP training [GFP,
n=11;TeNT, n=10]). m, TeNT-mediated silencing of COApm neurons has no
effect on odour preferences using aversive and attractive odour pairs. Aversive
odour, 2MB, 2-methylbutyric acid; and attractive odour, 2PE, 2-phenylethanol
(GFP,n=13; TeNT,n=11).n, COApm neurons are not directly activated by
aversive or attractive odours as analysed by FOS immunohistochemistry,
whereas COApl neurons fully respond, thus constituting a positive control®
(top; experimental strategy; bottom left, sample images of the COApl; bottom
right, summary graph of FOS+neurons [COApI, F,,=22.10,p=9.4 x 10™*; water
n=4,2MBn=3,2PEn =3, mice]). 0, Representative injection siteimages (right)
and schematic of AAV constructs (left) for Fig. 2c,d (o1, Cre-on EGFP & TeNT; 02,
Cre-off EGFP & TeNT combined with Cre-on tdT). p, mEPSCrecordingsinlayer2

ofthe COApm demonstrate that Cre-off TeNT expression effectively silences
non-AOB-projecting neurons. Recordings were performed in AOB-projecting
ornon-AOB-projecting neurons, both of whichreceive local synapticinputs
from non-AOB-projecting neurons expressing control proteinsor TeNT

(p1, experimental strategy; p2, example traces; p3, mEPSC frequency (left)
and amplitude (right) summary graphsin the four conditions of pland p2 [left,
p=6.4x107;EGFP only set: GFP+n=14/4,tdT",n =15/4; EGFP-TeNT set: GFP+,
n=11/3,tdT", n=10/4, cells/mice]). q-s, Repeat of the experimentsin Figs.1a,b
and 2bwithadifferentfood odour pair (cumin vs. thyme) demonstrates that
C57BL/6 ) mice exhibitaninnate food preference for thyme (q) that canbe
reversed by STFP training® (r), and that with this food odour pair TeNT-induced
silencing of COApm AOB-projecting neurons after STFP training also inactivates
long-term STFP memory formation (s). Mice used insincluded successfully
trained miceinr (q & r:left, experimental strategy; right, summary graph of
percentage of food eaten[q,n=15,p=1.2 x107% r,n =11]; s1, injection strategy;
s2left, percentage of cumin-flavoured food eaten; s2 right, memory retention
index [GFP,n=12, TeNT,n=12, with TeNT inthe leftgraph, p=9.8 x 10™* right
graph, p=1.4x107]). t, Selective activity-dependent TeNT-induced silencing of
COApm neurons using TRAP2 mice severely impairs long-term STFP memory
(t1, experimental strategy; t2, injection sites of COApm (top) and their
projections to the AOB (bottom); t3, percentage of cinnamon-flavoured food
onday 0 and 3 weeks (left) and memory retentionindex (right) [GFP,n =14; TeNT,
n=9.t3, left, TeNT, t;=5.004, p=0.0010; right, p=1.1x107*]). u,v, Percentage
offood eaten atday 0 and 3 weeks after STFP training (see Fig. 2e,f) (u, GFP,
n=10,TeNT,n=9;day0, GFP,t,=2.662,p=0.0260; 3 weeks, GFP,p =0.0273.
v,GFP,n=9; TeNT,n=7;day 0, GFP,p=0.0039; TeNT, t,=5.658, p = 0.0013; 3
weeks, GFP,p=0.0039; TeNT, t, = 4.973, p=0.0025). w, Experimental strategy
(left) and example images of injection sites (right) for experiments in Fig. 2g—j.
x, TeNT silencing of OFC neurons 7 days after STFP training impairs long-term
STFP memory (left, experimental strategy; middle, percentage of cinnamon-
flavoured food on day O and after 3 weeks; right, memory retentionindex
[GFP,n=9; TeNT,n=9.Middle, TeNT, ty=4.495, p=0.0020; right, t,, = 3.527,
p=0.0028]). Dataare means + s.e.m. Statistics: two-tailed paired student ¢-
test:a (3 weeks-GFP), b (day 0-TeNT, 3 weeks-GFP), t3 (left-TeNT), u (day O-GFP),
v(day 0-TeNT, 3 weeks-TeNT), x (middle-TeNT); two-tailed unpaired student
t-test: x (right); two-tailed Wilcoxon signed-rank test: a (day 0-GFP), b (day
0-GFP), ¢ (middle),d, k, q,s2 (left-TeNT), u (3 weeks), v (day 0-GFP, 3 weeks-
GFP); two-tailed Mann-Whitney test: c (right), t3 (right), s2 (right); one-way
ANOVA with Tukey post-hoctest: n (COApl); Kruskal-Wallis with post-hoc
Two-stage linear step-up test: p3 (left-frequency). For details and statistical
comparisons, see Supplementary Tables 5and 6. #, *p < 0.05, ##,**p < 0.01,
###,***p <0.001.
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Extended DataFig. 3 | Further experimental data for temporally

