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Abstract
Introduction The	human	salivary	metabolome	is	a	rich	source	of	information	for	metabolomics	studies.	Among	other	influ-
ences,	individual	differences	in	sleep-wake	history	and	time	of	day	may	affect	the	metabolome.
Objectives We	aimed	to	characterize	the	influence	of	a	single	night	of	sleep	deprivation	compared	to	sufficient	sleep	on	
the	metabolites	present	in	oral	fluid	and	to	assess	the	implications	of	sampling	time	points	for	the	design	of	metabolomics	
studies.
Methods Oral	fluid	specimens	of	13	healthy	young	males	were	obtained	in	Salivette® devices at regular intervals in both a 
control condition (repeated 8-hour sleep) and a sleep deprivation condition (total sleep deprivation of 8 h, recovery sleep of 
8 h) and their metabolic contents compared in a semi-targeted metabolomics approach.
Results Analysis	 of	 variance	 results	 showed	 factor	 ‘time’	 (i.e.,	 sampling	 time	 point)	 representing	 the	major	 influencer	
(median 9.24%, range 3.02–42.91%), surpassing the intervention of sleep deprivation (median 1.81%, range 0.19–12.46%). 
In	addition,	we	found	about	10%	of	all	metabolic	features	to	have	significantly	changed	in	at	least	one	time	point	after	a	night	
of sleep deprivation when compared to 8 h of sleep.
Conclusion The	majority	of	significant	alterations	 in	metabolites’	abundances	were	found	when	sampled	in	 the	morning	
hours,	which	can	lead	to	subsequent	misinterpretations	of	experimental	effects	in	metabolomics	studies.	Beyond	applying	
a within-subject design with identical sample collection times, we highly recommend monitoring participants’ sleep-wake 
schedules prior to and during experiments, even if the study focus is not sleep-related (e.g., via actigraphy).
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1 Introduction

The human metabolome is a rich source of information. 
To date, the Human Metabolome Database (HMDB) con-
tains	over	200’000	metabolite	entries	of	different	chemical	
classes (Wishart et al., 2022). Over the past decades, plenty 
of studies have exploited its potential, mostly for diagnos-
tic,	 clinical,	 and	 forensic	 applications	 (Ashrafian	 et	 al.,	
2021; Johnson et al., 2016; Steuer et al., 2019; Szeremeta 
et al., 2021). Matrices frequently employed in metabolo-
mics research encompass blood, urine, and increasingly, 
oral	fluid.	The	latter,	often	synonymously	but	inaccurately	
referred	to	as	saliva,	is,	by	definition,	the	entirety	of	liquid	
present in the oral cavity. Its composition is made of the 
secreted products of salivary glands (i.e., saliva), microbi-
ota, lining cells, and extrinsic substances – sometimes mixed 
with	other	fluids	 such	 as	bronchial	 or	 nasal	 secretions,	 or	
blood in case of oral bleedings (Bellagambi et al., 2020). 
Time-of-day	variations	in	flow	rates	and	the	sampling	loca-
tion,	due	 to	 the	unequal	spread	of	different	gland	 types	 in	
the	oral	cavity,	have	been	shown	to	affect	 its	composition	
(Ciurli et al., 2024). The simple, cheap, non-invasive, and 
repeatable sampling nature in combination with relevant 
biological	 information	 has	 made	 oral	 fluid	 an	 appealing	
matrix of choice for metabolomics studies, regardless of the 
study topic (Gardner et al., 2020).

Analytical setups in metabolomics typically involve the 
use of separation techniques (e.g., liquid chromatography 
(LC), gas chromatography, capillary electrophoresis, among 
others) in conjunction with mass or structural analyzers that 
utilize mass spectrometry (MS) or nuclear magnetic reso-
nance spectroscopy for the instrumental analysis of biologi-
cal	samples.	However,	various	instrumental	configurations	
can be employed to meet particular analytical requirements. 
Currently, no comprehensive approach is available to ana-
lyze the complete set of metabolites present in a biological 
system (Tebani et al., 2018). Recent advancements in mass 
spectrometry	 technology	 have	 led	 to	 significant	 enhance-
ments in sensitivity, enabling the measurement of a broader 
range of analytes, including those present in very low abun-
dance (Li et al., 2021).	Thus,	even	small	differences	between	
study groups can be detected and characterized. However, 
the potential advantages of increased detection rates must 
be weighed against the increased possibility of identifying 
spurious associations resulting from confounding factors in 
research designs (Collins et al., 2021). This phenomenon 
contributes to the lack of successful translation of numerous 
biomarkers	 into	 clinical	 assays	 (Crutchfield	 et	 al.,	 2016). 
Among	 the	 generally	 known	 influencers	 of	metabolomics	
studies such as age, sex, body mass index, diet, health and 
medication use, smoking status, and physical activity, it has 
been clearly shown that circadian rhythm and time of day 

impact the metabolome (Gu et al., 2019; Kim et al., 2014; 
Slupsky et al., 2007; Sugimoto et al., 2013; Tolstikov et al., 
2020; Walsh et al., 2006). Although researchers usually put 
good	effort	 into	 excluding,	 controlling,	 or	minimizing	 the	
aforementioned confounding variables when designing a 
metabolomics	study,	they	often	forget	or	neglect	the	influ-
ence of individuals’ sleep-wake histories – especially if the 
study matter is not related to sleep at all.

