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Multi-omic analysis of Huntington’s disease
reveals a compensatory astrocyte state

Fahad Paryani1, Ji-Sun Kwon2, Christopher W. Ng3, Kelly Jakubiak 4,
Nacoya Madden4, Kenneth Ofori 4, Alice Tang4, Hong Lu4, Shengnan Xia4,
Juncheng Li4, Aayushi Mahajan4, Shawn M. Davidson 5, Anna O. Basile 6,
Caitlin McHugh6, Jean Paul Vonsattel4, Richard Hickman4, Michael C. Zody 6,
David E. Housman3, James E. Goldman 4,7, Andrew S. Yoo 2,
Vilas Menon 1,7 & Osama Al-Dalahmah 4,7

The mechanisms underlying the selective regional vulnerability to neurode-
generation in Huntington’s disease (HD) have not been fully defined. To
explore the role of astrocytes in this phenomenon, we used single-nucleus and
bulk RNAseq, lipidomics, HTT gene CAG repeat-length measurements, and
multiplexed immunofluorescence on HD and control post-mortem brains. We
identified genes that correlated with CAG repeat length, which were enriched
in astrocyte genes, and lipidomic signatures that implicated poly-unsaturated
fatty acids in sensitizing neurons to cell death. Because astrocytes play
essential roles in lipidmetabolism,we explored the heterogeneity of astrocytic
states in both protoplasmic and fibrous-like (CD44+) astrocytes. Significantly,
one protoplasmic astrocyte state showed high levels of metallothioneins and
was correlated with the selective vulnerability of distinct striatal neuronal
populations. When modeled in vitro, this state improved the viability of HD-
patient-derived spiny projection neurons. Our findings uncover key roles of
astrocytic states in protecting against neurodegeneration in HD.

Huntington’s disease (HD) is an incurable neurodegenerative disease
characterized by accumulation of the mutant huntingtin protein and
selective loss of specific neuronal populations leading to motor, cog-
nitive and psychiatric impairment1–6. Although the disease-causing
mutation is present in all brain cells, the severity of the disease varies
across brain regions7,8. New evidence suggests that the CAG repeats in
exon 1 of the Huntingtin gene (HTT) can expand during a lifetime, and
in different cell types at different rates, which may contribute to dis-
ease progression9–11. Moreover, research implicates mutant HTT
(mHTT) expression in cortical and striatal neurons as a necessary
substrate for striatal neurodegeneration12,13. Furthermore, increased
vulnerability of striatal neurons deprived of the cortical-derived,

neuroprotective BDNF has shed light on striatal neuronal vulnerability
in HD14. However, despite recent advances in our understanding of
regional heterogeneity of neurodegeneration in HD, there is much to
be learned about how astrocytes contribute to neuronal loss.

In addition to neurons, HD affects oligodendrocytes, microglia,
and astrocytes. We previously described oligodendrocytic pathology
using single-nucleus RNA-seq (snRNAseq) in HD15. Astrocytes, the
subject of this study, have long been noted to be “reactive” in HD, as
judged by their enlargement and the increase inmarkers such as GFAP,
present particularly in severely affected areas like the striatum (ref. 16
for review), but astrocytes also contribute to the pathology in several
ways. Studies in human brain and in mouse models suggest a loss of
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function phenotype, including, for example, a decrease in the major
glutamate transporter EAAT2/GLT1 in mouse striatum17–20, human
striatum20, and in the cortex21. In murine models of HD, mHTT
expression in astrocytes can exacerbate HD pathology22,23, impair
baseline astrocyte function19, and elicit inflammation24. In contrast,
downregulating HTT in astrocytes can slow disease progression25.
Human fetal-derived astrocytes with mHTT display several transcrip-
tional abnormalities, including low levels of metallothionein-3 (MT3)
and genes involved in fatty acid synthesis26. In addition, HD astrocyte
pathology extends from function to morphology; in fact, HD astro-
cytes are structurally abnormal27,28, and astrocytematurational defects
have been described in HD iPSC models28. Taking all of this together,
there is evidence for cell-autonomous astrocyte pathology that con-
tributes to neuronal injury in HD.

The interaction between astrocytes and neurons is central to HD
pathology. The response of astrocytes to injury in HD appears most
robust when both neurons and astrocytes express the mutant protein
in murine models29, suggesting that a large component of astrocyte
pathology in HD is secondary to neuronal injury in the setting of
compromised basic astrocyte functions29,30. However, there is evi-
dence to support cell-autonomous or primary roles of astrocytes in
HD. For example, human glial progenitor cell-derived astrocytes
expressingmHTT can recapitulatemotor aspects of theHDphenotype
when implanted intomice, while control astrocytes can ameliorate HD
pathology when implanted into HD mice31. Finally, genetically mod-
ified astrocytes can be leveraged to rescue HD symptoms32 and impart
neuroprotection in HD33–35.

The goal of this study is to map astrocyte pathology across dif-
ferent brain regions in human HD. Building on our previous results
showing that mHTT protein aggregates in astrocytes, and that cingu-
late cortex astrocytes exhibit phenotypic heterogeneity even within
the same region21, we generated multimodal omics data and per-
formed analyses to characterize astrocytic phenotypic heterogeneity
inHDacrossmultiple brain regions.Wedissected post-mortemhuman
brain tissue from the severely affected caudate nucleus, and relatively
less severely affected cingulate cortex and nucleus accumbens7. Next,
we generated bulk RNAseq from 76 samples from 10 controls and 20
patients across different HD grades, including 8 juvenile-onset HD
patients. We also performed single-nucleus RNAseq (snRNAseq) on a
subset of these samples.We combined these transcriptomicsdatawith
lipidomics from27 cingulate cortex samples to extract disease severity
signatures that correlate with CAG repeat length and HD grade. In
particular, we analyzed astrocyte states and correlated them with
neuronal vulnerability across different brain regions. We found that
protoplasmic astrocytes differed from fibrous-like CD44-positive
(CD44+) astrocytes in their association with neurodegeneration.
Moreover, we discovered regional heterogeneity in protoplasmic
astrocyte pathology across vulnerable and resilient brain regions,
particularly related to metallothionein gene expression. We further
analyzed existing GWAS data and identified single nucleotide poly-
morphisms (SNPs) in the metallothionein gene locus that were asso-
ciated with delayed disease onset. We then performed validation and
functional experiments, mapping metallothionein protein expression
in vivo and confirming that metallothionein-3 in astrocytes protected
neurons against death and degeneration in vitro. Finally, we dis-
covered a previously undescribed function of astrocyte
metallothionein-3 on microglial function and gene expression. Toge-
ther, our results pave the way for astrocyte-centric therapeutic stra-
tegies to treat HD.

Results
Transcriptomic analysis of multiple anatomic regions of HD
brains identifies disease severity-associated gene signatures
The pathology of HD has been studied most in the caudate nucleus,
one of the earliest and most severely affected brain regions.

Transcriptional pathology has been described in the caudate nucleus
and other brain regions including the frontal cortex,motor cortex, and
cerebellum using bulk RNAseq36,37, and in the caudate nucleus using
snRNAseq38,39. To define the transcriptional signatures of human HD
that are dependent on disease severity, we performed transcriptional
and CAG repeat length analysis of different brain regions including the
severely affected caudate nucleus, and less severely involved cingulate
cortex and nucleus accumbens. The methodology is illustrated in
Fig. 1A. We analyzed 76 brain samples from controls (n = 20 samples
from 11 donors) and individuals with HD (n = 56 samples from 24
donors, including 16 samples with juvenile-onset HD – Supplementary
Dataset-1) using bulk RNA sequencing. We further performed lipi-
domic studies on a subset of these donors to validate pathologies
described below, and snRNAseq to define pathology in glial cells (see
below – Fig. 1A). Furthermore, wemeasured the CAG repeat lengths in
DNA extracted from the same tissue blocks we used for RNAseq across
the three brain regions (Supplementary Dataset-1 and Fig. S1C). The
CAG repeats in the brain samples ranged from 40 to 71, and in most
cases showed either an increase of one repeat or no difference from
blood/cerebellum-derivedCAG lengths (Fig. S1C). A general inspection
of the bulk RNA-seq dataset in the reduced dimensional space (t-SNE)
shows separation of HD samples from controls in the tSNE
space (Fig. 1B, Fig. S1A).

There were many differentially expressed genes (DEGs) between
HD and control bulk RNA-seq samples, a subset of which are shown in
Fig. 1C. These include the upregulation of several genes involved in
control of gliogenesis/stemness such as NES, EGFR, GLI1, PTCH1, YAP1,
POU4F2, SMAD4, and REST, and downregulation of several genes
involved in oxidative phosphorylation and mitochondrial function,
and also several known HD spiny projection neuron (SPN) genes such
as thedopamine receptor genesDRD1 andDRD2, aswell asPCP4, which
is known to bemost highly expressed in the basal ganglia40 (Fig. 1C and
Supplementary Dataset-2). We found that most of the DEGs were
region-specific and were not shared with other brain regions (Fig. 1D
and Supplementary Dataset-2). However, the overlap between DEGs
among brain regions was most notable between the accumbens and
caudate – both striatal regions – and accumbens and cingulate – both
less severely involved in HD (Fig. 1D).

We next determined the effect of CAG repeat length on gene
expression using a multi-variate regression analysis, taking into
account sex, age, and anatomic region as co-variates. The results
identified 1092 genes with either positive (672) or negative (420)
regression weights (Fig. 1E and Supplementary Dataset-2, we refer to
these genes as “CAG-correlated”). The genes with the most positive
regressionweights included astrocytic genes (AQP4,CD44, LIFR, P2RY1,
OSMR, SERPINA341 - also called Alpha1-antichemotrypsin) and micro-
glial genes (TLR3, VSIG4, IL13RA1, and complement genes). Using
immunostaining, we confirmed that CD44, a membrane protein
expressed in astrocytes42, was indeed increased in the HD caudate
nucleus (Supplementary Fig. 4A, B). Next, we performed KEGG path-
way enrichment analysis of the CAG-correlated genes andDEGs shared
between two or three regions, both increased and decreased (Fig. 1F, G
and Supplementary Dataset-2). As expected, CAG-correlated genes
were enriched in pathways related to splicing, protein processing,
autophagy, neurodegeneration, and lysosomal function (Fig. 1F).
Interestingly, in both the CAG-correlated and multi-region disease-
associated gene sets, KEGG pathways involved in inflammation,
cancer-related pathways, and lipid metabolism were also significantly
enriched (Fig. 1F, G). Moreover, weighted gene co-expression network
analysis (WGCNA) identified gene modules that correlated with CAG
repeats, modules enriched in genes involved in DNA damage response
and T-cell mediated inflammation, and loss of connectivity of key
astrocytic and immune gene modules (Fig. S2 – see Supplementary
Results). Together, these results point to a significant contribution of
glia, namely astrocytes and microglia, in the pathology of HD.
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Integration of lipidomic analysis and transcriptomics implicates
long-chain fatty acids and ceramides in HD neuropathology
Several studies havepreviously identified abnormalities in lipid species
abundance in HD43–49. We therefore sought to associate gene

expression and the lipidomic changes in HD that were correlated with
disease progression, given that lipid fatty acid and lipid metabolism
are key functions of astrocytes50. We focused on the cingulate cortex
because it is less severely degenerated than the caudate, thus allowing

Fig. 1 | Transcriptomic analysis of HD identifies cross-regional and CAG-
correlated gene signatures. A Schematic depicting experimental plan.
B t-distributed stochastic neighbor (t-SNE) embedding of bulk RNAseq samples
used in the study color-coded by condition (left), anatomic region (middle), and
CAG repeat length (right). Control samples and ones with no available CAG repeat
lengths are shown in grey. C Heatmap of normalized gene expression showing a
select subset of differentially expressed genes (DEGs). The DEGs (rows) are color-
coded on the right by the direction of differential expression in the specified region
(left columns). DEGs Increased in Control: red, DEGs increased in HD: blue, non-
significant (NS) genes – grey. The samples (Columns) are also color-coded by HD
grade/Condition (Con: Control, HD1–4: 1–4, J: Juvenile onset HD) and anatomic
region (top horizontal bars). D Venn diagram showing the overlap between DEGs

with FDR-adjusted p value < 0.05 across the three anatomic regions. The numbers
of increased – black, and decreased – blue, genes are indicated. E Scatter plot
showing genes with significant regression weights for CAG repeat length (y-axis).
The order of genes on the x-axis is arbitrary. Color indicates Benjamini–Hochberg
adjusted p value. Genes with coefficients two standard deviations above the mean
are indicated. F–G EnrichR barplots of KEGG pathways enriched in genes that
positively or negatively correlate with CAG repeat length (F) or in DEGs that are
shared across two or three anatomic regions (increased and decreased—G). Gene
count is indicated on the y-axis. Color indicates Benjamini–Hochberg adjusted p
value. A was created with BioRender.com released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license.
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for more robust correlation analyses between lipid species abundance
and disease progression, the latter determined by different HD Von-
sattel grades. This analysis is less feasible in the caudate nucleus
because it showspronounced neurodegeneration inmost of our cases,
whichwere Vonsattel grades 2–4, wheremore than 50% of neurons are
lost. Thus, it is likely that lipidomics findings in the caudate may
represent an “end-stage” phenotype.