defined COApm-silencing experiments using chemogenetics and
electrophysiological analyses oflong-term STFP memory. a, Validation
ofthe efficacy of chemogenetic silencing of COApm neurons in successfully
STFP-trained mice (al, exampletraces [greentrace=200 pA currentinjection];
a2, spike frequency before and after perfusionof 10 uM CNO [n =12 cells,
F1154=196.2,p <1.0 x 107%]). b, Summary graphs of the cinnamon-flavoured
food consumptionin STFP memory tests on day O and at 3weeks during the
chemogenetics experiments (corresponds to Fig.3d-g, bl, CNO-GFP,n=12
mice; CNO-hM4Di, n=9;saline-GFP,n =10, saline-hM4Di, n=7;b2, CNO-GFP,
n=9;CNO-hM4Di, n =10; saline-GFP, n = 7, saline-hM4Di, n = 8; b3, CNO-GFP,
n=11; CNO-hM4Di, n = 8; saline-GFP,n =10, saline-hM4Di, n = 8; b4, CNO-GFP,
n=10; CNO-hM4Di, n = 8; saline-GFP,n =10, saline-hM4Di, n = 7; [bl, CNO,
hM4Di,3wkvs.day 0, t;=6.927,p=1.2 x10™*; b4, CNO, hM4Di, 3wk vs. day O,
t,=4.092,p=0.0046]).c, Chemogeneticsilencing of the COApm has no

effect onthree-chamber social behaviours (c1, experimental strategy; c2 & c3,
summary plots of sociability (c2) and social novelty behaviours (c¢3), with left
andrightgraphs showing the durations and meanratios (indices) ofinteractions
[GFP,n=10; hM4Di, n=11; 2, left, GFP, t,=4.840,p =9.2 x10~*; hM4Di,
t,0=2.280,p=0.0458; c3, left, GFP,t,=4.083,p=0.0027; hM4Di, t,, =2.953,
p=0.0145]).d, Chemogenetic silencing of AOB-projecting COApm neurons,
when applied during the 3 weeks after STFP training but not when applied
duringthe 40 minbefore the 3-week long-term STFP memory test, also blocks
STFP memory formation thatis tested with the cumin vs. thyme food odour
pair different from the cinnamon vs. cocoafood odour pair used in analogous
experimentsinFig.3 (d1, experiment strategy; d2 & d3 left, percentage of
cumin food consumed on day O and after 3 weeks; d2 & d3 right, memory
retentionindices [d2, GFP,n=13; hM4Di,n =16, left, h\M4Di, p =3.1x10~%; right,
p=6.0x107%d3, GFP,n=10; Gi,n=9]). e,f, Chemogeneticsilencing of AOB-
projecting COApm neurons for 24 h (e) or for 48 h (f) after STFP training does
notimpair recent STFP memory formation (e1 & f1, experimental strategies;

e2 &f2left, percentage of cinnamon food consumed onday O anddaylor2;

e2 & f2right,memory retentionindices [e2, CNO-GFP,n=8; CNO-hM4Di,n=11;
saline-GFP,n=12;saline-hM4Di,n=10,CNO, GFP,day1vs.dayO0, t,=2.474,
p=0.0426;f2,GFP,n=16; Gi,n =15]). Asaline control was only performed for
the24 hbutnotthe48 htestsincethe 24 hchemogeneticinhibition had no effect
onrecent STFP memory formation. g, Chemogenetic silencing of the ventral
hippocampus for 48 h after STFP training significantly impairs recent STFP
memory formation (g1, experimental strategy; g2 left, percentage of cinnamon-
flavoured food eaten on day 0 and day 2; g2 right, memory retentionindex
[mCh,n=9;Gi,n=9;g2left, hM4Di, t;=2.782, p=0.0239; g2 right, p=0.0315]).
h, Chemogeneticsilencing of COApm-derived presynaptic terminalsin the