Sleep is a vitally important process in the animal king-
dom. Humans spend about one-third of their lifetime sleep-
ing,	with	vast	differences	in	daily	sleep	need	during	different	
stages of life (Chaput et al., 2018). It is understood that 
sleep is an active restorative process with a complex but 
coordinated cascade of metabolic activities. Chronic dis-
ruptions in these mechanisms due to irregular or changing 
sleep-wake schedules (e.g., in shiftwork) have been associ-
ated with metabolic diseases such as diabetes and obesity 
(Knutsson & Kempe, 2014; Zhang et al., 2020). Further-
more, acute disruption of sleep patterns (e.g., a single night 
of	total	sleep	deprivation)	influences	brain	function,	cogni-
tive performance, and immune function (Garbarino et al., 
2021; Hudson et al., 2020). It is, therefore, not surprising 
that	a	night	of	little	or	no	sleep	affects	metabolite	levels	in	
biological matrices (Davies et al., 2014).

Sleep-related metabolomics primarily centers on rhyth-
mic alterations, as it is based on a periodic phenomenon. 
Circadian rhythms follow a continuous, nearly 24-hour cycle 
driven by the suprachiasmatic nucleus and remain periodic 
without	the	influence	of	external	time	cues	(i.e.,	they	persist	
under constant routine conditions). Diurnal rhythms occur 
under stable real-life conditions (i.e., entrained conditions) 
but	disappear	without	the	influence	of	rhythmic	exogenous	
factors (e.g., light conditions, sleep/wake cycles, or fasting/
feeding cycles). Under real-life conditions, both of these 
rhythms contribute to time-of-day variation in metabolite 
profiles	(Franken	&	Dijk,	2023). As shown in a comprehen-
sive review of publications, only a few studies have dealt 
with time-of-day variation of salivary metabolites (Hancox 
et al., 2021). Furthermore, there is virtually no knowledge 
about	the	effect	of	sleep	(or	the	loss	of	sleep)	on	metabolite	
levels	 in	oral	fluid.	Since	sleep	deprivation	and	prolonged	
wakefulness have been shown to cause distinct metabolic 
changes in plasma (Davies et al., 2014), we hypothesized 
that	this	is	also	the	case	for	oral	fluid.

Thus,	the	aim	of	this	study	was	to	characterize	the	influ-
ence of a single night of sleep deprivation compared to suf-
ficient	sleep	on	the	metabolites	present	in	oral	fluid	and	to	
assess its possible implications for the design of metabolo-
mics studies in an era of detection of low abundant analytes.
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2 Materials and methods

2.1 Chemicals, reagents, and materials

Salivette® sampling devices were obtained from Sarstedt 
(Sevelen, Switzerland). Methanol and acetonitrile (Optima® 
LC–MS grade) and ammonium acetate were purchased 
from	Fisher	Scientific	(Basel,	Switzerland),	water	(LC–MS	
grade) from VWR (Dietikon, Switzerland). Formic acid 
(Ultra Liquid Chromatography-MS grade) was obtained 
from Biosolve (via Chemie Brunschwig AG, Basel, Switzer-
land). All heavy-labeled and deuterated internal standards 
(ISTD) arginine-13C6, deoxycholic acid-d4, phenylalanine-
d1, and proline-15 N were purchased from Cambridge Iso-
tope Laboratories, Inc. (Andover, MA, USA) and delivered 
by ReseaChem GmbH (Burgdorf, Switzerland) or Sigma-
Aldrich (Buchs, Switzerland). Compound reference stan-
dards of acetylcarnitine (C2), adenine, adenosine, arginine, 
butyrylcarnitine (C4), cortisol, cortisone, creatinine, glu-
taric acid, glycine, glycocholic acid, hippuric acid, inosine, 
carnitine (C0), leucine, lysine, methylmalonic acid, orni-
thine, phenylalanine, proline, propionylcarnitine (C3), raf-
finose,	riboflavin,	taurine,	tryptophan,	tyrosine,	uracil,	uric	
acid, uridine, and valine, as well as ammonium formate and 
acetic acid (LC-MS quality) were purchased from Sigma-
Aldrich (Buchs, Switzerland). Eppendorf tubes (1.5 mL) 
were delivered by Eppendorf SE (Hamburg, Germany), 
and conic HPLC vials were supplied from infochroma ag 
(Goldau, Switzerland).