To this end, we performed lipidomic analysis of the cingulate
cortex of 27 control and HD donors across different HD grades (Sup-
plementary Dataset-1). Regression analysis (with grade as the expla-
natory variable and normalized lipid abundance as the response
variable) identified several lipid species that significantly varied over
grade, including several long-chain and very long-chain fatty acids,
diacylglycerides (DG), monoacylglycerides (MG), cholesterol, and
lactosyl-ceramides (Fig. 2A). Several of the very long chain mono-
glycerides were higher across different HD grades compared to con-
trol (Fig. S3A – Supplementary Dataset-4). Given the differences
between HD and control in lipidomic signatures, we asked if we could
predict HD grade from the lipidomics dataset. Using a sparse partial
least squarediscriminant analysis (sPLSDA – Fig. 2B), we found that HD
grade could be accurately predicted from the loadings in the first four
sPLSDA components – (Fig. S3B). In addition, our data analysis did not
show significant effects of sex on lipid species expression as visualized
in the sPLSDA space (Fig. S3C).

To identify correlations between gene expression and altered
lipid metabolism in HD, we analyzed RNAseq and lipidomics mea-
surements from the same tissue samples. We integrated a subset of 21
matched samples from both datasets using sparse-projection to latent
space (PLS) analysis, and projected the data byHDgrade and sex in the
integrated space (Figs. 2C and S3C, respectively). Unlike control sam-
ples, HD samples showed positive loadings in the integrated x-y vari-
ate-1 dimension (Fig. 2C). Several lipid species and RNA transcripts had
positive loadings with the x-y variate-1, including ceramides, dihy-
droceramides, and cholesterol esters, as well as several genes such as
PCBD1, HSPB1, DNAJB1, HSP1A1, HSF1, and MKNK2 (Fig. 2D). Gene
ontology enrichment analysis revealed the genes correlated with the
x-y variate-1 component were enriched in ontologies related to cell
death, apoptosis, inclusion body assembly, and response to unfolded
protein (Fig. 2E). Network analysis also highlighted correlations
between RNA transcripts and lipids (Fig. S3D). Altogether, our data
indicate that lipidmetabolism is altered in the cingulate cortex and can
be linked to transcriptomic signatures associated with HD pathology.

We next sought to determine whether the lipids correlated with
HD grade were toxic or protective. Given that gene ontologies related
to cell death were enriched in the integrated lipidomics-RNAseq sig-
nature, we asked if HD-associated lipids could induce neuronal death
or increase the sensitivity of neurons to death. Accordingly, we per-
formed functional in vitro studies and testedmurine neuronal viability
when treated with di-homo gamma lenolenic acid (DGLA), a poly-
unsaturated fatty acid increased in HD (Fig. S3A). The results showed
that, on its own, DGLA did not induce cell death (Fig. 2F). However,
when combined with the mitochondrial toxin Rotenone, 100 µg/ml
and 200 µg/ml of DGLA sensitized neurons to death (Fig. 2G). Toge-
ther, these results support that the changes in lipid species including
poly-unsaturated fatty acids in the HD cortex may drive or exacerbate
neurodegeneration. Since astrocytes are the major cells that take up,
synthesize51, and secrete poly-unsaturated fatty acids52, future studies
will test whether astrocyte fatty acid synthesis functions can be a
therapeutic target for HD.

snRNAseq of HD brain reveals regional astrocytic heterogeneity
One of the genes from our bulk RNA-seq analysis that was highly
positively correlated with CAG-repeat length was CD44 (Fig. 1E). We
previously showed that CD44 labels specific regionally heterogeneous
subsets of astrocytes, including white matter and interlaminar

astrocytes42. Thus, we initially confirmed that CD44 was increased in
caudate nucleus astrocytes in HD at the protein level (Fig. S4A, B, F).
We also found that CD44+ astrocytes were present in the pencil fibers
in both HD and controls, as we reported before42, but only in HD were
CD44+ astrocytes present in the caudate nucleus parenchyma, where
they normally do not reside (Fig. S4A, B, F). These data lay the foun-
dation for further examination of astrocyte heterogeneity in HD.

To characterize the heterogeneity of astrocytes along the axis of
regional disease burden, we generated snRNAseq data from control
and HD brain samples from the nucleus accumbens, cingulate cortex,
and caudate nucleus. We previously reported the findings on oligo-
dendrocytes and oligodendrocyte precursors in this dataset;15 here we
present our findings involving astrocytes, microglia, and neurons. Fil-
tering and initial QC led to analysis of a total of 281,099 nuclei (Sup-
plementary Dataset-1). Unsupervised clustering of these nuclei
identified the major cell lineages, which could be visualized in t-SNE
plots color-coded by lineage, region, and disease condition (Fig. 3A),
and by donor, batch, and HD grade (Fig. S5A). The proportions of ea-
ch lineage per anatomic region and donor (Fig. 3B and Supplementary
Dataset-1, respectively) show that neurons predominated in the cin-
gulate cortex, and ependymal cells were discovered only in the cau-
date nucleus. A subset of the canonical gene markers of cell type/
lineage is shown in Fig. 3C. Of all nuclei, 53,219 were astrocytes;
after additional rounds of QC to exclude doublets, ambiguous
nuclei, or low-quality cells, we recovered 45,101 high-quality astro-
cytes (Fig. 3D), of which 7556 were from control donors and 37,545
came from HD donors (Fig. S5B). The proportions of astrocytes were
roughly evenly distributed between cortical and striatal regions,
allowing a comprehensive analysis of astrocyte regional diversity
(Fig. 3B, D).

In order to discover the underlying heterogeneity in the major
astrocyte subtypes and characterize their response to injury in HD, we
classified astrocytes as protoplasmic, the most commonly studied
astrocyte type, and fibrous-like, which includes CD44+ astrocytes that
reside in the white matter, subependymal zone, perivascular regions,
and subpial regions42,53. In low-dimensional UMAP space, astrocytes
varied along an axis with one end expressing higher levels of CD44,
GFAP, and DCLK1, and the other end of the axis expressing high levels
of Wnt-inhibitory factor 1 (WIF1), Glutamine synthetase (GLUL),
and SLC1A2 (Fig. 3E). Sub-clustering the astrocytes identified five
clusters (Fig. S5B), where subcluster 0 harbored the majority of the
CD44 expressing nuclei (Fig. S5B, C). We designated subcluster 0 as
fibrous-like (n = 18,700 nuclei), and remerged the remaining clusters
into a protoplasmic group (n = 26,401 nuclei) before re-clustering
(see below).

In parallel, we used pseudotime analysis on all astrocytes as a
whole (Fig. S5D). Pseudotime analysis is a computational approach
that orders cells along trajectories of gene expression, and can
uncovermodes of continuous gene expression variation, in contrast to
discrete groupings afforded by clustering approaches. Along a given
pseudotime trajectory, cells exhibit coordinated variation of the genes
associated with that trajectory. We expected to find a trajectory of
gene expression variation where protoplasmic and fibrous-like genes
would fall on opposite ends. When projecting astrocytes in low-
dimensional PHATE53 space, we found a spectrum of astrocytes dis-
tributed between cells with high SLC1A2 expression on one end, and
high CD44 expression on the other end, which was captured using
trajectory analysis (trajectory-1, Fig. S5D). Along this trajectory, HD
astrocytes showed higher pseudotime values across multiple grades
(Fig. S5D). The genes that varied along trajectory-1 were enriched in
pathways related to glutamate receptor activity and depleted in
pathways related to metal ions/metallothioneins (Fig. S5E, Supple-
mentary Dataset-5). This suggests that as protoplasmic astrocytes
transition to fibrous-like (CD44-high), metallothionein levels are
reduced. In addition, genes associated with trajectory-2 were depleted
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in ontologies related to glutamate receptor activity and enriched for
ontologies related to protein translation (Fig. S5E). The significance of
this second trajectory is unclear.

Because of the anatomic differences in the localization of these
astrocyte types, we analyzed protoplasmic and fibrous-like astrocytes

independently. Re-clustering both the fibrous-like and protoplasmic
groups separately identified four fibrous-like astrocyte clusters
(F0–F3) and seven protoplasmic astrocyte clusters (P0-P6) (Fig. 3F, G),
with distinct markers distinguishing these subgroups from each other
(Fig. 4A, D, Supplementary Dataset-5).
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Fibrous-like astrocytic clusters
Fibrous-like astrocytes were distributed between clusters F0 (56%), F1
(29%), F2 (14%), andF3 (1%). Cells from the accumbens and caudatewere
significantly enriched in clusters F0 and F2 (ANCOMBC p-values 2.50 ×
10−5 and 1.26 × 10−7, respectively), whereas clusters F1 and F3 weremore
enriched in the cingulate (p values: 4.83 × 10−7 and 1.92 × 10−2, respec-
tively) (Fig. 3F′). Cluster F2 was significantly enriched in HD in the
accumbens (Fig. S5F, G – Supplementary Dataset-5 and Supplementary
Results). HD Vonsattel grades were represented in all clusters. Notably,
grade 4 samples contained a higher proportion of cluster F2 and F3
astrocytes (Fig. 3F″). These results highlight regional and disease-
severity-related differences in fibrous-like astrocyte clusters.

Examination of gene expression revealed that clusters F0 and F3
had higher expression levels of glutamate transporters SLC1A2 and
SLC1A3 (Fig. 4A). Conversely, clusters F1 andF2 showed relatively lower
levels. The small cluster F3 showed relatively high expression levels of
GLUL and SYNE1 (Fig. 4A). Because cluster F3 was relatively small (less
than 200 cells), it was not included in downstream analyses. Cluster F1
expressed metallothionein genes likeMT3, MT2A, andMT1E, Clusterin
(CLU), and APOE, whereas cluster F2 expressed heat-shock protein
genes, as well as multiple genes correlated with CAG-repeats and
the integrated lipidomics signature (Fig. 4A).

We next used a supervised analysis to annotate astrocytic
clusters with putative functional characteristics. We performed
cluster-level gene set enrichment analysis of specific informative
gene sets: (1) a previously defined core astrocytic gene set found to
be depleted in human and murine HD20, (2) genes associated with
quiescent astrocytes21, which are indicators of baseline astrocyte
function including regulation of glutamate transport, (3) a “putative”
neuroprotective gene signature21, which we defined based on our
previous work to be enriched in metallothionein genes encoding
proteins rich in cysteine amino acids known to confer protection
against oxidative damage54, (4) genes derived from the integrated
HD lipidomic signature, which are associated with response to
unfolded protein and cell death (Figs. 2), (5) CAG-correlated genes,
which are linked to genetic disease-severity (Figs. 1E), and (6) the
response to unfolded protein gene ontology (GO:0006986), which
is relevant to HD55. We conceptualize the first two gene sets as indi-
cative of homeostatic astrocytic function, the latter three as disease
associated, and the putative neuroprotective gene set as potentially
compensatory. These gene sets are provided in Supplementary
Dataset-2.