AOB, implemented by CNO infusions for 3 weeks after STFP training, doesn’t
alterlong-term STFP memory formation, thereby confirming TeNT-silencing
experiments showing that the AOBisonlyinvolved in STFP memory acquisition
butnot consolidation (h1, experimental strategy; h2, left, percentage of
cinnamon-flavoured food eaten; right, memory retentionindex [GFP,n=7;
hM4Di, n =9]).i, Experimental strategy for electrophysiological analyses.
j-1,Successful STFP training does not alter the intrinsic excitability of AOB-
projecting COApm neurons at 1-2 days after STFP training (j) but produces a
significant shift at1week (k) or 3 weeks after STFP training (I) (j-1top, example
traces; j-1bottom left, summary plots of the spike frequency as a function of
injected current;j-1bottomright, summary graphs of the calculated current
required to elicit minimal spiking (I,) [day 1-2, uncued food, n = 20/4, STFP
success, n=23/4;1week, uncued food, n=21/4,STFP success, n=26/6,STFP
failed, n=21/4;3 week, uncued food, n=23/5,STFP success,n=25/6, STFP
failed, n=15/3, cells/mice; k lower left, F, ;0o =20.06, p=5.1x10"°, STFP success
vs.uncued food p =8.9 x1075, STFP success vs. STFP failed p=7.2 x10™%; k lower
right, F, ¢s=4.426, p = 0.0158; I lower left, F, 3., =16.84,p=1.0 x 107, STFP
successvs.uncued foodp=2.8 x107°, STFP success vs. STFP failed p=7.1x10"%;
Ilowerright, F, ;o =4.212, p=0.0194]). m-r, Successful STFP training does not
alter the resting membrane potential (m), input resistance (n), firing threshold
(0), amplitude (p), or after-hyperpolarization amplitude (r) of layer-3 AOB-
projecting COApm neurons at 1-2 days, 1 week or 3 weeks after STFP training
and does not affect the axon potential rise time (AP dV/dt max) at 1-2 days after
STFP training (q left) but modestly increases this parameter at1 week after STFP
training (q middle, F, (s=4.316, p = 0.0174) and decreasesit at 3 weeks after
STFPtraining (qright, F, ¢, =3.040, p=0.0553) (n’sare the same asinj-1, day
1-2,uncued food, n=20/4, STFP success, n = 23/4; 1week, uncued food, n=21/4,
STFPsuccess, n=26/6,STFP failed, n=21/4; 3 week, uncued food, n=23/5,
STFP success, n=25/6,STFP failed, n=15/3, cells/mice; [n, right, F, (, = 3.114,
p=0.0517; 0, left,p=0.0228]).s, Successful STFP training does not alter the
AMPAR/NMDAR ratio (s1) or the rectificationindex of AMPAR EPSCs (s2) of
layer-3 AOB-projecting COApm neurons (sl left, example traces; s1right,
AMPAR/NMDAR ratiosummary graph; s2 left, example traces; s2 right, AMPAR
rectificationindexsummary graph [s1, uncued n=17/4, STFP success n=17/4;
s2,uncued n=19/4,STFP success n =17/4, cells/mice]). Dataare means +s.e.m.
Statistics: two-tailed paired student t-test: b1 (CNO-hM4Di), b4 (CNO-hM4Di),
c2 (left), c3 (left), e2 (CNO-GFP), g2 (left-hM4Di); two-tailed Wilcoxon signed-
rank test: d2 (left); two-sided Mann-Whitney test: d2 (right), g2 (right), o (left);
one-way ANOVA with Tukey post-hoctest: kand I (lower right), q (middle
andright), n (right); two-way ANOVA: a2, k and I (lower left). For details, see
Supplementary Tables 5Sand 6. #, *p < 0.05, ##, **p < 0.01, ###, ***p < 0.001.
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Extended DataFig. 4 |See next page for caption.




Extended DataFig. 4 |In-depth MERFISH spatially resolved transcriptomics
analysis of cell types and their specific markers and of the gene-expression
changesinthe COApm after STFP training. a, Unbiased UMAP clustering of
all cellsidentifies a total of 1.6 million cells in spatially revolved transcriptomic
sections (n =4 mice per experiment). b, Spatialimages of all cell typesinboth
coronal sections analysed by MERFISH. ¢, tdTomato spatial expression pattern
reveals selective labelling of the COApm, ventral hippocampus, and entorhinal
cortexinthe coronalsection containing the COApm. Note that the injection of
retro-AAVs triggering tdTomato expressioninto the AOBis likely toinvolve
limited spillover into the adjacent MOB and AON. As aresult, the tdTomato
labelling of the ventral hippocampus and entorhinal cortex could atleast in
partbe due to MOB and/or AON projections.d, UMAP plots depict unbiased
clustering ofall cell typesin the COApm, ventral hippocampus,and OFC. The
barsontheright ofthe UMAP plotsillustrate the cell composition percentages.
e,f,Markers forall celltypes (e) and all neurons (f) in all three brain regions as
determined by MERFISH spatially resolved transcriptomics. g,h, UMAP plots
showing that all cell types were consistently found in the COApminthe three