2.2 Study

During a randomized, crossover, controlled sleep study, oral 
fluid	 specimens	 of	 healthy	 young	 male	 participants	 were	
obtained at regular intervals (day 1: 08:30 pm, day 2: 10:55 
pm, day 3: 08:10 am, 01:55 pm, 09:00 pm, 10:55 pm, day 
4: 08:10 am). The study protocol is described in detail else-
where (Hefti et al., 2013). In brief, the study participants 
were selected based on strict inclusion criteria related to 
their sleep quality and psychological well-being. Addition-
ally, they refrained from using medication or drugs during 

the	study	period	and	from	caffeine	and	alcohol	 three	days	
prior to each experimental block, controlled through mea-
suring	caffeine	levels	in	saliva	and	breath	alcohol	tests.	All	
subjects were served meals at the same time points. They 
strictly followed a sleep-wake schedule of 8 h of sleep and 
16 h of wakefulness in the pre-experiment phase, which 
was	confirmed	through	wrist	actigraphy	and	sleep	logs.	The	
study involved two distinct experimental sessions, namely 
the control and sleep deprivation conditions, wherein the 
sole variable was the schedule of sleep and wakefulness (see 
Fig. 1). During the control condition, participants adhered to 
their 16 h/8 h wake/sleep protocol (time in bed from 11:30 
pm to 07:30 am) for a further three nights (baseline, sleep 
control, and recovery night) in the sleep laboratory. Under 
the sleep deprivation condition, the initial night served as 
the baseline and was succeeded by 40 consecutive hours of 
wakefulness. Throughout this period, the participants were 
closely monitored by the research team. In both conditions, 
the recovery night provided a total of 8 h of sleep oppor-
tunity.	Oral	fluid	 samples	were	 collected	on	 sterile	 cotton	
swabs in Salivette® devices (Sarstedt AG, Sevelen, Switzer-
land) and stored immediately at -20 °C until extraction in 
summer 2021 without intermittent freeze-thaw cycles. Out 
of the initial sample sets consisting of 22 people, the sets 
of 13 people (control and sleep deprivation for each par-
ticipant) were available for this study. For the demographic 
characteristics of the participants, see Supplementary Infor-
mation 1.

2.3 Sample preparation

The sample preparation followed a simple and established 
approach: debris/protein removal and “dilute and shoot.” 
After thawing, Salivette® devices were centrifuged for 
2 min at 1’000 g according to the manufacturer’s protocol. 
From	each	 sample,	200	µL	of	 supernatant	oral	fluid	were	
pipetted to Eppendorf tubes, and 600 µL of cold aceto-
nitrile (-20 °C) were added. After vortexing for 10 s, the 
tubes were shaken in ThermoMixer (Vaudaux-Eppendorf 
AG, Schönenbuch, Switzerland) at 1400 rpm for 10 min 
and incubated overnight at -20 °C. The following day, tubes 

Fig. 1	 Different	 sleep	 regime	 timelines	and	amount	of	hours	of	 sus-
tained wakefulness of both study interventions (control, sleep depriva-
tion) during the experimental phase in the sleep laboratory. Orange 

bars indicate time awake; blue bars indicate time asleep. t1-t7 repre-
sent	oral	fluid	sampling	time	points
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2.5 Data analysis

For	 targeted	 analysis	 of	 specific	 metabolites,	 MultiQuant	
2.1 software (Sciex) was used for peak integration of raw 
MS	data.	The	 identification	of	 these	metabolites	was	con-
firmed	by	 an	 in-house	 database	 built	 upon	 certified	 refer-
ence standards. In case missing values were present, they 
were	substituted	with	one-fifth	of	the	lowest	measured	peak	
area of the corresponding metabolite, following the 1/5 limit 
of detection (LOD) method. Raw peak areas were then log-
transformed (base 10) to meet requirements of subsequent 
parametric statistical models, which were applied using 
GraphPad Prism 10 (GraphPad Software, San Diego, CA, 
USA). Z-score normalization (i.e., auto-scaling) was applied 
to	 overcome	 expected	 individual	 differences	 in	 absolute	
metabolite abundance scales. That is, for each molecular 
feature (MF), the abundance value was subtracted by the 
subject’s mean value and divided by its respective standard 
deviation. Thus, the resulting values (z-scores or z-distribu-
tion) have a mean of zero and a standard deviation of one, 
which allows for comparison of rhythmic metabolites irre-
spective of their amplitude.

For untargeted metabolomics analysis, raw MS data pro-
cessing (alignment, deconvolution, peak picking) was per-
formed with Progenesis Qi software (version 2.4.69, Waters 
Corp., Milford, USA). The reference for RT alignment was a 
pooled QC sample, and peak picking was executed utilizing 
the following parameters: automatic sensitivity, value: 3, no 
minimum peak width, retention time limit > 0.5 min (void 
volume), ion species: [M + H]+, [M + 2H]2+, [M + H-H2O]+, 
[M + NH4]+, [M + Na]+, [M + 2Na]2+, [M-H]−, [M-2H]−, 
[M-H2O-H]−, [M + Na-2H]−, [M + HCOOH-H]−. The 
resulting table of MFs’ raw abundances was exported, and 
subsequent data manipulation was performed in Python 
environment (Spyder version 5.1.5, Python version 3.9.12) 
using nPYc-Toolbox module (version 1.2.6) (Sands et al., 
2019). Firstly, batch and run-order correction was applied 
with reference to QC pool samples (adapted LOWESS 
approach proposed by Dunn et al. (Dunn et al., 2011), 
parameter batch_correction_window = 8). Secondly, fea-
ture	filtering	was	performed	based	on	the	following	quality	
criteria (Broadhurst et al., 2018; Lewis et al., 2016): MF 
removed if present in process blank sample, or relative stan-
dard deviation (RSD) in QC pool samples > 25%, or corre-
lation to dilution r2 < 0.7 in linear regression, or dispersion 
ratio (“D-ratio”) > 50%. In addition, features and individuals 
with more than 30% missing or zero values were excluded 
from subsequent statistical analyses. Missing or zero val-
ues	of	remaining	features	were	replaced	by	one	fifth	of	the	
lowest value detected (1/5 LOD method). In total, 29’957 
values had to be replaced (7.1% of all values). The resulting 
feature table was log-transformed (base 10) for subsequent 