Based on this supervised enrichment analysis, we found several
cluster-specific patterns of gene expression (Fig. 4B). Across all
regions, the quiescent signature was enriched in cluster F0, and
the putative neuroprotective signature was enriched in cluster F1.
Furthermore, combinations of disease-associated signatures - CAG-
correlated, integrated lipidomic signature, and unfolded protein
response - were enriched in cluster F2. These results demonstrate that
fibrous-like astrocyte clusters show distinct transcriptional states that
may be associated with functional variation.

There were several region-specific patterns of gene expression
in fibrous-like astrocyte clusters. For example, the core astrocytic
signature20 was specifically enriched in cingulate cluster F0, and
depleted in caudate cluster F1. Also, in the cingulate cortex but not
other regions, cluster F2 showed enrichment of putative neuropro-
tective genes. Additionally, the CAG-correlated genes were enriched in
cluster F0 astrocytes in the caudate, and in cluster F2 in the caudate
and nucleus accumbens, but not in the cingulate cortex (Fig. 4B).

Together, these results show a strong regional influence on gene
expression and likely functional states of fibrous-like astrocytes.
Moreover, the CD44-high, HD-enriched cluster F2 displayed regional
heterogeneity with expression of putative neuroprotective genes in
the cortex, but CAG-correlated genes in the striatal regions.

Protoplasmic astrocytic clusters
Protoplasmic astrocytes showed notable regional heterogeneity. For
example, cingulate protoplasmic astrocytes were most abundant in
the most sizeable clusters P0, P2, and P3. Conversely, caudate and
accumbens astrocytes were more represented in clusters P1 and P4.
Clusters P5 and P6 were composed of cells from the nucleus accum-
bens and caudate nucleus, respectively (Fig. 3G′). Notably, there was a
decrease in the abundance of P1 astrocytes in the HD caudate (log fold
change: −1.17 ± 0.48, ANCOMBC p value: 0.014). With the exception
thatmost juvenile-onset HD astrocyteswere present in cluster P4 cells,
no other discernable correlations were apparent between cluster and
grade (Fig. 3G″).

Examination of protoplasmic astrocyte cluster markers showed
that the genes associated with baseline/quiescent astrocyte function
(e.g., SLC1A2, SLC1A3, ADGRV1), while expressed in most protoplasmic
astrocytes, were highest in clusters P0 and P6. Clusters P1, P3 and P5
expressed elevated levels of metallothionein genes, cluster P1 exhibited
the highest levels of CHI3L1, and clusters P1, P3 and P6 expressed high
levels of CLU. Clusters P4 and P5 showed expression of genes associated
with the integrated lipidomics signature and CAG-correlated genes
(Fig. 4D). Because clusters P5 and P6 were small (containing less than
200 cells), further interpretation was not pursued.

Next, we interrogated protoplasmic astrocyte clusters using
supervised gene set enrichment analysis as we had done for fibrous-like
astrocytes (Fig. 4E). Across all regions, cluster P2 displayed enrichment
of the core astrocytic gene set, clusters P1 and to a lesser extent P3 were
enriched in putative neuroprotective genes, and cluster P4 showed
highest scores for the unfolded protein response (GO:0006986). These
data suggest that, similar to fibrous-like astrocytes, protoplasmic
astrocyte clusters represent distinct states.

There was clear regional heterogeneity in protoplasmic astrocyte
clusters. For example, cluster P0 was enriched for the quiescent sig-
nature in the cingulate and accumbens, but not in the caudate –where
it showed increased enrichment of the unfolded protein response GO.
This is expected given the severity of degeneration in the caudate
nucleus compared with the cingulate cortex and nucleus accumbens.
Also, clusters P1 and P4 showed enrichment of the CAG-correlated

Fig. 2 | Lipidomic analysis of HD cingulate cortex. A Violin plot of the −log10 of
the ANOVA p values (y-axis) of lipid species (x-axis) that correlate with HD grade –

see related Fig. S3A for direct comparisons between HD and controls, and Sup-
plementary Dataset-4 for abbreviations. B Scatter plot showing the projection of
brain samples analyzed by lipidomics in the first two latent variables of the sparse-
partial least squares (sPLS) discriminant analysis model. The variance explained by
each latent variable is indicated on the axes. The samples are color- and shape-
coded by condition/grade. The condition can be predicted to a high degree of
accuracy in the colored background regions - see related Fig. S3B. C Integration of
lipidomics data and matched bulk RNAseq data generated from adjacent samples
of the same brain region using sparse projection to latent space analysis. The
samples are color- and shape-coded as per B and projected in the combined inte-
grated space. D Barplots showing the loadings of the lipid species (left) and RNA

transcripts (right) in the first sparse projection to latent space variable that predicts
grade. E Gene ontology enrichment analysis of component 1 genes (from D).
Negative log10 of the adjusted p values are indicated. P value adjustment was done
in gprofiler using the g:SCS method. F Quantification of the percentage of viable
murine neurons treated for 24h with the indicated concentrations of di-homo
gamma lenolenic acid (DGLA), a poly-unsaturated fatty acid increased in HD.
Illustration of the structure of DGLA is indicated on the top. N = 3 experiments.
Unpaired two-tailed test. P values = 0.936 for 20 µg/ml vs vehicle, p =0.746 for
100 µg/ml vs vehicle and p =0.091 for 200 µg/ml vs vehicle. Data are shown as
mean ± SEM. G Quantification of the viability of murine neurons co-treated with
20 µMRotenone and the indicated concentrations of DGLA (black dots) or Ethanol
(grey dots). N = 4 experiments. Paired two-tailed t-test. P =0.056 for 20 µg/ml,
p =0.002 for 100 µg/ml and p =0.024 for 200 µg/ml.
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Fig. 3 | snRNAseq data analysis of HD and control astrocytes. A t-SNE projection
of snRNAseq samples across all lineages (left), brain regions (middle), and condi-
tion (right). B Stacked bar plots depicting the proportion (y-axis) of each cell
lineage (color-coded) in different brain regions (x-axis). C Dot plot showing
expression of select cell type/lineage marker genes. D UMAP plot of astrocytes
projected in isolationof other cell types, and color-codedby region. Thebarplot on
the top right shows the distribution of astrocyte between the three brain regions.
E Feature plots of normalized gene expression projected in the UMAP embeddings
to highlight genes that differentiate fibrous-like (left) and protoplasmic astrocytes

(right) – see also Fig. S5C. F UMAPs of sub-clusters of fibrous-like astrocytes
(defined by highest expression of CD44 - cluster 0 see Fig. S5C). The barplots below
show the proportion of different brain regions in each sub-cluster (F′) and the
proportion of the sub-clusters in each HD grade/Condition (F″). G UMAPs of pro-
toplasmic astrocytic sub-clusters (defined as all astrocytes except cluster 0 in
Fig. S5C). The barplots below show the proportion of different brain regions
in each sub-cluster (G′) and the proportion of the sub-clusters in each HD grade/
Condition (G″).

Article https://doi.org/10.1038/s41467-024-50626-0

Nature Communications |         (2024) 15:6742 7



Fig. 4 | Astrocytes are regionally heterogeneous inHD. ADot plot displaying the
expression of select genes in fibrous-like astrocytic clusters. The genes were
selected from four gene sets (Quiescent: baseline astrocyte genes, Neuroprotec-
tive: predicted fromour previous work – seemain text, CAG-Correlated: genes with
significant positive regressionweights - see Fig. 1E formoredetails, RNA-Correlated
Lipid.: set of genes that correlated with lipid abundance from Fig. S3D. B Heatmap
of the average enrichment scores determined by gene set variation analysis of
select gene sets within each fibrous-like astrocytic sub-cluster per brain region. The
gene sets of interest include the four in A, a core astrocytic signature described in
Diaz-Castro et al. 20, and a GO term for response to unfolded protein

(GO:0006986). C Venn diagram showing overlap between the differentially
expressed genes (DEGs) in HD vs control in all fibrous-astrocytes across the three
brain regions (increased: blue; decreased: black). D Similar to (A) but for proto-
plasmic astrocytic sub-clusters. E Similar to (B) but for protoplasmic astrocytic sub-
clusters. F Similar to (C) but for protoplasmic astrocytes.GHeatmap displaying the
negative log10(p-value) of enrichment of select GO terms (columns) in DEGs from
fibrous-like and protoplasmic astrocytes DEGs per region (C, F) – rows. Red indi-
cates terms significantly enriched inDEGs increased inHD, blue indicates GO terms
enriched in DEGs significantly decreased in HD, andwhite indicates no significance.
P value adjustment was done in gprofiler using the g:SCS method.
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gene set in the striatum but not in the cingulate cortex. Similarly, the
integrated lipidomic signature was enriched in cluster P3 in the stria-
tum but not in the cortex (Fig. 4E).

Together, these results show that HD protoplasmic astrocytes,
similar to fibrous-like astrocytes, exhibit distinct transcriptional states
influenced by anatomic localization. Of particular interest, cluster P1,
which showed increased enrichment of the putative neuroprotective

signature, was enriched in disease-severity-associated gene sets in the
striatum and not the cortex.

Differential gene expression analysis highlights regional differ-
ences in HD astrocytes
As an additional analytic layer, we determined the DEGs in fibrous-like
and protoplasmic astrocytes across the three brain regions (Fig. 4C, F,
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Supplementary Dataset-6). While some DEGs were shared among the
three brain regions, a large proportion of the DEGs were uniquely
attributed to individual brain regions, further highlighting the regional
diversity of HD pathology. Of the unique DEGs between control and
HD astrocytes, those in the nucleus accumbens displayed the largest
number of genes with higher expression in HD, and the cingulate
cortex displayed the largest number of genes with lower expression in
disease (Fig. 4C, F).

To further analyze the DEGs in both protoplasmic and fibrous-like
astrocytes across brain regions, weperformedGO enrichment analysis
(Fig. 4G and Supplementary Dataset-6). As expected, fibrous-like
andprotoplasmic astrocytes exhibited increased response to unfolded
protein and heat stress across all three regions. However, there were
significant differences in astrocytic response to injury that were type-
and region-specific. For example, the ontology term “metallothionein
binding activity” was significantly enriched in DEG sets for proto-
plasmic and not fibrous-like astrocytes, reflecting larger changes
in levels of metallothionein genes in protoplasmic astrocytes. This
is consistent with our pseudotime results suggesting a down-
regulation of metallothionein-related genes as astrocytes transition
from protoplasmic to fibrous-like. The metallothionein related
terms were most enriched in cingulate and accumbens protoplasmic
astrocytes when compared caudate astrocytes. Conversely, the GO
term transport across blood brain barrier was enriched in genes
with lower expression in fibrous-like astrocytes in HD – mostly in
the cingulate. Finally, the glutamate receptor activity term was
most significantly enriched in genes with lower expression in accum-
bens fibrous-like astrocytes in HD. Altogether, protoplasmic and
fibrous-like astrocytes exhibit diverse, region-specific responses to
injury in HD.

Examining cell groupings at higher resolution, our cluster-level
DEG analysis showed that most DEGs were downregulated in HD
compared to control (Fig. S6A). Ontology terms related to transport
across the blood brain barrier were enriched in DEGs decreased in
cluster F1, and extracellular matrix related ontology terms were enri-
ched in DEGs decreased in clusters F0, F1, P1 and P3. Most of the genes
increased in clusters P0, P1, and P3 were enriched for terms related to
Huntington’s disease, tau protein binding, and oxidative phosphor-
ylation. Metal-binding related ontologies were enriched in DEGs
increased in clusters P1 andP3 (Fig. S6B and SupplementaryDataset-5).
As mentioned above, cluster F2 was significantly overrepresented by
HD samples, particularly in the accumbens, and very few DEGs were
retrieved. Together, these results demonstrate that HD differentially
influences astrocytic types and states.