experimental groups (home cage, odour, and STFP training) (g) but that td T+
AOB-projecting COApm neurons are concentrated in the main Otof+neuron
typeinthe COApminall three groups (see Fig. 4g, COApm, for the definition
of neuron clusters). i, Zoomed-in MERFISH image of the COApm toillustrate
celltypes, with cell annotations listed on the right.j,k, Volcano plots of DEGs
identified inacomparison of excitatory AOB-projecting vs. AOB-nonprojecting
(tdT+ vs. tdT-) neurons of the COApm reveal no major changes in home cage (j)
orodour (k) conditions in contrast to the STFP condition (see Fig. 4h). For
volcano plots, dotted lines indicate an FDR<le-10 by Benjamini-Hochberg
Methodor, anda0.5log, fold change (FC).1, Volcano plots of DEGs identified in
acomparison of excitatory tdT+ neuronsin the STFP vs. home cage conditions
complementing the volcano plot for the STFP vs. odour comparison shownin
Fig.4i. FDR<le-10, log,FC < 0.5.m,n, Volcano plots of DEGs identified in the
comparison of STFP vs. home cage & odour conditions inastrocytes (m) and
microglia (n). FDR<1e-5,log,FC < 0.5.0, Expanded heat map for the STFP-
conditionenriched genes of the COApm showninFig. 4j. Genesrelated to
synapse formation areinbold.
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Extended DataFig. 5|Spatially resolved transcriptomics of the ventral
hippocampusreveals aunique gene-expression architecture and shows
that STFP-training-induced DEGs differ between the COApm and the ventral
hippocampus. a, UMAP plot of all tdT+ AOB-projecting neuronsin the ventral
hippocampus pooled from home cage, odour, and STFP training groups.
b,Image of all cell typesin the ventral hippocampus revealed by MERFISH (left)
and of the spatial localization of td T+ cellsin the ventral hippocampus (right,
redonblue). c-e,Expression levels of three neurotransmitter markers (¢, Gadl
[GABA synthesis]; d, Slc17a7 [vesicular glutamate transporter vGluT1]; e, Slc17a6
[vesicular glutamate transporter vGluT2]) in the 14 types of neurons in MERFISH
analyses of the ventral hippocampus of the pooled groups. f-h, Volcano plots
uncovering DEGsinacomparison of tdT+vs. tdT- excitatory neurons of the
ventral hippocampusin home cage (f), odour (g), or STFP-trained mouse

groups (h). For volcano plots, dotted lines indicate an FDR <le-10 by Benjamini-
HochbergMethod and a 0.5log, fold change (FC). ,j, Volcano plots showing
DEGsinacomparisonoftdT+excitatory neurons between STFP vs.home cage (i),
and STFPvs.odour mouse groups (j). FDR<le-10, log,(FC) < 0.5.k,l, Volcano
plotsrevealing DEGsinacomparison of STFP vs. home cage & odourin
astrocytes (k) and microglia (I). FDR<le-5, log,(FC) < 0.5. m, Heat maps of
enriched genesin the ventral hippocampus. The left heat map shows an
expanded analysis of enriched genesin the ventral hippocampus corresponding
totheright panel of Fig. 4j, while the right heat map shows the expression

of COApm-enriched genes (from the left panel of Fig. 4j) in the ventral
hippocampus. n-p, Scatter plots comparing DEGs identified tdT+vs. tdT-
neuronsinthe COApm and the ventral hippocampus under home cage (n),
odour (o) or STFP (p) conditions.
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Extended DataFig. 6 |See next page for caption.