were thawed, vortex mixed (15 s), and centrifuged (5 min 
at 20’000 g). 200 µL of protein-free supernatant was trans-
ferred to conic glass vials, and 20 µL aqueous ISTD solu-
tion (arginine-13C6 (1.5 mM), deoxycholic acid-d4 (0.009 
mM), phenylalanine-d1 (1.5 mM), and proline-15 N (3.5 
mM) was added to monitor chromatographic performance 
consistency over the measurement period. A process blank 
sample	(using	LC-MS	grade	water	 instead	of	oral	fluid	 in	
the Salivette® device, i.e., a blind sample) was prepared in 
the same manner to correct for false positive results, and 
additionally, pooled quality control (QC) samples were pre-
pared	by	mixing	equal	parts	of	each	final	filtrate.	Lastly,	a	
dilution series of QC pool samples (100%, 50%, 20%, 10%) 
was made to assess linearity of metabolic features during 
data cleaning procedures (Broadhurst et al., 2018).

2.4 Instrumental analysis

LC-MS analysis was performed as described in detail else-
where (Boxler et al., 2019). In short, a Thermo Fischer Ulti-
mate	3000	UHPLC	system	(Thermo	Fischer	Scientific,	San	
Jose,	CA,	USA)	was	equipped	with	two	different	columns,	
separately. For reversed-phase (RP) chromatography, a 
Waters	 (Baden-Daettwil,	 Switzerland)	XSelect	HSST	RP‐
C18	column	(150	mm	x	2.1	mm	i.d.,	2.5	μm	particle	size),	
and for hydrophilic interaction chromatography (HILIC), a 
Merck (Darmstadt, Germany) SeQuant ZIC HILIC column 
(150	mm	x	2.1	mm	i.d.,	3.5	μm	particle	size)	was	used.	The	
LC	system	was	coupled	to	a	high‐resolution	(HR)	quadru-
pole-time-of-flight	 (QTOF)	 instrument	 system	(TripleTOF	
6600, Sciex, Concord, Ontario, Canada), equipped with 
an electro spray ionization (ESI) source running in both 
positive	 and	negative	 ionization	modes.	Thus,	 four	differ-
ent LC-MS modes were tested: RP+, RP-, HILIC+, and 
HILIC-.	For	detailed	gradient	profiles	 and	 instrument	 set-
tings, see Supplementary Information 2. Data-dependent 
acquisition (DDA, top 5) mode was used for generation of 
HR (tandem) mass spectra (MS1, MS2), which was con-
trolled by Analyst TF software 1.7 (Sciex). After every 5 
samples, the mass spectrometer was recalibrated using the 
manufacturer’s mass calibration solution.

After system suitability assessment of model substances 
(arginine, cortisol, cortisone, creatinine, glycocholic acid, 
hippuric	acid,	leucine,	raffinose,	riboflavin,	and	tryptophan)	
as described by Steuer et al. (Steuer et al., 2017) and system 
equilibration by injection of ten QC pool samples, the pre-
pared study samples were analyzed batch-wise in random-
ized order. To monitor system stability and for further signal 
adjustments, QC pool samples were reinjected every 5 sam-
ples. Dilution series of QC pool samples were measured at 
the beginning and end of the sample sequence.
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no	statistical	significance	 is	expected	between	metabolites	
of both study interventions in t1 and t2 samples, which adds 
further robustness to the results.

2.7 Analysis 1: influence of time and sleep on total 
variance (exemplified for targeted metabolites)

In	order	to	measure	the	effects	of	the	sampling	time	points	
and sleep on the overall variance of the targeted metabolites, 
we conducted repeated measures two-way analyses of vari-
ance (ANOVA). This statistical approach uses a general lin-
ear model and multiple measurements to examine the impact 
of two categorical independent variables (factors) on a con-
tinuous dependent variable. The output provides informa-
tion	about	whether	there	are	significant	main	effects	for	each	
factor (here: the sampling time points and the sleep depriva-
tion intervention, labeled as time and sleep), and whether 
there	 is	 a	 significant	 interaction	 effect	 between	 these	 two	
factors.	Additionally,	 the	 subject	 effect	 (i.e.,	 inter-individ-
ual variation) is calculated by percentage of total variation. 
The analysis was run on data gathered between sampling 
time	points	t3	and	t6	(when	the	effects	of	sleep	deprivation	
are to be observed), and to account for the short time inter-
vals between measurements, the Greenhouse-Geisser cor-
rection was employed, leading to more conservative (i.e., 

parametric testing. Applied feature selection, transforma-
tion, statistical analyses, and visualizations were conducted 
using MetaboAnalyst 5.0 (Pang et al., 2021), GraphPad 
Prism 10, and seaborn Python package (version 0.12.2).