Selective and differential neuronal vulnerability in HD across
different brain regions
We next turned our attention to neurons and examined differences in
their abundance and gene expression across different brain regions.
To define neuronal subtypes, we sub-clustered striatal (n = 19,155
nuclei) and cortical neurons (n = 62,253 nuclei) separately. We identi-
fied nine major neuronal subtypes in the accumbens and caudate,
consisting of direct (d) and indirect (i) pathway SPNs as well as several
interneurons/GABAergic cells that expressed canonical markers, like

LGR5, LINGO2, SST, NPY, and SYK38,56 (Fig. 5A, B). In the cingulate, we
identified a number of layer (L) specific projection/excitatory gluta-
matergic neurons from L2, L3, L4, L5, and L6 as well as GABAergic
neurons as defined by expression of canonical markers (Fig. 5C, D;
Supplementary Dataset-8).

To uncover patterns of selective neuronal vulnerability in HD, we
performed differential abundance analysis. In the caudate and
accumbens we found that dSPN_1, dSPN_2, iSPN_1, and LGR5_GABA
were depleted in HD (Fig. 5E). In the accumbens, LINGO2/NFIB_IN was
relatively increased, which may reflect an apparent relative increase
in proportion resulting from depletion of other neuronal types
(Fig. 5E). In the cingulate, only the L5_6_SEMA3E_TSHZ2 neurons were
depleted (Fig. 5F). Although SPN loss in the caudate has been descri-
bed before8,57,58, as well as in the nucleus accumbens59,60, to our
knowledge, loss of LGR5+ interneurons has not been documented.
Thus, we validated that LGR5 is expressed in striatal neurons and that
fewer neurons were LGR5+ in HD versus control (Fig. S7F), confirming
the depletion of the LGR5 cluster we observed in the abundance
analysis.

Neuronal dysregulation at the snRNAseq level in the striatum
has been documented38, and we provide an analysis of the DEGs in
the striatal and cortical neurons in the Supplementary Results
(Fig. S7 and Supplementary Dataset-8). Because we were interested
in how patterns of neuronal loss correlated with astrocytic pheno-
types, we quantified the correlations in abundance between neurons
and the astrocyte subclusters. Specifically, we sought to determine
if certain astrocytic subclusters were correlated with vulnerable
neuronal clusters. In the accumbens, the only significant correlation
was between protoplasmic cluster P3 and LINGO2/NFIB inter-
neuronal cluster (Fig. 5G). No further analysis was pursued due to
the small number of cells in this cluster. In the caudate, there
were significant positive correlations between protoplasmic cluster
P1 with dSPN_1 and iSPN_1, fibrous-like cluster F2 and LGR5_GABA,
and the juvenile-onset HD enriched protoplasmic cluster P4 and
iSPN_2 (Fig. 5H). In the cingulate cortex, there were no significant
correlations (Fig. 5I).

Together, these results validate previously described selective
neuronal vulnerability in the HD striatum. Also, the data link the
abundance of the metallothionein-high protoplasmic state (cluster P1)
to the abundance of vulnerable caudate SPN neurons in HD. Accord-
ingly, since P1 and SPN abundances were positively correlated, the
depletion of SPNs in the HD caudate led us to hypothesize that
astrocytic P1 will be depleted as well - as seen in the snRNAseq abun-
dance analysis (above). We validated the expected depletion of P1
astrocytes using immunohistochemistry below.

Validation of astrocyte phenotypes in patient samples
We have shown that astrocytes display an upregulation of a putative
neuroprotective signature driven by metallothioneins, includingMT3,
in multiple brain regions (Fig. 4). We were intrigued by this finding
because itwasmostprominent in protoplasmic rather thanfibrous-like
astrocytes (Fig. 4G). We had previously shown that cingulate astro-
cytes upregulate MT1 and MT2 genes in HD21. However, we have not
quantified metallothionein protein expression in the severely affected

Fig. 5 | Single nucleus RNAseq analysis and differential abundance analysis of
neurons in HD show correlations to astrocytic states. A UMAP plot of nucleus
accumbens and caudate neuronal subtypes. B Dot plot of select gene markers for
the striatal neuronal subtypes in (A). C UMAP plot of cingulate neuronal subtypes.
D Dot plot of select gene markers for cingulate neuronal subtypes in (C).
EDifferential abundance analysis comparing the enrichment ordepletionof striatal
neuronal subtypes in (A) in HD (caudate n = 16, accumbens n = 12) versus control
(caudate n = 5, accumbens n = 4). The logFC values from ANCOM-BC linear
regression model are shown on the y-axis for each cell type. Stars indicate statis-
tically significant differences (Holm-adjusted p-values < 0.05). Holm-adjusted p-

values indicated by stars from left to right are 7.72e−5, 9,76e−3, 3.30e−6, 3.58e−11,
1.99e−16, 3.28e−5, 4.85e−8, 1.33e−6, 2.78e−10. Error bars indicate standard errors.
F Similar to E but for cingulate neurons from (C) in HD (n = 19) versus control (n = 9)
with Holm-adjusted p-value 1.19e−3. G Heatmap displaying the correlation pro-
portion of fibrous-like and protoplasmic sub-clusters (Fig. 3F, G) – columns, with
proportionsof select accumbens neuronal sub-clusters– rows. The values in the tile
represent the Pearson correlation coefficient and p-values in parentheses. Two-
tailed Pearson correlation p values were determined using cor.test(). H Similar to
(G) but for select caudate neurons. I Similar to (G) but for a select cingulate neu-
ronal cluster (L5/6 glutamatergic SEMA3E+TSHZ2+) depleted in HD.
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caudate nucleus. As such, we quantified MT1 and MT2A protein levels
in caudate nucleus astrocytes (Fig. 6A), and found no significant dif-
ferences between control and HD astrocytes (Fig. 6B). In contrast,
when we examined levels of MT3, which is also expressed in the
putative neuroprotective astrocytes (Fig. 6C), we found it to be
decreased in parenchymal caudate astrocytes (Fig. 6D). This is con-
sistent with our differential abundance analysis findings showing
depletion of cluster P1, which is high in MT3, in the HD caudate.

Conversely, we found MT3, like other metallothioneins, to be
increased in the cingulate cortex (Fig. 6E, F). These data are consistent
with the finding of significant enrichment of metallothionein GO term
in the cingulate compared to the caudate (Fig. 4G).

To ascertain whether the metallothionein dysregulation is
specific to protoplasmic versus fibrous-like astrocytes, we performed
multiplex immunofluorescence for GFAP, CD44 (to label fibrous-
like astrocytes), andMT3 in caudate samples (Fig. S4A). GFAP+/CD44+

Fig. 6 | MT3 expression is increased in the cingulate and decreased in the
Caudate of HD brains. A Immunofluorescent images of the caudate sections
labeled for nuclei (DAPI-blue) and GFAP (green) to detect astrocytes (left), and MT
(red-middle panel). A merged panel is shown on the right. Arrows indicate DAPI,
GFAP and MT positive cells (MT-positive astrocytes) and arrowheads indicate MT
negative astrocytes. The antibody detects MT2A and MT1 proteins. Scale bar =
50μm. B Quantification of the percent of MT-positive astrocytes in the caudate.
Unpaired one-tailed t-test with n = 6 for control and 7 for HD. Data are shown as
mean ± SEM. P value = 0.3232. C Immunofluorescent images of the caudate labeled
for nuclei (DAPI-blue) and GFAP (green) to detect astrocytes (left panel), and MT3

(red-middle panel). A merge of the three channels is shown on the right. Arrows
indicate DAPI, GFAP and MT3 positive cells (MT3 positive astrocytes) and arrow-
heads indicate MT3 negative astrocytes. Scale bar = 50μm.D Quantification of the
percent of astrocytes that were MT3 positive in the caudate. Unpaired one-tailed
t-test used with n = 10 for control and 11 for HD. Data are shown as mean ± SEM.
P value = <0.0001.E SameasDbut for the cingulate. FQuantification of thepercent
of percent of astrocytes that were MT3 positive in the cingulate. Unpaired one-
tailed t-test with n = 8 for control and 6 for HD. Data are shown as mean ± SEM.
P value = 0.0405. For all IHC panels, control and HD images are shown on the top
and bottom rows, respectively.
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fibrous-like astrocytes did not show a significant change in the
proportion of cells that were MT3+ in HD (Fig. S4D). Conversely,
MT3 was depleted in HD GFAP+/CD44− protoplasmic astrocytes
(Fig. S4E). These data confirm that the metallothionein dysregulation
in HD astrocytes is a phenomenon specific to protoplasmic astrocytes.

GWAS analysis identifies a single nucleotide polymorphism in
the MT gene locus associated with delayed disease onset
We next asked whether upregulation of metallothioneins in resilient
versus vulnerable brain regions is clinically relevant for HD. The age of
onset of HD is a clinical phenotype that can be correlated with genetic
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traits, and is inversely correlated with the CAG length in theHTT gene.
Once the effect of the CAG repeat length on age of onset is accounted
for, the “residual” age of onset can be treated as a heritable trait. Using
this trait, prior genome-wide association studies identified several loci
and genes as potential modifiers of the HD age of onset (see61 for
review). Here we directed our focus to the metallothionein gene
cluster on chromosome 16, utilizing HD patient cohorts from both the
GeM-HD consortium and Venezuelan Kindreds. We genotyped the
Venezuelan Kindreds with a fine-mapping approach that combined
whole genome sequencing and an Illumina CoreExome SNP array
across 390 HD patients with corresponding clinical data. Our com-
prehensive mega-analysis, which combined the genotypic and clinical
data from the Venezuelan patients with the GeM-HD consortium
data62–65, identified three SNPs that were in linkage disequilibrium
(rs3812963, rs74611520, and rs2518054) and were associated with
delayed age of onset in HD and the MT gene locus (Fig. 7A and Sup-
plementary Dataset-7). Further, we found that the two SNPs rs3812963
and rs74611520 acted as expression quantitative trait loci (eQTLs) and
were associated with increased metallothionein levels in prefrontal
cortex66 – see Supplementary Dataset-7.

Metallothionein-3 promotes astrocytic and neuronal viability
Wenext sought todefine the functions of the putative neuroprotective
signature (Fig. 4). By neuroprotection, we refer to homeostatic astro-
cytic functions that promote neuronal viability. Thus, we modeled
the neuroprotective astrocytes in vitro by overexpressing MT3 in
human astrocytes to selectively increase the expressionofMT3but not
other metallothionein genes (Fig. S9A). MT3 is increased in astrocytic
clusters with enrichment of the putative neuroprotective gene set -
cluster P1, P3, and F1 (Fig. S9E, F). We selected MT3 over other
metallothioneins because it was decreased in the HD caudate
(Fig. 6D). Next, we asked if MT3-overexpressing astrocytes exhibited
higher glutamate buffering capacity compared with control astro-
cytes, which would be an indicator of enhanced homeostatic func-
tions. So, wemeasured glutamate levels in the conditionedmedium of
astrocytes cultured for 5–7 days. We found that MT3 astrocyte-
conditioned media contained lower levels of glutamate compared to
control, suggesting MT3 astrocytes were better able to buffer gluta-
mate (Fig. 7B). Consistent with this finding, MT3 astrocytes increased
the expression of glutamate transporter SLC1A2 and glutamine syn-
thetase GLUL in vitro (Fig. S9D), which is consistent with snRNAseq
results showing that levelsofGLULwerehigher inMT3-high astrocytes,
and the two genes were correlated (Fig. S9G). In the snRNAseq data,
MT3-high astrocytes did not show increased SLC1A2 expression com-
pared with MT3-low astrocytes (Fig. S9G). The discordance between
in vivo and in vitro SLC1A2 levels in MT3-high astrocytes may reflect
differences between astrocytes in vivo and in vitro. Overall, the results

indicate that MT3 expression in astrocytes enhances glutamate buf-
fering – a key astrocyte function that can prevent neurotoxicity of
glutamate.