Extended DataFig. 6 | Spatially resolved transcriptomicsidentifies major
changesingene expressioninthe OFC that are driven mainly by odour
perception even thoughthe OFCdoesnotreceivedirectinputsfromthe
olfactorybulb. a-c, Expression levels of three neurotransmitter markers

(a, Gad1[GABA synthesis]; b, Slc17a7 [vesicular glutamate transporter vGIuT1];
c,SIcl7a6 [vesicular glutamate transporter vGluT2]) in the 14 types of neurons
identified in MERFISH spatially resolved transcriptomic analyses of the OFC
inthe pooled home cage, odour, and STFP-trained groups. d-f, Volcano plots
analysing gene-expression changesin excitatory neurons by comparing odour

vs.home cage (d), STFP vs. home cage (e), and STFP vs. odour (f). For these and
the following volcano plots, dotted lines indicate an FDR <le-5 by Benjamini-
Hochberg Method and a 0.5log, fold change (FC). g-i, Same asd-fbutin
inhibitory neurons.j, Volcano plots analysing gene-expression changesin
astrocytes (top) and microglia (bottom) by comparing STFP training conditions
with home cage and odour conditions. k, Heat map of OFCenriched genesin
excitatory neurons. I, Heat map illustrating the expression of COApm-enriched
genes (same genes as in the left panel of Fig. 4j) in the OFC.
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Extended DataFig.7|scRNA-seqreveals aunique cellular composition of
the COApm thatonly partly overlaps with that of the PFC neurons, as shown
by anintegrated analysis. a, In-depth scRNA-seq of COApm identified six
major cell types that aresimilarly presentin all three behavioural conditions
analysed (home cage, odour only,and STFP training). b, The expression of
Nrxn3,Snap25, Rbfox3, and Sytlis enrichedin all neuron clusters. ¢, The glia
marker Agp4isexpressedin astrocytes, Oligo2 and Pllp in OPCs, and Ctssin
microglia.d, Subclustering of COApm neurons reveals six principal neuronal
celltypesthataresimilarly abundantin all three conditions. e, Expression of
the excitatory neuron markers Slc17a7 and Slc17aé6 is enriched in clusters1, 2,
and 4, whereas expression of the inhibitory neuron marker GadIis enrichedin
clusters3and 5. f, Heat map of the distinct marker genes of each neuronal cell
typeinthe COApm.g, Heat mapillustrating aspecific gene cluster thatis
selectively enriched in the unusual progenitor-like neuron cluster 2 in the

COApm, aneurontype that was not previously identified. h, Violin plots showing
thatone or more neuronal marker genes (Nrxn3, Snap25, Rbfox3, SytI) are
expressed in the six neuron clusters of the COApm. i, Integrated analysis of PFC
and COApmnon-neuronal cellsreveals six cell clusters. j-p, Integrated analysis
of neuronal transcriptomes of the COApm and the prefrontal cortex (PFC)*®
reveals nine clusters corresponding to neuronal celltypes C'1-C’9 (1.C’'1-1.C’9).
Four of these neuronal cell types are found in both the COApmand PFC (1.C’1-
1.C’3,1.C’7) (j). Asacross preference, Cl cells from COApmwere distributed
inl.C’'land1.C’3 (k), C3cellsin1.C’2(m),and C5in1.C’7 (0). Three clusters
were more abundant in the COApm than the PFC, including1.C’5 (Mroh2a*,
corresponding to C2) (m),1.C’8 (Ndnf*, C4) (n),1.C’9 (Mup18, C6) (p). Two
neurontypes,1.C’'4 (Arhgap25*) and .C’6 (Tshz2") were enriched in PFC.

q,r, Expression levels of distinct cell markers for the nine types of neurons are
showninaviolin plot (q) and heat map (r).
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Extended DataFig. 8|See next page for caption.



Extended DataFig. 8| Differential gene expressionindifferent neuron
subtypes and glial cell types ofthe COApm compared betweenhome

cage, odour and STFP-trained mice uncovers widespread transcriptome
changesinthreetypesofneuronsandinastrocytes.a-c, Comparisonofthe
gene-expression signature of cluster 1neurons that project (tdT") or do not
project (tdT-) tothe AOB under the home cage (a) or odour (b) conditions, and
correlation of the DEGs under these two conditions (c). d, Correlation analysis
of MERFISH and scRNA-seq datasets reveals excellent correspondence
between the two methods (R?was calculated by the linear regression model).
e, Volcano plots analysing gene-expression changesinduced by the three