2.6 Data evaluation

If metabolic changes are driven by rhythmic processes, 
they may only occur in one or two time points after the 
sleep deprivation/sleep control night, whereas linear pro-
cesses	would	lead	to	significant	differences	in	all	four	time	
points after sleep deprivation. These repercussions for data 
interpretation are schematically illustrated in Fig. 2, where 
expected	 levels	of	 four	different	metabolite	 types	are	por-
trayed (referring to sampling time points t3, t4, t5, and t6). 
Very importantly, the sampling time point after the recov-
ery night (t7) serves as a proof-of-concept control. The 
underlying rationale is that metabolic alterations are only 
due to prolonged wakefulness if they recede to baseline 
after recovery sleep (i.e., adaptive sleep-wake regulation). 
Therefore, if metabolite abundances measured after recov-
ery	 night	 are	 of	 significant	 difference	 between	 the	 sleep	
deprivation condition and the control condition, they cannot 
be associated with adaptive sleep-wake regulation and are 
hence to be excluded from further investigation. Likewise, 

Fig. 2	 Theoretical	profiles	of	fictitious	metabolites.	Sun	icon	indicates	
biological	day,	moon	icon	and	gray	fields	indicate	biological	nighttime.	
t1-t7 and Salivette® devices highlight necessary sampling time points 
of which t1 and t2 should be before the experimental night, and t7 after 
recovery	night.	Group	A	 represents	 the	 control	 condition	 that	 offers	
sleep in both the second (experimental night) and the third biological 
night (recovery). Group B represents the sleep deprivation condition, 
which is kept awake during the experimental night but allows recovery 
sleep in the following night. Theoretically expected levels of four dif-
ferent metabolite types are portrayed in either green or red lines for the 
different	conditions	A	and	B,	respectively.	Asterisks	indicate	sampling	
time	points	when	a	statistical	analysis	results	in	a	significant	difference	

between the two metabolite levels. Metabolite 1 mimics a sleep-related 
metabolite following a linear model as the changes in metabolite levels 
occur during experimental night, increase linearly during the follow-
ing daytime, and recede after recovery night. Likewise, metabolite 2 is 
sleep-related, as changes occur during the experimental night but can 
only be detected at sampling time points t3 and t4. This holds true for 
metabolites	that	are	influenced	by	daily	rhythm	patterns	under	natural	
conditions (i.e., rhythmic model). Levels of metabolite 3 do not align 
after recovery night and can therefore not be related to adaptive sleep-
wake	regulation.	Metabolite	4	shows	significant	differences	between	
the two conditions even before the experiment starts and can thus not 
be reliably used for such studies
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in standard reference kits (i.e., targeted analysis). These 
metabolites are summarized in Table 1. In a second analy-
sis, the range was broadened to also include all tentatively 
identified	 or	 unknown	 features	 (i.e.,	 untargeted	 or	 global	
metabolomics analysis).

3.1 Results of quality controls

System	suitability	was	verified	by	assessment	of	peak	areas	
of model substances. The mean relative standard deviations 
were 6%, 13%, 10%, and 8% for RP+, RP-, HILIC+, and 
HILIC- setup, respectively. Chromatographic performance 
consistency	 was	 confirmed	 by	 monitoring	 retention	 time	
shifts	of	ISTD	across	all	batches.	The	differences	between	
minimal and maximal retention times were on average 0.07, 
0.18, 0.14, and 0.07 min for arginine-13C6, deoxycholic 
acid-d4, phenylalanine-d1, and proline-15 N, respectively. 
For single results, please refer to Supplementary Informa-
tion 3.

3.2 Analysis 1: Influence of factors ‘time’ and 
‘sleep’ on total variance (exemplified for targeted 
metabolites)

The results of the analyses are presented in Table 1. In the 
non-normalized	dataset,	the	subject	effect	(median	44.82%	
of total variation, range 5.67–64.85%) outshined both the 
factors ‘time’ (median 5.10%, range 1.11–35.06%) and 
‘sleep’ (median 0.63%, range 0.02–5.91%). The output for 
the z-normalized dataset suggests mitigation of the inter-
individual	variation,	as	the	subject	effect	decreased	substan-
tially (median 5.94% of total variation, range 2.04–10.34%). 
It became apparent that ‘time’ (i.e., sampling time point) 
represents	the	major	influencer	(median	9.24%,	range	3.02–
42.91%), surpassing the intervention of sleep deprivation 
(median 1.81%, range 0.19–12.46%). In fact, 15 out of the 
25	investigated	metabolites	were	significantly	impacted	by	
‘time’,	whereas	5	out	of	25	were	significantly	impacted	by	
sleep deprivation. The interaction between these two factors 
was	significant	for	4	out	of	25	metabolites	(refer	to	Table	1). 
The	main	effect	of	‘time’	was	predominantly	observed	for	
the rhythmic metabolites cortisone and glycine (p < 0.0001, 
see Fig. 4d and i).

3.3 Analysis 2: Influence of sleep deprivation on 
metabolites’ abundances

In	the	field	of	biomarker	research,	researchers	aim	to	iden-
tify	significant	differences	in	metabolite	abundances	across	
various experimental conditions. The results of the statisti-
cal testing for the targeted metabolites between time points 
are displayed in a heat map in Fig. 3. As outlined above, 

larger)	p-values	and	to	prevent	the	inflation	of	Type	I	error	
rates. Applied models for each metabolite were checked for 
residual distribution, homoscedasticity, and normality. The 
strong	 influence	 of	 interindividual	 differences	 on	metabo-
lite	levels	poses	a	substantial	challenge	in	the	identification	
of	 reliable	 biomarkers.	 To	 control	 or	 mitigate	 this	 effect,	
metabolomics studies usually apply a within-subject design 
and normalize the respective datasets. In our case, a subject-
wise z-score normalization was applied, and the analyses 
were rerun.