We expected metallothioneins to be neuroprotective, or com-
pensatory, i.e., promote neuronal viability, given that MT1 and MT2
knockoutmice exhibit increased vulnerability to neurodegeneration67.
To our knowledge, the role of astrocytic MT3 has not been tested. As
such, we tested whether MT3 astrocytes could enhance the viability of
murine neurons subjected to heavy metal (Cadmium) or Rotenone-
induced neurodegeneration (Fig. 7C). We exposed astrocyte-neuronal
co-cultures to Rotenone or Cadmium and measured cell viability. We
found that MT3-astrocytes protected neurons against Rotenone-
induced damage at the higher dose, but not Cadmium-induced
damage (Fig. 7E). Conversely, MT3 protected astrocytes from both
types of damage (Fig. 7D). Finally, we tested whether MT3 astrocytes
could protect directly reprogrammed HD patient-derived SPNs68

(Fig. 7F). Thus, we co-cultured control versus MT3-overexpressing
astrocytes with HD-derived SPNs for 30 and 32 days andmeasured the
levels of cell death marker signals (Annexin V and Caspase3/7, n = 3
biological replicates). We found these markers to be decreased in the
setting of MT3-astrocyte co-culture (Fig. 7F). HD-derived SPNs showed
a significant increase in the Annexin V signal compared to control-
derived SPNs (Fig. 7G), supporting the utility of this model to test the
effects of MT3 astrocytes on neurodegeneration. Thus, our results
overall showed that MT3 expression in astrocytes enhanced neuronal
and astrocytic viability, supporting its compensatory functions.

Discussion
We used transcriptomic and lipidomic analyses of three different
regions in the human HD brain to extract HD-related disease severity
gene signatures. We found that these involve upregulation of glial
genes including astrocytic and immune genes and downregulation of
genes related to neuronal function. Lipidomic analysis of the HD cor-
tex revealed that poly-unsaturated long-chain fatty acids, which are
largely metabolized by astrocytes, were increased in HD. snRNAseq of
protoplasmic and fibrous-like astrocytes allowed us to uncover astro-
cytic states that vary across brain regions and exhibit heterogeneous
gene expression profiles. We identified a compensatory state of pro-
toplasmic astrocytes, protoplasmic cluster P1, which upregulated
metallothioneins mainly in the cingulate cortex and nucleus accum-
bens, but was depleted in the caudate nucleus – where HD neurode-
generation was most severe. The depletion of the compensatory
astrocytic statewas correlatedwith the depletion of vulnerable SPNs in
the caudate nucleus. GWAS analysis incriminated a SNP, rs3812963,
in the MT gene locus – which is associated with increased MT
levels in the brain - to be associated with delayed disease age of
onset. Functional experiments confirmed that astrocytic MT3

Fig. 7 | Metallothioneins are implicated in GWA studies and promote neuronal
viability. AGenome-wideAssociation study (GWAS) of residual age ofmotor onset
in HD. This study combines data from the Venezuelan Kindreds and GeM-HD
consortiumofpatients.A LocusZoomplot of themetallothionein (MT) gene cluster
(box) on chromosome 16 is shown, depicting the SNPs in the association analysison
chr16 and the log-transformed associated Wald’s p-value (y-axis) measured using a
mixed linear model. SNPs are color-coded by the r2 of linkage disequilibrium (LD)
with the representative SNP rs74611520 (diamond). Two neighboring SNPs
(rs2518054, rs3812963) in high linkage disequilibrium are indicated by red triangles
and outlined by dotted ellipse. B Glutamate levels in media conditioned by MT3
astrocytes normalizedby levels in control human astrocytes (HA). Paired one-tailed
t-test withN = 3 experiments. p =0.0011. C A cartoon depiction of the design of the
astrocyte-neuron co-culture viability experiment. Neurons (GFP−) and astrocytes
(GFP+) were separated using flow cytometry-activated sorting (FACS). Cd: Cad-
mium. D Bar plots of the viability of FACS sorted MT3 overexpressing astrocytes
normalized by viability of control GFP astrocytes under the indicated conditions.
n = 3–4 independent biological replicates as indicated. Paired one-tailed t-tests.

E Bar plots of FACS sorted murine neuronal viability when co-cultured with MT3
overexpressing astrocytes normalized by neuronal viability of sorted neurons co-
cultured with control GFP+ astrocytes. Treatment conditions as per D. n = 3–4
independent biological replicates as indicated. Paired one-tailed t-tests. P values are
indicated. F Expression of Annexin V and Caspase 3/7 in HD-derived directly
reprogrammed SPNs co-cultured with control (GFP) versus MT3 astrocytes at 30
and 32 days in co-culture. The values are expressed as fold change from control.
N = 3 biological replicates. The p values are indicated. One-tailed one-sample t-test.
G Example ofAnnexin V signal in control versusHDderiveddirectly reprogrammed
SPNs co-cultured with control astrocytes at day 30 demonstrating significant
neurodegeneration in HD co-cultures evidenced by the increase in Annexin V sig-
nal. N = 4 and 6 technical replicates for control and HD, respectively, two-tailed
unpaired t-test, the p values are indicated. ForB,D–G, the data are shown asmean±
SEM. H Summary of our understanding of astrocytic states and regional hetero-
geneity in HD as it relates to neuroprotection. Panels C and H were created with
BioRender.com released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license.
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expression enhanced neuronal and astrocytic viability, nominating
astrocytic MT3 expression as a potential compensatorymechanism to
block neurodegeneration in HD.

Regional and type-specific responses to injury in HD
Comparing snRNAseq profiles of astrocytes in the three differentially
affected brain regions in HD to those in control individuals, and across
different grades of HD severity, revealed regional heterogeneity in
astrocytic responses to HD. For example, caudate astrocytes failed to
upregulate the metallothioneins 1 and 2, and even downregulated
MT3. Incontrast, cingulate astrocytes increasedmetallothioneins 1 and
2, as we previously reported21 and confirmed in this study, and
increased MT3 as well. Functional experiments revealed that MT3
overexpression promoted neuronal and astrocytic viability. We inter-
pret this finding as a compensatory or neuroprotective astrocytic
state, which will be the subject of future validation studies in animal
models.

Metallothioneins are protective in cerebral ischemia, and other
contexts of neuronal injury69–72. Most reports investigated MT1 and
MT2 as compensatory or neuroprotective molecules, but here, we
found that MT3 is also compensatory or neuroprotective. MT3 can
regulate neuronal differentiation and promote survivability in vitro73,
protect against seizure-induced cell death in vivo74, and is involved in
the regulation of lysosomal functions and autophagy in astrocytes75.
The function of metallothioneins as chelators of heavy metals is well
known76, and given the increases in iron and copper in the HD brain
(see review77), the presence of metallothioneins in astrocytes may be
protective against oxidative stress. In this respect, the responses of
cingulate vs. caudate astrocytesmay be crucial for neuronal survival in
these brain regions. Our finding thatMT3 overexpression in astrocytes
increased their ability to buffer glutamate is another potential
mechanism by which MT3 enhances viability - given the neurotoxic
effects of excessive glutamate78. MT3 also hinders mHTT protein
aggregation in vitro79, andmaybe secreted viaunknownnon-canonical
mechanisms80. Thus, there are multiple ways through which MT3 and
other metallothioneins may block neurodegeneration in HD. Future
experiments will define the exact mechanism of neuroprotection
conferred by MT3-expressing astrocytes.

We separated astrocytes into twomajor categories, protoplasmic
astrocytes and fibrous-like astrocytes, realizing that there is hetero-
geneity within each group. Fibrous-like astrocytes comprise a diverse
group, including the interlaminar cortical astrocytes and white matter
astrocytes in the normal human CNS42, as well as protoplasmic astro-
cytes that have diminished the expression of protoplasmic genes and
elevated the expression of other genes such as CD44 and GFAP.
Notably, fibrous-like astrocytes showed the highest enrichment of the
disease-associated CAG-correlated gene signature (Fig. 4B) and, in
contrast to protoplasmic astrocytes, did not significantly alter metal-
lothionein levels in the caudate nucleus (Fig. S4A, D). These results
demonstrated astrocyte-type-specific responses to injury in HD.

Our neuropathologic examination of the HD caudate using IHC
for CD44 suggested a transition from protoplasmic to CD44+ fibrous-
like astrocytes. We have described similar transitions in different
pathologies, such as hypoxia and epilepsy42,53. When applying pseu-
dotime analysis to astrocytes as a means to investigate state transi-
tions, the shift from protoplasmic to fibrous-like states was associated
with down-regulation of genes related to metallothioneins and upre-
gulation of ontologies related to glutamate receptor activity. This
computational analysis requires further validation in astrocytemodels.

We previously described a model for astrocytic responses to
injury in the HD cortex, which was based on protoplasmic astrocytes21.
In it we hypothesized that astrocytes that express quiescence genes at
baseline respond to injuryby upregulating neuroprotective genes and/
or reactive genes like GFAP, then progressively decrease quiescence
genes before they decrease neuroprotective genes. At end-stage, only

disease-associatedgenes arepresent.Here,we see evidence to support
this model in our expanded cohort of protoplasmic astrocytes across
different brain regions. The addition of other anatomic regions as a
dimension of progressive disease severity from cingulate to accum-
bens to caudate nucleus makes a stronger case than the analysis of
only the cingulate. Our model of astrocytic regional heterogeneity in
response to HD is illustrated in Fig. 7H. Cingulate and accumbens
astrocytes increase metallothioneins, which is a compensatory phe-
nomenon that potentially confers protection to neurons and enhances
glutamate buffering. In the caudate at advanced stages of neurode-
generation, astrocytes fail to increase metallothioneins and may be
less efficient at glutamate uptake.

Associations between astrocyte responses and CAG repeat
length and selective neuronal loss
Given that HD individuals carry variable numbers of CAG repeats, we
were interested in associating the different astrocyte clusters with the
genes correlated with CAG repeat length. We found stronger CAG-
correlated gene scores with astrocytic clusters in the caudate com-
pared to those in the cingulate cortex. This may not be surprising,
since the caudate pathology is far more profound than the cortical
pathology. Of interest, the compensatory protoplasmic cluster P1
displayed regional heterogeneity whereby it increased the CAG-
correlated genes in striatal regions and not the cingulate cortex. This
maybe attributed to the differences in diseaseburden, butmay alsobe
due to potential inherent differences between human neocortical and
striatal astrocytes. This is a subject of great interest to us, and we will
investigate it in a separate endeavor.

Correlations between astrocyte pathology and neuronal loss
The known selective neuronal vulnerability in HD8,57,81 was recapitu-
lated in our dataset. Our examination of neuronal populations in HD
confirmed the loss the SPNs in the caudate, extended these results to
the nucleus accumbens, and discovered the depletion of layer 5/6
SEMAS3E/TSHZ2 neurons in the cingulate cortex and a loss of LGR5+
interneurons in the caudate. We were particularly interested in any
relationships between neuronal loss and astrocyte pathology, and so
looked for correlations between astrocyte states and neuronal abun-
dance. One of the significant positive correlations was between the
compensatory protoplasmic cluster P1 and vulnerable SPNs. Since
SPNs are depleted in the caudate, we reasoned that this compensatory
astrocyte state might also be depleted, and indeed, our validation
studies showed that there was a loss of MT3 in caudate astrocytes. It is
possible that the selective neuronal vulnerability in the caudate
nucleus is augmentedby the lackof robust compensatory responses in
caudate protoplasmic astrocytes. Additional studies are needed to
validate the pro-survival effect of astrocytic MT3 in mouse models.

Astrocyte-microglial crosstalk
Finally, as described in Supplemental Results, we were interested in
examining microglial gene expression in our HD samples and then
determining if astrocytes with MT3 overexpression co-cultured with
microglia altered microglial gene expression. We indeed found sig-
nificant changes in tissue microglial gene expression (Fig. S10B–F and
SupplementaryDataset-9) and furthermore found thatMT3-astrocytes
co-cultured with microglia significantly altered microglial gene
expression, which included genes related to fatty acidmetabolism and
lipid transport. These changes were only present in microglia of the
cingulate cortex (Fig. S10 and S11), where astrocytes upregulated
metallothioneins, and the MT3-primed microglia exhibited increased
phagocytic capacity (Fig. S11G).