behavioural conditions (home cage, odour, and STFP training) for cluster1,2
and 3 neurons uncover widespread STFP-specific changesin AOB-projecting
(tdT") and non-AOB-projecting neurons (tdT-) of cluster 1and in the neurons
of cluster 3, but only few STFP-specific changesin cluster 2. f, Volcano plots
analysing gene-expression changes induced by the three behavioural
conditions (home cage, odour, and STFP training) in OPCs, microglia, and
astrocytesidentify major STFP-specific changes only inastrocytes butnotin
OPCsormicroglia. Forallvolcano plots, dotted lines indicate an FDR<le-5 by
the Benjamini-Hochberg method and alog, fold change (FC) of 4 or 5.
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Extended DataFig.9|Retrograde pseudotyped rabies virus tracing of AOB-
projecting COApm neurons. a, Experimental strategy. b, Representative
images of starter cellsininjection sites, with td T+ starter cellsshowninred.
Notethatalarge fraction of the green GFP+cells do not overlap with the red
starter cells, demonstrating that the COApm contains local synaptic networks.
c,Representativeimage of the contralateral COApmillustrating that asubset
of neuronsinlayer 2 forms synaptic inputs onto the contralateral COApm.
d-x, Representative coronal sections of brain slices showing retrograde
pseudo-rabies virus-labelled inputsinto COApm AOB-projecting neurons
(green=GFP). Abbreviations designating brain regions are explained below
theimages, and the positions of the sections arelisted in the top right corner

of everyimage. Scalebar in the lastimage applies to allimagesinaset.

y,z, Quantification of the relative number of synaptic inputs onto AOB-
projecting neuronsinthe COApm fromother regions of the entire mouse brain
fromimages acquired from 5 mice. (y) ipsilateral; (z) contralateral. Note that
identified multipleipsilateral brainregions, including the AOB, provide inputs
into COApm neurons, consistent with our optogenetic recording results
(Fig.1d-fand Extended Data Fig. 1p,q). In contrast, few contralateral brain
regions provide synapticinputs, including contralateral layer-2 COApm neurons.
Theresults agree with retrograde tracing data obtained using Fluorogold®, but
extend these datainidentifying AOB-projecting COApm neurons as targets.
Dataare means *s.e.m. (n =5mice).
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Extended DataFig.10|Brain-wide mapping of presynaptic projections
by COApm neuronsto target brain regions using SynaptoTag tracing.
a, Experimental strategy. Three different types of SynaptoTag mapping were

performed: mappingall projections from the COApm by standard SynaptoTag®*;

mapping COApm AOB-projecting neurons using Cre-dependent Cre-on
SynaptoTag®; and mapping only the COApm non-AOB-projecting neurons
using Cre-off SynaptoTag. b, Maps of SynaptoTag constructs that co-express
mCherry asacytoplasmic marker allowing tracing of axons with GFP-tagged
synaptobrevin-2 as a presynaptic terminal marker. c-e, Representative images
of SynaptoTag mapping experiments analysing projections of all COApm
neurons (c), of only AOB-projecting neurons (d), or of only non-AOB-projecting
neurons (e). Injection site images of the COApm are shown on top, and images
fromdifferent target regions are shown below, with the regionsidentified by
numbers that are explained on theright of the images. Scale bars apply to all
imagesinasetincande.Ind,scalebarinthe AP+1.97 image applies to therest.
f,g, Quantifications of target projections of COApm neurons obtained with the

three different SynaptoTag strategies described above, with the intensity

of SynaptoTagstaining normalized to the injection site signalinthe COApm.
Regular SynaptoTag, n = 3; Cre-on SynaptoTag, n = 4; Cre-off SynaptoTag,
n=5,mice.Forf,F,,,;,=20.74,p=6.2x107%; forg,F, ;,=31.61,p=1.2x1075.

h, Summary of the inputs and output maps of the COApm as determined by
pseudo-rabies virus and SynaptoTag tracing experiments. i,j. Supplementary
datafor Fig. 6.1, representative image of TeNT expressionin the AONm.

j, percentage of cinnamon-flavoured food consumed during day 0 and 3-week
food-choice test for Fig. 6b, CNO-GFP, n =17; CNO-hM4Di, n = 9; saline-GFP,
n=15,saline-hM4Di,n=9.CNO, hM4Di, 3wk vs.day O, tg =2.739, p=0.0255.
Alldataare means *s.e.m. Two-way ANOVA with post-hoc Tukey test was used
todetectdifferencesin the SynaptoTag tracings. Dataare transformed by
taking square root (f) or Ln (g) first to make sure dataare normally distributed
and have equal variances. *p < 0.05, **p < 0.01, ***p < 0.001. Paired two-tailed
student t-test was applied to (j), with #*<0.05, **<0.01, ***<0.001. For details,
see Supplementary Tables 5and 6.
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Data collection  -Clampex 10.4.0.36 data acquisition software (Molecular Devices)
-NIS-Elements AR 5.21.01 (Nikon)
-Olympus VS200 ASW 3.2.1 (Olympus)
-FreezeFrame (version 4)by Coulbourn Instruments
-Novaseq6000 (illumina)
-MERFISH images were collected with Vizgen MERSCOPE.