2.8 Analysis 2: Influence of sleep deprivation on 
metabolites’ abundances

The transformed dataset was analyzed by multiple paired 
t-tests for each sampling time point between the sleep depri-
vation and the control condition to identify alterations in 
abundances of metabolites. In order to address the issue of 
multiple	 testing,	 the	 significance	 level	 alpha	was	 reduced	
to 0.01 for the untargeted metabolite analysis. Addition-
ally, the same stringent dropout criteria were applied to time 
points t1, t2, and t7 as mentioned previously. This adjust-
ment allows for a false positive rate of 0.97% (calculated as 
0.01 multiplied by 0.99 three times) for a molecular feature 
to	be	considered	significantly	altered	in	a	single	time	point	
between t3 and t6.

2.9 Metabolite identification

Various databases (HMDB (Wishart et al., 2022), METLIN 
(Guijas et al., 2018), and the National Institute of Standards 
and Technology (NIST) were queried via Progenesis Qi 
for features of interest at both the MS1 and MS2 levels. In 
addition, SIRIUS software (version 5.8.3 (Dührkop et al., 
2019)) was used for molecular formula deduction and its 
tools CANOPUS (Dührkop et al., 2021) and CSI: FingerID 
(Dührkop et al., 2015) for compound class prediction and 
structure	annotation.	If	available,	the	identity	confirmation	
was achieved through the correlation of library search out-
comes, precise precursor masses and fragment ions, and 
retention	time	with	certified	reference	standards.	Based	on	
the Metabolomics Standards Initiative (MSI) convention 
(Sumner et al., 2007),	 tentative	 identification	 confidences	
were categorized into four levels, ranging from 1 (highest 
confidence)	to	4	(unknown	compound).

3 Results

We	 applied	 a	 semi-targeted	 approach:	 In	 a	 first	 analysis,	
we focused on 25 metabolites that are often reported due 
to either their physiological relevance or their presence 
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of the morning trough. After the recovery night, however 
(at t7), both conditions exhibit similar characteristics once 
more, with a natural morning trough. Lower levels of 
metabolites for uric acid and cortisol were observed follow-
ing sleep deprivation in comparison to the control nights at 
time points t3 and t4, respectively. Out of the 25 targeted 
metabolites,	 only	 uric	 acid	 abundance	 was	 significantly	
changed after the maximum period (i.e., after 40 h of sus-
tained wakefulness). However, we observed no evidence of 
a linear relationship between sustained wakefulness of 15 to 
40 h and any changes in single metabolite levels.

For the untargeted metabolomics analysis, 2307 molecu-
lar features (RP positive/negative: 695/70, HILIC positive/
negative: 1103/439) remained for subsequent statistical 
analysis	 after	filtering	procedures.	 It	 is	 important	 to	men-
tion that the number of authentic metabolites is lower than 
the number of MF, as metabolites may be duplicated in MF 
if they are ionizable in both positive and negative mode or 
show acceptable retention and peak shape characteristics on 
both RP and HILIC columns. The statistical testing revealed 
231	molecular	features	(10.0%	of	all	detected)	with	signifi-
cant alterations in at least one time point. Among these, eight 
features	were	found	to	be	significant	at	 two	different	 time	

changes are only sleep-related if they occur at sampling time 
points	t3-t6.	Additionally,	an	insignificant	outcome	is	sought	
for analytical robustness at t1, t2, and t7, respectively.

Five metabolites (carnitine, propionylcarnitine, butyr-
ylcarnitine, methylmalonic acid, and taurine) did not meet 
these	criteria,	 as	 they	exhibited	 significant	 results	 at	 t1	or	
t2. Six metabolites (adenine, arginine, glycine, lysine, pro-
line,	 and	 tyrosine)	 significantly	 changed	 exclusively	 at	 t3	
(08:10 am, after sleep deprivation), one metabolite (corti-
sol) exclusively at t4 (01:55 pm), and one metabolite (uric 
acid) at two time points, namely t3 and t6 (08:10 am and 
10:55	pm).	The	normalized	profiles	for	these	eight	metabo-
lites are shown in Fig. 4. Naturally, the metabolites found to 
be	significantly	altered	in	the	t-test	analyses	overlap	with	the	
ones	that	were	found	to	be	significantly	affected	by	the	main	
effect	of	‘sleep’	or	the	interaction	between	the	two	factors	
’time’ and ‘sleep’ (see above). For all metabolites that were 
significantly	changed	at	 t3	except	uric	acid,	 the	measured	
abundance was higher after sleep deprivation compared to 
the control condition. In fact, these metabolites are typi-
cally low in the early morning hours (at t3 and t7). Sleep 
deprivation, on the other hand, maintained elevated levels 
of	these	metabolites,	effectively	preventing	the	occurrence	

Fig. 3	 Heat	map	of	p-values	of	paired	t-tests	for	targeted	metabolites	between	the	sleep	deprivation	and	the	control	condition	across	different	sam-
pling time points. Values below 0.05 are colored in grey shades and annotated. Values higher than 0.05 are represented in white boxes
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in HILIC chromatography. For single analyte results, please 
refer to Supplementary Information 4.