Open questions
Lipidomic analysis identified an increase in poly-unsaturated fatty
acids in HD. Astrocytes are the main cells that metabolize these fatty
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acids in the brain50–52. The link between fatty acid metabolism and
metallothionein expression in astrocytes is yet to be explored. Which
astrocytic state, if any, is the source of the increase in potentially toxic
poly-unsaturated fatty acids in the HD brain? And are MT3 astrocytes
less prone to producing such toxic lipids, or even produce other
protective lipids? Future functional experiments are needed to test
these hypotheses.

In conclusion, we showed that astrocytes in HD exhibit state-
specific and regional heterogeneity in response to HD pathology. We
have defined gene signatures associated with CAG repeat length, lipi-
domic abnormalities, and potentially, neuroprotection. The latter was
enriched in an astrocyte state thatwas depleted in the caudate nucleus
and was correlated with the depletion of vulnerable striatal neurons.
This compensatory gene signature was characterized by high levels of
metallothionein gene expression. Analysis of HD GWAS studies iden-
tified a SNP associated with delayed disease onset in the MT gene
locus, and functional experiments confirmed that MT expression in
astrocytes promoted enhanced viability.

Limitations
First, while we providemetrics on the differences inmodal CAG repeat
length between blood/cerebellum and each of the regions utilized in
our study in Fig. S1C, we do not measure repeat instability or an
expansion index as outlined in Lee et al.82. Thus, our CAG-correlated
gene signature does not account for changes in somatic instability.
Second, we do not define causal relationships between astrocytic
phenotypes and differential neuronal vulnerability; instead, we make
correlations between an astrocytic state modeled in vitro and
enhanced neuronal viability. Further studies are needed to define the
causal relationships between these cell states. Also, due to limited
sample numbers in HD grade 1 and grade 4 in our cohort, our study
does not define the relationships between astrocytic states/clusters
and HD grades. Finally, our functional studies focused on MT3, how-
ever we did not determine ifMT3’s effects were specific to that protein
or shared with other metallothionein family proteins - which share
sequence homology.

Methods
Brain tissue
All brain tissue used in the study was obtained from the New York
Brain Bank. All brains were donated after consent from the next of kin
or an individual with legal authority to give consent. The use of post-
mortem brain tissues for research was approved by the Columbia
University Institutional Review Board (IRB protocol # AAAT2895). The
Institutional Review Board has determined that performing clin-
icopathologic studies on de-identified postmortem samples is exempt
from Human Subject Research according to exemption # 45 CFR
46.104(d)(2). All studies conducted herein complied with relevant
ethical regulations enforced by Columbia University and per IRB pro-
tocol # AAAT2895.

Bulk RNA sequencing
Total RNA was extracted from frozen brain tissue samples using an
automated Qiagen platform (QiaSymphony). RIN values were measured
on an Agilent Bioanalyzer. All samples had RIN values ≥7. The samples
were processed using an Illumina® Stranded mRNA Prep kit and were
sequenced on an Illumina NOVASEQ 6000 sequencer to produce
stranded 100-base pair paired-end libraries at 20 million read depth per
sample. For RNAseq of microglial cultures, the samples were processed
using an Illumina TruSeq Stranded Total RNA kit and sequenced on an
Illumina NextSeq sequencer at a read depth of 10 million reads per
sample. Raw reads were aligned to the reference (GRCh38.92) using
STAR(version 2.7.1)83. Countmatriceswere generated from the BAMfiles
using featureCount with default options. Differential gene expression
analysis was performed in EdgeR using the glmQLFit method84. Batch

was considered in the design formula. Gene set enrichment analysis was
performed in enrichR85 and/or gprofiler286.

CAG regression analysis
The gene expression count matrix (20276 genes) was filtered to
remove genes with low expression using the “filterByExpr” function of
the edgeR84 package (version 3.30.3), with default settings. 15413 genes
were retained for subsequent analysis. The matrix was then trans-
formed using the “limma::voom” function (version 3.44.3). Batch
effects were visualized with principal component analysis and batch
correction performed with the “limma::removeBatcheffects” function.
To determine how CAG repeat length affects expression of the
retained genes in HD, we performed multiple linear regression with
CAG asone of the predictors of the level of gene expression amongHD
samples across all three regions. We assumed that level of gene
expression would also be affected by age, region of the brain, and sex.
A regression model was fit separately for each gene using the trans-
formedgene abundance as the response variable, andCAG length, age,
brain region, and sex as predictor variables. Regression coefficients
were estimated using least squares, and the p-values for the fit models
were corrected for multiple hypothesis testing using the Benjamini-
Hochberg method. Among the significant gene models (adjusted
p-value < 0.01), genes that had a significant regression coefficient
estimate for CAG repeat length (p-value < 0.01) were considered as the
genes whose expressions were associated with CAG expansion –

referred to as “CAG-correlated genes”. For enrichment analysis using
EnrichR85, we set an FDR threshold of 0.1 for select genes for the
enrichment analysis.

Lipidomics
Total lipids were extracted from frozen 40–70mg human brain
dissected as described above. Lipidomics profiling in fresh frozen
brain tissue was performed using Ultra Performance Liquid
Chromatography-Tandem Mass Spectrometry (UPLC-MSMS). Lipid
extracts were prepared from homogenized tissue samples using
modified Bligh and Dyer method78, spiked with appropriate internal
standards, and analyzed on a platform comprising Agilent 1260
Infinity HPLC integrated to Agilent 6490 A QQQ mass spectrometer
controlled by Masshunter v 7.0 (Agilent Technologies, Santa Clara,
CA). Glycerophospholipids and sphingolipids were separated with
normal-phase HPLC as described before87, with a few modifications.
An Agilent Zorbax Rx-Sil column (2.1 × 100mm, 1.8 µm)maintained at
25 °C was used under the following conditions: mobile phase A
(chloroform: methanol: ammonium hydroxide, 89.9:10:0.1, v/v) and
mobile phase B (chloroform: methanol: water: ammonium hydro-
xide, 55:39:5.9:0.1, v/ v); 95% A for 2min, decreased linearly to 30% A
over 18min and further decreased to 25% A over 3min, before
returning to 95% over 2min and held for 6min. Separation of sterols
and glycerolipids was carried out on a reverse phase Agilent Zorbax
Eclipse XDB-C18 column (4.6 × 100mm, 3.5 µm) using an isocratic
mobile phase, chloroform, methanol, 0.1M ammonium acetate
(25:25:1) at a flow rate of 300μl/min. Quantification of lipid species
was accomplished using multiple reaction monitoring (MRM) tran-
sitions under both positive and negative ionization modes in con-
junction with referencing of appropriate internal standards: PA 14:0/
14:0, PC 14:0/14:0, PE 14:0/14:0, PG 15:0/15:0, PI 17:0/20:4, PS 14:0/
14:0, BMP 14:0/14:0, APG 14:0/14:0, LPC 17:0, LPE 14:0, LPI 13:0, Cer
d18:1/17:0, SM d18:1/12:0, dhSM d18:0/12:0, GalCer d18:1/12:0, GluCer
d18:1/12:0, LacCer d18:1/12:0, D7-cholesterol, CE 17:0, MG 17:0,
4ME 16:0 diether DG, D5-TG 16:0/18:0/16:0 (Avanti Polar Lipids,
Alabaster, AL). Lipid levels for each sample were calculated by sum-
ming up the total number of moles of all lipid species measured by
all three LC-MS methodologies, and then normalizing that total
to mol %. The final data are presented as mean mol % with error
bars showing mean ± S.E. Statistical comparisons were done using a
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one-way ANOVA and Tukey’s test for post-hoc analysis. We had
previously only presented the DAG results in our paper on
oligodendrocytes15.

WGCNA
The “WGCNA” R package (version 1.72) was used to identify modules of
co-expressed and co-regulated genes, associated with various clinical
and anatomic traits in HD88. Briefly, the gene expression countmatrix of
both control and HD samples was normalized using the voom function
from limma89, batch corrected using combat90. To retain the most
varying genes expressed across all samples, we determined the top 6183
genes with the highest median absolute deviation. A signed weighted
gene co-expression network was constructed. Adjacencies of the
retained genes were calculated using a soft thresholding power of 16 for
control and 9 for HD networks. To minimize spurious associations, the
adjacencies were transformed to a topological overlap matrix (TOM),
and corresponding dissimilarity calculated. The genes were then clus-
tered on the TOM-based dissimilarity. Modules of co-expressed genes
were subsequently identified from the dendrogram of clustered genes
using hybrid-tree cutting, with a deepsplit parameter set to TRUE and
minimum module size of 75. Modules with similar expression profiles
(cor > 0.75) were then merged. Significantly associated clinical and
anatomic attributes were then determined from the Pearson correlation
between module eigengene expression and different traits. Module
preservation statistics were generated using the modulePreservation()
function with 100 permutations and network type set to signed and
quickCor = 0. Otherwise, default parameters were used. Module-trait
correlation was performed by Pearson correlation of module eigenva-
lues per sample and traits. Correlation p values were calculated using
the corPvalueStudent function with default parameters.

Dysregulated networks of co-expressed genes in HD
To identify and characterize dysregulated gene expression networks in
HD, we first built a reference network using control samples only fol-
lowing similar steps as above, and then evaluated the preservation of
these modules in HD using the “modulePreservation” function in
WGCNAwith 100 permutations, as previously described91. Specifically,
several module preservation statistics were generated and used to
determine the degree of preservation of each control module in HD.
Gene ontology enrichment analysis on the module genes was per-
formed using the moduleGO function from DGCA92 using a hyper-
geometric test with default parameters. The reference dataset
included all genes included in the WGCNA analysis (n = 6183 genes).
The plots in Fig. S2E–F were generated using extractModuleGO and
plotModuleGO functions. Modules of interest were selected for
visualization.

Integration of lipidomics with bulk RNAseq and sparse-PLS dis-
criminant analysis
Integration of bulk RNAseq and lipidomics data was performed using
the sparse-partial least squares/projection to latent space (spls) func-
tion in the R packagemixOmics93. Both the normalized lipidomics and
the log-normalized bulk RNAseq matrices were first filtered based on
variance (by detecting outlier features with high variance using the
isOutlier(nmads = 2, type = “higher”) function from scater94). 5251
genes and 250 lipid species remained from 21 samples. The spls model
was first tuned resulting in three components. The network was
exported and visualized in cytoscape95. Spls-discriminant analysis
(splsda) was achieved after tuning the model using the following
command: tune.splsda(X = lipidomics_data, Y = Grade, ncomp = 4,
test.keepX = c(1:10, seq(2, 300 10)), validation = “Mfold”, folds = 5, dist
=“max.dist”, measure = “BER”, nrepeat = 10). The resulting x and y
components were used in the final tuned model, which was used for
discriminant analysis. ROC curve for sensitivity and true negative rates
were generated using the auroc function from mixOmics.

Single nucleus RNAseq and quality control
The tissuedissection, extractionofnuclei, sequencing, andQCanalysis
of this dataset presented herein was described previously15. Briefly,
~60mm3 pieces of fresh frozen post-mortem tissuewere dissected and
mechanically homogenized to extract nuclei using a Triton X100 and
sucrose-containing buffer. 5000–10000 nuclei were processed for
GEM generation on a Chromium Controller (10× Genomics) using
single Cell 3′ Reagent Kit v2 or v3 (Chromium Single Cell 3′ Library
& Gel Bead Kit v2/v3, catalog number PN-1000075; Chromium Single
Cell A Chip Kit, 48 runs, catalog number: 120236; 10× Genomics).
Sequencing of the snRNAseq libraries was done on Illumina NOVAseq
6000, and alignment to of the fastq files to the reference was done
using the CellRanger pipeline (10× Genomics) and the GRCh38.p12
reference). Count matrices were generated using DropEst96 or Cell-
Ranger. Low-quality cells were filtered from the based on %mito-
chondrial reads ≥ 15%, ngenes <200 gene, and logtotalreads<6 using
the scater package94. Ambient RNA removalwas performed to improve
the accuracy of clustering in decontX with default parameters97.
Doublets were removed using scran98 with default parameter and by
identifying clusters with ambiguous markers.