Data analysis For behavior, imaging, and electrophysiological analysis:
-BIOBSERVE, Version 3.01 for behavior experiments.
-FreezeFrame (version 4)by Coulbourn Instruments for fear conditioning experiments
-Clampfit 10.4.0.36 for electrophysiological recordings
-NIS-Elements AR Analysis 5.21.01 (Nikon) for confocal image analysis
-Olympus OlyVIA 3.2.1, Fiji ImageJ (1.54b), and Neurolnfo 2021.1.5 for tissue imaging analysis
-GraphPad Prism 10 and SPSS 26 for statistical analysis
-CellProfiler (4.2.6)
For single-cell sequencing:
-R (version 4.2.2)
-Rstudio (version 2022.12.0+353)
-Seurat v4.9.9 by the Satija Lab (https://satijalab.org/seurat/).
For MERFISH imaging analysis:
-R(version 4.2.2) and Rstudio (version 2022.12.0+353)
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-MERIin pipeline (2020 version, April version, git: Zhuanglab/MERIin), CellPose (2.0), Scanpy (1.9.1), Harmony (0.1.1) and Leiden (0.4.3) were
applied.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All primary data for this paper are deposited in publicly available databanks (single-cell RNAseq data accession numbers: GSE256522 [for the new COApm data
reported here] and GSE152632 [for the previously published PFC data]; MERFISH data: https://doi.org/10.6084/m9.figshare.25135124; all other primary data are
deposited in the Stanford Digital Repository (SDR; https://purl.stanford.edu/gy983cn1444).

Mouse mm10 genome was used in the scRNAseq analysis.
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other socially relevant
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Population characteristics N/A
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes. Sample sizes in behavior tests and electrophysiological recordings were based
on work in previous publications (PMID28683263, PMID32369733). For imaging experiments, at least three animals per genotype or condition
were used based on a previous publication's results (PMID26232228). For single-cell RNA sequencing experiment, 3-5 mice per group were
sequenced. For MERFISH images, 4 mice per group per section were imaged. Sample sizes for transcriptomics experiments were based on
previous work (PMID38326616, PMID33177708).

Data exclusions | In behavior experiments, animals in which virus injections or canule implantations missed the target brain region were excluded. In tracing
experiments, animals with virus injections that missed the target brain region were excluded. In single-cell RNA sequencing experiment, genes
were removed if they appeared in fewer than 5 cells. Cells with fewer than 500 genes or with less than 150,000 reads were also removed. In
addition, cells with more than 5% reads as ERCC and more than 5% mitochondrial reads were also excluded from analysis.

Replication All experiments were performed with at least three independent experimental replicates, not just pseudo-replicates.
Randomization  Animals were randomized by cage prior to surgeries or behavioral training. For example, for pre-training injections male B6 mice in a cage
with five animals were randomly assigned to the hM4Di or GFP groups in a counterbalanced manner. For imaging studies, littermates or

same-aged mice were randomly assigned to each condition.

Blinding All experimenters were blinded to the identity of the mice or the samples analyzed for all experiments except for the tracing experiments in
which the viruses can be identified by the observed infection patterns.
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Antibodies

Antibodies used Primary antibodies:
anti-glutamate, Rabbit polyclonal, 1:1000, Sigma-Aldrich G6642; anti-GABA, Rabbit polyclonal, 1:1000, Sigma-Aldrich A2052; anti-
NeuN, mouse monoclonal clone A60, 1:1000, Millpore, MAB377; anti-GFP, Rabbit polyclonal, 1:1000, Invitrogen A11122; anti-
mCherry, Rat Monoclonal 16D7, 1:1000, Invitrogen M11217.anti-Fos, Synaptic System 226308, Guinea pig monoclonal Gp108BS5,
1:1000
Secondary antibodies:
For immunocytochemistry, goat anti-rabbit Alexa Fluor 488 1:1000 (Thermo Fisher Scientific, A11034), goat anti-rat Alexa Fluor 546
1:1000 (Thermo Fisher Scientific, A11081), goat anti-mouse Alexa Fluor 647 1:1000 (A21236). For biocytin labeling, Streptavidin
Fluor™ 647 conjugate (S21374, Invitrogen, 1:1000) was used.