In-silico structure annotation analysis of the eight molec-
ular	 features	 that	were	 highlighted	 revealed	 five	 different	
compound classes to be present, namely carboxylic acid 

points.	Considering	the	different	sampling	time	points,	the	
predominant alterations occurred at t3 (154 MFs, 6.7% of 
all), with subsequent occurrences observed at t4 (49, 2.1%), 
t5 (25, 1.1%), and t6 (11, 0.5%). Notably, the majority 
(76%,	176	out	of	231)	of	the	significant	MFs	were	detected	

Fig. 4	 Normalized	profiles	of	significantly	changed	targeted	metabo-
lites (a-h) and cortisone (i). Three gray bars signal biological nighttime 
(23:30 − 07:30). The second night accentuates that participants in the 
sleep-deprivation condition were kept awake. Green circles (control 
condition) and red squares (sleep deprivation condition) indicate mean 

values of z-scores; whiskers indicate respective standard errors of the 
mean.	Asterisks	 highlight	 sampling	 time	points	with	 significant	 dif-
ference between the control and the sleep-deprivation condition (i.e., 
p-value of paired t-test < 0.05)
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tyrosine, uric acid, lactosylurea, sulfopantetheine, and a 
norvaline derivative. Most of the changes could be ascribed 
to polar substances, as most of the changed metabolic fea-
tures were detected through HILIC chromatography. The 
distribution	between	the	two	different	chromatography	col-
umns underlines the prevalent polar properties of the sali-
vary	metabolome.	This	seems	understandable	as	oral	fluid	
consists to its greatest extent of water (Álvarez-Sánchez et 
al., 2012; Dame et al., 2015). As of practical importance, 
the	majority	of	metabolites	were	 found	 to	be	significantly	
altered when sampled in the morning hours (here at 08:10 
am). Both the results of the targeted and the global metabo-
lomics	approach	underlined	this	finding.	It	was	frequently	
observed in metabolites that exhibited a rhythmical low 
under control conditions (morning trough) but showed an 
irregular pattern following sleep deprivation. These obser-
vations	in	oral	fluid	are	consistent	with	metabolomics	analy-
ses of blood plasma samples, which demonstrated that the 
circadian clock and sleep interact to control the human 
metabolome (Chua et al., 2015; Davies et al., 2014; Grant 
et al., 2019). Taken together, these studies showed that up to 
20% of all metabolites vary with time of day and that their 
oscillation can be attenuated or abolished by sleep restric-
tion (Bell et al., 2013) and sleep deprivation (Davies et al., 
2014). Particularly amino acids and related biochemicals 
are typically increased after repeated sleep restriction and 
sleep deprivation (Bell et al., 2013; Davies et al., 2014). 
Given the results in blood/plasma and the understanding of 
salivary	secretions	as	an	ultrafiltrate	of	blood,	it	seems	logi-
cal	 that	our	findings	suggest	 that	 the	effects	of	 inadequate	

amides, peptides, disaccharides, alpha amino acid deriva-
tives, and N-acyl amines (MSI level 3). Furthermore, anno-
tation software could tentatively identify three substances 
as sulfopantetheine, lactosylurea, and a norvaline deriva-
tive	 (MSI	 level	 2).	 The	 normalized	 profiles	 of	 these	 are	
displayed in Fig. 5. For their MS2 spectra, please refer to 
Supplementary Information 5.

4 Discussion

In	 this	work,	we	 have	 investigated	 the	 influence	 of	 sleep	
deprivation	on	metabolite	abundances	 in	oral	fluid.	Moni-
toring more than 2300 metabolic features employing a 
semi-targeted metabolomics approach, we found about 
10%	to	have	significantly	changed	in	at	least	one	time	point	
after a night of sleep deprivation when compared to 8 h of 
sleep. The design of the original sleep study allowed us to 
make use of a pragmatic and hypothesis-driven statistical 
approach,	which	 allowed	 us	 to	 flag	 and	 exclude	MF	 that	
were either not following adaptive sleep-wake regulation or 
were of non-robust nature. With additional measures taken 
regarding	significance	level	adjustment,	we	made	sure	that	
the performed statistical tests were more conservative (i.e., 
stricter) than conventional limits concerning false positive 
errors, adding further validity to the detected changes. Con-
sequently, the observed changes are related to the lack of 
sleep, as they did not occur before sleep deprivation and after 
recovery sleep. Of these metabolites, eleven could be identi-
fied	as	adenine,	arginine,	cortisol,	glycine,	 lysine,	proline,	