Clustering of cell types from Huntington’s disease samples
The complete Seurat object was created by aligning multiple datasets
through the R package Seurat99,100 (version 4.06). Each sample’s cell
type was identified using known markers and further corrected by
region for biological consistency. The samples were log-normalized
and scaled using Seurat’s NormalizeData function. Coordinates for the
PCA were calculated using Seurat’s RunPCA function for a total of 30
principal components. The datasets were merged using Harmony91

(version 1.0) through Seurat’s RunHarmony function. All 30 principal
components were used as inputs into RunHarmony. In addition, the
integration corrected for three variables, donor, batch, and case
numbers (some donors had more than one sample). UMAP coordi-
nates were calculated with Seurat’s RunUMAP function using the
Harmony coordinates as input into the dimensional reduction argu-
ment. Cluster assignment on the main object followed Seurat’s stan-
dard workflow with passing the object’s 30 Harmony coordinates
through the FindNeighbors function followed by the FindClusters
function with all default parameters. The coordinates of t-SNE were
produced using runTSNE function in scater94 (version 1.22.0). Each
t-SNE plot was created using the first three coordinates through the
package plotly (version 4.10.0).

Sub-clustering of all astrocyte samples
After clustering the complete object which comprised various cell types,
the astrocytes were subset into a separate Seurat object for reclustering.
The samples were first log-normalized and scaled using Seurat’s Nor-
malizeData function with default inputs. Afterwards, PCA was per-
formed using Seurat’s RunPCA function for a total of 30 principal
components. All samples were then corrected for donor and batch
through Seurat’s RunHarmony function91. The inputs consisted of the
first 30 principal components, while all other arguments were set to
default settings. UMAP coordinates were calculated with Seurat’s
RunUMAP function using the Harmony coordinates as input into the
dimensional reduction argument. Cluster assignment on the main
object followed Seurat’s standard workflow by passing the object’s 30
Harmony coordinates through the FindNeighbors function followed by
the FindClusters function with all default parameters. Cluster assign-
ments were evaluated iteratively for any contamination by looking at
standard markers for neuronal and glial cell types. Samples which
consistently expressed certain cell markers were removed to ensure all
samples were true astrocytes. To further sub-cluster astrocytes into
fibrous-like and protoplasmic, we partitioned the astrocyte samples into
those that expressed CD44 (fibrous-like) and those that did not (pro-
toplasmic). These sub-types were then split into their own respective
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Seurat objects and subjected to the same procedure of clustering as
described above. Subclusters that contained under 200 cells were
excluded from downstream analysis; a total of 278 cells were excluded.

Differential gene expression analysis – on the single cell level
An initial countsfilterwas applied to all DGEanalysis for every cell type.
The genes were filtered by minimum expression and whether genes
were robustly expressed. Any genes with raw counts less than 4 were
not considered. In order to consider the most robustly expressed
genes for downstream analysis, the average expression of each gene
was calculated for all cells in a cell-type or cluster, (i.e., row average),
and a gene is retained if 5% of cells in a given type/cluster have an
expression level greater than or equal to the overall average expres-
sion in that cluster/type.

Significantly differentially expressed genes between HD and
control were identified with the voom function89 in a regression for-
mula to correct for donor, batch, sex, and age. The analysis was fol-
lowed with the eBayes function to apply statistics and to finally extract
the top 1000 genes with an FDR of 5%.

Gene set enrichment analysis and Gene ontology enrichment
analysis
The counts matrix for gene set enrichment analysis was prepared by
pseudo-bulking the astrocyte snRNAseq data. The pseudo-bulking
procedure was performed by aggregating the counts from all donors
within its respective UMAP cluster. All donor-cluster samples were
then transferred into a Seurat object (version 4.06) and were nor-
malized using Seurat’s NormalizeData function followed by the
SCTransform function to correct for any covariates. All normalization
functions were applied with default parameters. Gene set enrichment
analysis was done using the GSVA101 package (version 1.44), using the
pseudo-bulked matrix and the gene sets as input to the gsva function.
The arguments of the function mx.diff were set to false and the
method set to “gsva”. From the output, we normalized the individual
gene set scores into a z-score for eachpseudo-bulk sample by applying
the base R scale function. Finally, the gene set scores were averaged
across region, grade, and cluster. For Preranked gsea (Fig. S11), the
DEGs increased in HMC3 cells co-cultured with MT3-astrocytes versus
those co-cultured with control astrocytes was used as a gene set. DEGs
from HD versus control microglia in different brain regions were
ranked based on log fold change and the enrichment was measured
using the fgsea package (version 1.28.0) in R. Normalized enrichment
score, p values and adjusted p values are indicated in the figure. Gene
ontology analysis was performed on significant DEGs only using
gprofiler2 package (version 0.2.3) with the multi_query option set to
true, with default parameters.

Pseudotime analysis on astrocyte sub-populations
We created PHATE102 (version 1.0.4) embeddings for all astrocytes. All
raw counts matrices for each group were normalized using the sqrt
function. We corrected for donors in the embedding by providing the
phate function with a vector of all donors using fastmnn function, and
used default parameters to create the final embeddings. Pseudotime
analysis was performed with slingshot103 (version 2.8.0) on the astro-
cytes in PHATE reduction. Initial clusterswere definedusing theMclust
package (version 6.0). The origin point was defined by the cluster with
the highest expression levels of SLC1A2. Cluster annotations and
PHATE embeddings were provided to the slingshot function with
default parameters. Downstream start vs end point differential
expression was performed using the tradeSeq104 package (ver-
sion 1.14.0).

Differential abundance analysis
A matrix of cell types by donor for each brain region was created as
input into the differential abundance analysis. Anydonorwith less than

10 cells from any particular cluster was considered an outlier and
was not included in the analysis. An otu table from the phyloseq
package (version 1.42.0) was created for each matrix as required for
running ANCOM-BC105 (version 2.02). The ancombc function was used
to run the differential abundance analysis with an input formula of
“Age + Sex + Batch + Condition + Region”. This ensured our results
were corrected for covariates. The prv_cut parameter was set to 0,
neg_lb = TRUE, struc_zero = TRUE, conserve = FALSE, and all other
parameters were set to their default settings. Log fold change values
from the “Condition” column were used to compare whether specific
cell types were enriched or depleted in HD. Further, log fold change
values for each “Region” column were referenced to determine
enrichment of astrocyte clusters in various regions. In addition, stan-
dard error values were extracted to place onto the final bar plot. Sta-
tistically significant comparisons were determined using the corrected
p-value provided from ANCOM-BC.

Correlation of astrocyte and neuron proportion analysis
Using the significantly differentially abundant cells from the differ-
ential abundance analysis, we correlated the proportions of significant
neuronal types to the proportions of astrocyte sub-clusters for each
brain region. The correlation was performed using the cor.test func-
tion from the stats package (version 3.6.2). All default parameters were
used. The Pearson correlation coefficients and respective p-value were
extracted from the output of cor.test and plotted as heatmaps.

Immunohistochemistry and multiplex immunofluorescence
Five-to-seven micron-thick sections of formalin-fixed and paraffin-
embedded human brain tissue were processed on an automated
Leica© Bond RXm autostainer according to the manufacturers’
instructions. For chromogenic DAB stains, generic IHC protocols were
employed as per manufacturer protocols. Standard deparaffinization
and rehydration steps preceded antigen retrieval in Leica ER2 (cat#
AR9640) antigen retrieval buffer for 10–20min according to manu-
facturer protocols. For multiplex immunofluorescence, 1 h incubation
in a 10%donkey serumcontaining PBS-basedblocking buffer preceded
labeling with primary antibodies for 1 h at room temperature.
Threewash steps in Leicawashbuffer (Ref#AR9590) preceded labeling
with species-appropriate Alexa fluor conjugated secondary antibodies
(Invitrogen). After three washes, a DAPI containing mounting
solution (Everbright TrueBlack Hardset Mounting Medium with DAPI
Cat#23018) was used to label nuclei and quench autofluorescence
prior to cover-slipping. All steps were conducted at ambient
temperature.

Alternatively, multiplex Immunofluorescence of paraffin-
embedded blanks was done manually. First, the slides were rehy-
drated (xylene, 100% EtOH, 95% EtOH, 70% EtOH, 50% EtOH, ddH2O)
and then washed in PBS-Tween-based wash buffer. Slides were sub-
merged in pre-heated 1×Trilogy for 20min for antigen retrieval, cooled
to room temperature, and washed in PBS-T. Samples were outlined
with a hydrophobicmarker to contain antibody solutions on the tissue.
Slides were blocked with 1:10 dilution of blocking serum to AB diluent.
Antibodies were diluted, applied, and slides were left to incubate 4 °C
overnight. On Day 2, slides were washed in PBS-T, species-appropriate
secondary antibodieswerediluted (1:500), applied, and slideswere left
to incubate at room temperature in the dark for 2 h, and then washed
in PBS-T. Slides were incubated with 0.1% Sudan Black B diluted in 70%
EtOH for 30min to quench the tissue’s autofluorescence, and then
washed in PBS-T. Finally, slides weremountedwith DAPImedia to stain
nuclei.

The following primary antibodies were used: Rabbit ALDH1L1
(1:100, EnCor, Cat#RPCA-ALDH1L1), Chicken GFAP (1:1000, Abcam,
Cat#4674), Goat Clusterin (1:200, Thermo fisher, cat#PA5-46931),
Rabbit MT3 (1:200, Novus Biologicals, cat#NPP1-89772), Mouse CD44
(1:50, Millipore, cat#SAB1405590), Rabbit CD44 (1:100, Abcam,
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Cat#ab101531), RabbitMT3 (1:100, Millipore, Cat#HPA004011), Mouse
anti Metallothionein (Detects MT1 and MT2 proteins – Abcam,
Ab12228, 1:100). Secondary antibodies conjugated to fluorophores:
anti-mouse Alexa Fluor 488, 568, and 633, anti-rabbit Alexa Fluor 488,
594, anti-chicken Alexa Fluor 488 and 647, and anti-goat Alexa Fluor
488, 568, 633; all from goat or donkey (1:500, ThermoFisher Scientific,
Eugene, OR).

Imaging and image analysis
All brightfield images and immunofluorescent images were taken on
the Leica Thunder Imager DMi8. Images were acquired at 20x air or
40× oil immersion objectives using a Leica K5 camera or a Leica
DMC5400 color camera. Leica Biosystems LASX softwarewas used for
image capture. Tiles covering the region of interest were taken and
stitched. Leica Thunder instant computational clearing was used to
remove out of focus light.

All observerswereblind to experimental conditions. Tiff fileswere
used for analysis in Qupath 0.4.2. Annotations delineating the dorsal
caudate nucleus or the entirety of the cingulate cortex at the level of
the caudate nucleus head were created. Next, to detect cells, we used
the “cell detection” function (analysis tab), and the DAPI channel was
set as the Detection Channel. Next, we trained an object classifier to
classify the detections for the different channels. Training data was
created from each image, for each channel, to mark the cells positive
for a specific antigen. One classifier per channel was trained by calling
the “train object classifier” function under the analysis tab > classify
with the following parameters: type = Random Trees, measurements =
Cell: Channel X standard deviation, mean, max, and min measure-
ments for the channel in question. To increase the accuracy of the
classifier, additional training annotations were created on the image in
question until the classification results matched the impression of the
observer. A composite classifier was created from the individual
trained classifiers using the “create composite classifier” function.
Training imageswere included fromall slides quantified, and classifiers
were re-trained for each image separately as appropriate. To performa
morphological analysis of GFAP-positive cells, 12 GFAP-positive cells
per case were quantified. The morphology was analyzed by counting
the number of processes per cell and determining the average length
of those processes. A two-tailed t-test was performed comparing these
parameters between the HD and control group with N = 3 for both
groups.