Validation Above antibodies were validated in previous publications:

anti-Glutamate and anti-GABA: Shang et al., 2018, Nat Commun., 9(1), 1232
anti-GFP and anti-NeuN: Wang et al., 2020, Neuron, 107(1):144-157.e4
anti-mcherry: Zhang et al., 2016, Nat Neurosci., Dec;19(12):1733-1742
Streptavidin Fluor™ 647 conjugate: Liu et al., 2022, elife, Apr 14;11:e70664
anti-Fos: Choi et al., Nat Cummun, 2023 Mar 24;14(1):1631

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK293T (CRL11268)
Authentication HEK293T cells were directly purchased from ATCC
Mycoplasma contamination Mycoplasma testing is performed by the ATCC prior to distribution

Commonly misidentified lines  None of the commonly misidentified lines were used in this study
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals All mice except for the TRAP2 mice were directly purchased from The Jackson Laboratory (C57BL/6J wild-type mice (Jax stock#:
000664); Ai75 (stock#: 025106), Ail4 (Jax stock#: 007914), Sunl-sfGFP (Jax stock#: 030952), vGAT-Cre (Jax stock#: 028862), PV-Cre
(Jax stock#: 008069), vGluT2-Cre (Jax stock#: 028863), SST-Cre (Jax stock#: 013044), and CAMKII-Cre (Jax stock#: 005359)) and were
maintained and bred in house. TRAP2 mice 53 containing a heterozygous Fos2A-iCreER allele were a generous gift from Dr. Liqun
Luo (Stanford) and were crossed with Ai75 or C57BL/6J mice as indicated. All mouse lines were maintained on a C57BL/6)
background and only male mice were used for experiments. Mice with Fos2A-iCreER and Ai75 alleles were only used in behavioral
tests as heterozygotes. Mice obtained from Jackson laboratory were acclimated in the Stanford animal facility for at least two weeks
before behavioral studies. Only adult mice (age 8 to 12 weeks) were used. Mice were fed ad libitum on the diet of mouse chew from
ENVIGO (T2918.15) throughout the study. Mice were housed in groups with up to five mice per cage on 12-hour light-dark cycles (7
am to 7 pm, light) before behavior experiments took place. Test mice were single-housed during and after STFP behavioral
experiments until food choice tests were performed All behavior experiments were performed during the same circadian period.
Animals are kept with ambient temperature at 70 +/- 2 F and humidity at 55% +/- 5%.




Wild animals No wild animals were used in this study

Reporting on sex Only male mice were tested in this study. Because female mice exhibit estrous-dependent changes in STFP behavior (see
Supplementary Discussion (1)), their use would mandate a large increase in animal numbers for experiments.

Field-collected samples  No samples were collected in the field.

Ethics oversight All animal experiments were performed according to protocols and husbandry conditions that were reviewed and approved by the
Administrative Panel on Laboratory Animal Care at Stanford University under the guidelines of the National Institutes of Health for
the care and use of laboratory animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks No plants were involved in this study

Novel plant genotypes  No plants were involved in this study

Authentication No plants were involved in this study

Flow Cytometry

Plots
Confirm that:

|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|Z| All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

The COApm was dissected from vibratome brain slices (300 um thickness). Single cells were obtained after papain-mediated
dissociation (LKO03150, Worthington) according to the kit's instructions. Briefly, microdissected COApm pieces were
incubated at 34°C in the papain enzyme mixture (containing DNase) with 800 nM kynurenic acid for 20 minutes, then the
tissues were gently repeatedly triturated with a P1000 pipette three times every 15 minutes until the cells were completely
dissociated (generally approximately 12 triturations in total). After dissociation, cell suspensions were centrifuged at 350g for
10 minutes at room temperature. The supernatant was discarded and cell pellets were carefully resuspended in 1 ml
oxygenated EBSS (containing 10% v/v ovomucoid inhibitor, 4.5% v/v DNase, both provided in the kit, and 800 nM kynurenic
acid), centrifuged, and cell pellets were washed with 1 ml ACSF containing 0.1% RNAse inhibitor. A 70-um cell strainer (Fisher
Scientific, 352350) was used to remove debris. Cells were stained with Hoechst (1:2,000; H3570, Life Technologies) for 10
minutes, washed, and resuspended in ACSF. Cells were kept on ice or at 4°C prior to flow cytometry.

Sony SH800
Software provided with Sony SH800 by the company was used
Singlets of Hoechst+ cells were around 2% of total events

Singlets were selected based on Hoechst signals, and all Hoechst positive singlet cells were collected. No gating was set up
for tdTomato signals. In this study, flow cytometry was used as a tool to sort single cells into 384 plates for further Smart-
seq?2 sequencing based the Hoechst signals. We did not use it to sort specific cell populations.

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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