Fig. 5	 Normalized	profiles	of	untargeted	metabolic	features	with	sig-
nificant	changes	in	two	time	points.	Three	gray	bars	signal	biological	
nighttime (23:30 − 07:30). The second night accentuates that partici-
pants in the sleep-deprivation condition were kept awake. Green cir-
cles (control condition) and red squares (sleep deprivation condition) 
indicate mean values of z-scores; whiskers indicate respective stan-

dard errors of the mean. Asterisks highlight sampling time points with 
significant	differences	between	 the	control	and	 the	sleep	deprivation	
condition (i.e., p-value of paired t-test < 0.01). Metabolic features are 
labeled as retention time, underscore, and mass, the latter being either 
neutral	(n)	or	m/z.	Tentative	identifications	with	MSI	levels	2	(a-c),	3	
(d,e), 4 (f-h) in brackets underneath, if applicable
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examined the extreme case of total sleep deprivation (acute 
sleep	deprivation)	 in	 this	study.	The	effect	of	 restricted	or	
unsatisfying sleep on the salivary metabolome was not 
investigated. The study cohort comprised exclusively of 
male volunteers who were in good health. Consequently, 
the	 influence	of	female	gender,	age,	and	health	conditions	
on the observed outcomes could not be assessed. Lastly, the 
samples used in this study had been stored frozen immedi-
ately after sampling for a decade without intermittent thaw-
ing. Unfortunately, there are no studies published focusing 
on	the	long-term	stability	of	metabolites	in	oral	fluid.	How-
ever, comparable studies in the more precarious matrices 
blood and urine stated that time-to-storage, inter-individual 
differences,	and	freeze-thaw	cycles	were	by	far	the	strongest	
factors for variation and instability (Hebels et al., 2013; Ste-
vens et al., 2019). In comparison, storage time and tempera-
ture played minor roles, encouraging the use of adequately 
stored biospecimens, e.g., from biobanks. In this study, all 
specimens were sampled, stored, and analyzed in the same 
manner, thus avoiding systematic bias.

5 Conclusion

In summary, our study assessed the extent of variation 
induced	by	sleep	deprivation	and	different	sampling	times.	
These	 influences	were	present	 in	metabolites	 that	 are	 fre-
quently monitored in metabolomics studies due to their 
physiological	meaning	 or	 association	with	 specific	 condi-
tions. This may lead to biased result interpretations. We 
hereby encourage designers of metabolomics studies to 
mind the following three recommendations: Firstly, apply 
a within-subject design whenever possible to control for 
inter-individual variation. Secondly, establish identical time 
points for sample collection across all participants. Lastly, 
monitor participants’ sleep-wake schedules prior to and dur-
ing experiments, even if the study focus is not sleep-related 
(e.g., via actigraphy).

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s11306-
024-02158-3.
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sleep on the human metabolome can also be detected in oral 
fluid	and	may	be	most	pronounced	in	the	morning	hours.

We	further	examined	the	influence	of	different	sampling	
time points throughout a day. In numerous metabolomics 
investigations, the monitoring of participants spans across 
extended periods of time, encompassing days, weeks, or 
even months, with the aim of examining the long-term 
effects	of	particular	 stimuli.	Consequently,	 it	 is	 frequently	
observed that the timing of sample collection varies between 
each visit. In our targeted analysis, 60% of the investigated 
metabolites	were	significantly	impacted	by	the	factor	‘time’	
(time of day), especially if controlled in a certain rhythm. 
As our study did not apply a constant routine protocol, we 
were	unable	to	differentiate	whether	these	rhythms	were	of	
a circadian or diurnal nature. However, a separate study has 
reported 15% of the total salivary metabolome to follow 
circadian paces, with over half of these metabolites being 
amino acids and their associated compounds (Dallmann et 
al., 2012). Another study solely focusing on plasma metabo-
lites	described	about	one	fifth	of	these	showing	significant	
time-of-day variation (Ang et al., 2012).	We	found	the	influ-
ence of the factor ‘time’ (i.e., time-of-day variation) most 
pronounced for the well-described circadian metabolite cor-
tisone	 and	 could	 confirm	 this	 phenomenon	 for	 the	 amino	
acids glycine, arginine, leucine, lysine, ornithine, phenyl-
alanine, tyrosine, and valine. In addition, we could expand 
this group with nucleobases and derivatives (inosine, uracil, 
uridine), organic acids (glutaric acid, methylmalonic acid), 
and butyrylcarnitine. The analysis of metabolites in samples 
collected at various time points may therefore introduce 
unintended sources of variation, potentially leading to mis-
interpretation of the results. We advocate for the implemen-
tation of uniform sampling time points in metabolomics 
studies, particularly in the context of long-term investi-
gations. It should, however, be noted that the described 
metabolite alterations are not to be understood as potential 
biomarkers for sleep pressure because each participant’s 
inner body time (i.e., circadian time) was not monitored. 
Therefore, we could not directly compare each participant’s 
sleep pressure at identical circadian times.

Although	being	widely	accepted	as	an	influencing	factor,	
very few metabolomics studies pay attention to the sleep 
amounts of their participants. The application of monitor-
ing strategies such as actigraphs or sleep/wake diaries is 
simple and cheap, however. We have shown that a consid-
erable number of metabolites are prone to changes after 
sleep deprivation, which can lead to subsequent misinter-
pretations	of	experimental	effects.	We	therefore	encourage	
all designers of metabolomics studies to ensure a minimum 
sleep amount and consequent sleep/wake monitoring, e.g., 
via actigraphy or sleep/wake diaries, irrespective of the 
study focus. It has to be considered that we have exclusively 
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