Genome-wide genotyping and imputation of Venezuelan
patients, and data acquisition from GeM-HD consortium
DNA was extracted from EBV-transformed lymphoblastoid cell lines
established from blood samples of the Venezuelan individuals using
the Qiagen Blood and Tissue DNeasy Kit. Genotyping on these DNA
samples was performed at the New York Genome Center on a HiScan
Illumina machine with the Illumina CoreExome Array. The genotypes
were then imputed using the IMPUTE2 software package (version
2.3.2) and the publicly available 1000 Genomes reference panel, along
with whole genome sequences from select Venezuelan patient sam-
ples. For the GeM-HD consortium patients62, genotyping array data
was downloaded from dbGaP (Study Accession: phs000222.v4.p2).
The IMPUTE2 software packagewas used to impute these downloaded
genotypes, guided by the 1000 Genomes reference panel.

Genome-wide association study of residual age of onset
For the comprehensive mega-analysis, the genotypic and clinical data
from the Venezuelan patients were combined with the data from the
GeM-HD consortium. A quantitative genome-wide association (GWA)
test was carried out using the GENESIS software package (version
2.30). A linear mixed model regression was implemented using the
residual age atmotor onset as a phenotype, allowing for adjustment of
empirical pairwise relatedness, as well as other covariates such as sex

and population structure. The residual age of onset was calculated
using the motor age of onset and CAG repeat length. To subtract the
effects of CAG repeats from the age of onset, a previously developed
phenotype model was utilized. To mitigate skewness in the distribu-
tion of residual age at onset and to model a theoretical normal dis-
tribution, a Box-Cox power transformation was applied to the
distribution prior to its usage as a phenotype for association testing.
The resulting significance values from the GWA were uploaded to the
LocusZoom browser and plotted for the rs3812963 locus – the y-axis
indicates a p value threshold of 10−6. Although the SNPs in theMT locus
did not meet the traditional cut-off for GWAS (10−8), we proceeded
with examining the association of the SNPs of interest with MT gene
levels in the xQTL database – see main text.

Real-time quantitative PCR
Total RNA was extracted from brain specimens using RNAeasy minikit
(Qiagene©). RNA concentration and purity were determined using
NanoDrop (Thermo Scientific™, MA). RNA was converted to cDNA
using High-capacity RNA-to-cDNA kit (Thermo Fisher Scientific,
Applied Biosystems™, MA). The following Taqman assays were used
(GLUL cat #4453320, SLC1A2 cat# 44488952 and GADPH
cat#4448484). The reaction volumes were 10–15 µl per reaction. Taq-
Man™ Multiplex Master Mix (Thermo Fisher Scientific cat# 4461881)
was used. All reactions included 2–5 ng of cDNA. Thermal cycling
parameters were conducted per manufacturer’s standard recommen-
dations. The qPCR plates were read on a QuantStudio™ 5 Real-time
PCR system (Thermo Fisher Scientific, Applied Biosystems™, MA). The
reactions were done in triplicates. Relative gene expression was cal-
culated using the delta delta Ct method with GAPDH or RPL13A as a
reference genes. N = three biological replicates. For MT genes,
qPCR was preformed using PowerTrack SYBR Green Master mix
for qPCR kit (Thermofisher, cat#A46109). Primers: MT1E (Invitrogen
cat#10336022), MT1A (Invitrogen cat#10336022), MT1X (Invitrogen
cat#10336022), MT2 (Invitrogen cat#10336022), MT3 (Invitrogen
cat#10336022) and RPL13A (Invitrogen cat#10336022).

Cell culture and transduction of human astrocytes
Human astrocytes (Sciencell© cat#1800) were cultured in Astrocyte
culture medium (Sciencell © cat#1801) according to vendor’s proto-
cols on poly L-Lysine coated cell culture plates. The following Lenti-
viruses were obtained from VectorBuilder ™; Lentivirus transduction
for mGFP (pLenti-C-mGFP-P2A-Puro – Origene Cat# RC211875L4V),
CLU_mGFP (CLU(mGFP–tagged)-human clusterin(CLU) - Origene Cat#
PS100093V), and MT3 (pLV[Exp]-EGFP:T2A:Puro-EF1A > hMT3 Vector-
Builder cat# VB900003-8937eud). Glutamate levels in culture media
of GFP or MT3 transduced astrocytes were measured using Cayman
glutamate colorimetric/Fluorometric assay (cat# 702330) according to
manufacturer suggested protocol using a glutamate oxidase-based
conversion of glutamate to alpha-ketoglutarate, ammonia, and H2O2
followed by a horseradish peroxidase-based reaction generating a
fluorescent substrate excitable at 530 nm. Fluorescence was collected
at 590 nm on a Varioskan Lux plate reader in a 96 well-plate.

Patient-derived neuronal cultures
Striatal spiny projection neurons (SPNs) were directly converted from
the fibroblasts of healthy controls and HD patients using brain-
enriched microRNAs, miR-9/9* and miR-124 and subtype-defining
transcription factors CTIP2, DLX1/2, and MYT1L as previously
described68,106. Specifically, three independent cell lines were used:
ND30013 - male, AG04194 - female, and AG04230 - male, with CAG
repeats of 43, 46, 45, respectively. P2A (GFP-transduced) astrocytes
and MT3 astrocytes were co-cultured with Control SPNs (Ctrl-SPNs –
n = 1 cell line) and HD-SPNs (n = 3 cell lines) at 1:1 ratio on post-
induction day 22 (PID22). Reprogrammed cells were treated with
Incucyte Caspase-3/7 Green Reagent and Annexin V Red Reagent on
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PID27. Four-to-six technical replicates per condition were used. Ima-
ging scheduling, collection and data analyses were performedwith the
Incucyte Live-Cell Analysis System. Ctrl-SPNs and HD-SPNs were
imaged every 24 h for 8 days (PID28 to 35). Images were analyzed for
the number of green or red objects per well of 96 well plates. For the
apoptotic index, the number of green or red objects divided by phase
area (μm2) per well was quantified.

Co-cultures of astrocyte with murine neurons
MurineNeuro2a (N2A – Sigma cat #89121404)were cultured inDMEM
(11995073, Gibco) containing 10% fetal bovine serum (FBS, A3840301,
Gibco) and 1% penicillin/streptomycin at 37 °C and 5% CO2. The cells
were seeded onto a cell culture treated 24 well-plate at 3.5 × 104 cells/
well in for 24 h. The next day, themediawas changed and switched to a
DMEM differentiation media containing 2% FBS and 20 µMof Retinoic
acid. Cells were allowed to differentiate for 24 h before adding control
GFP or MT3 overexpressing astrocytes at 3.5 × 104 cells/well in astro-
cyte culture medium (Sciencell©). The cells were co-cultured for 24 h
before adding Cadmium at 50 µM or 10 µM, or Rotenone at 200 nM or
20nM (HY-B1756, MedChemExpress), versus DMSO. 24h later, the
cells were stained with Propidium Iodide (Invitrogen cat# P3566) at
1:500 for 30min prior to washing, trypsinization, and analysis by
flowcytometry using BD Bioscience LSRII flowcytometer. After gating
on the live singlet cells, the percentage of positive FITC± that were PI±
were quantified by FCS express 7 (De Novo Software). The experiment
was replicated 4 times.

Astrocyte-microglia co-culture for microglia RNAseq and
phagocytosis assay
HMC3 cells (ATCC cat#CRL-3304) were seeded in 24 well-plate at 5 ×
104 each well in 0.5ml culture medium (DMEM with 10% FBSmedium)
and cultured overnight before co-culture with control, CLU over-
expressing, orMT3 overexpressing astrocytes in a transwell assay. The
astrocytes were seeded in the upper chamber of a 24 well-plate 0.4 µm
polycarbonate membrane inserts (costar cat#3413) pre-coated with
Poly L-Lysine, at 5 × 104 cells per insert in 0.1ml of astrocyte growth
medium (Sciencell™) 3 h before transferring the insert to the wells
containing the microglia. The two cell types were co-cultured for 24 h
before the astrocyte inserts were removed for collecting microglial
RNA for RNAseq or conducting the phagocytosis assay. For the latter,
themedia was changed into fresh HMC3media containing fluorescent
latex beads (1:500, latex –beads-rabbit IgG-FITC complex—Cayman
chemical cat#500290). The cells were incubated for 30min at 37 °C
before being washed as the manufacturer protocol, trypsinized, and
analyzed by flowcytometry using BD Bioscience LSRII flowcytometer.
The percentage of positive FITC+ cells was evaluated by FCS express 7
(De Novo Software) after gating on the live singlet cells. The experi-
ment was replicated 4 times.

Murine neuronal cultures and viability studies
N2A cells were cultured as above but with the following changes. Cells
were seeded at 20,000per well in 96-well plates (3340, Corning). After
24 h of culture in DMEM with 10% FBS, the culture medium was
removed. The N2A cells were then cultured for an additional 24 h in
DMEM with 2% FBS and 20 µM retinoic acid (R2625, Sigma) to induce
neuronal differentiation. To assess the cytotoxicity of Dihomo-γ-
linolenic acid (DGLA, HY-A0143, MedChemExpress) on neurons, dif-
ferentiated N2a cells were cultured with DGLA at 20, 100, and 200 µg/
ml or equivalent weight/volume control ethanol (1:5000, 1:1000, or
1:500, respectively) in the absence or presence of 20 µM Rotenone
or DMSO.

After 24h of treatment, the viability of the neurons was deter-
mined using PrestoBlue™ HS Cell Viability Reagent (P50201, Invitro-
gen). Specifically, the culture medium was removed, and 100 µL of
culture medium was added to each well containing 10% PrestoBlue

reagent. The plates were then returned to the incubator for 20min
and fluorescence was measured using VarioSkan Lux (VLBLATGD1,
ThermoFisher) at 560/590nm (excitation/emission). Viability values
above 100% are explained by well-to-well variability in control-
normalized fluorescence values. However, these values were not sig-
nificantly different from 100%when a one-sample t-test comparing the
values per group to a hypothetical mean of 100% (two tailed p values:
0.9994, 0.9332, 0.6901, 0.1100 for the groups shown in Fig. 2F,
respectively).

Data analysis and statistics
Unpaired t-tests were used unless otherwise stated. Paired tests were
used for data shown in Fig. S11G and Fig. 7D, E, as the data was derived
from three/four experiments each with condition and control. At least
3 technical replicates were averaged per experiment. The average fold-
change from control per experiment experiments was used as a bio-
logical replicate. Since there was a batch effect related to experiments
being done on separate plates and separate days, we used pairing
to control for this confounding effect. A one-tailed t-test was used
when we had a prior hypothesis, and when we assigned equal
weights to results of the alternative hypothesis (no differences or
differences opposite to what was expected), because both equally
invalidate the driving hypothesis107. In Fig. S11G, a two-tailed test
was used because there was no prior hypothesis regarding the
effects of MT3 on phagocytosis. In analyses in Fig. 6B, D, F, Fig. S7F,
and Fig. 7F, we use one-tailed unpaired t-tests because our tran-
scriptomic analysis allowed us to formulate a priori hypotheses: MT3
was decreased in caudate astrocytes (Fig. 6D), MT3 was increased
in cingulate astrocytes (Fig. 6F), LGR5 was reduced in caudate neurons
(S7F), and MT3 could increase viability (Fig. 7F) - based on predicted
function of metallothioneins. For Fig. S3, one-way anova followed
by Tuckey’s test for multiple comparisons was done. The n and
p values are indicated in the respective figures and legends. For
qPCR tests to verify overexpression of CLU and MT3 in CLU and
MT3 overexpressing astrocytes, respectively, a one-sample one-
tailed t-test was used. Figures 7H and S11A were created in
BioRender.com.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human snRNAseq and bulk RNAseq dataset have been deposited
in the GEO database under accession GSE242198. The lipidomics
dataset is provided in the supplementary information. Source data are
provided with this paper.

Code availability
The customized code and object used for analysis in thismanuscript is
provided here: https://github.com/Al-Dalahmah-lab/HD_astrocytes_
paper/.
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