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Abstract
Introduction  The human salivary metabolome is a rich source of information for metabolomics studies. Among other influ-
ences, individual differences in sleep-wake history and time of day may affect the metabolome.
Objectives  We aimed to characterize the influence of a single night of sleep deprivation compared to sufficient sleep on 
the metabolites present in oral fluid and to assess the implications of sampling time points for the design of metabolomics 
studies.
Methods  Oral fluid specimens of 13 healthy young males were obtained in Salivette® devices at regular intervals in both a 
control condition (repeated 8-hour sleep) and a sleep deprivation condition (total sleep deprivation of 8 h, recovery sleep of 
8 h) and their metabolic contents compared in a semi-targeted metabolomics approach.
Results  Analysis of variance results showed factor ‘time’ (i.e., sampling time point) representing the major influencer 
(median 9.24%, range 3.02–42.91%), surpassing the intervention of sleep deprivation (median 1.81%, range 0.19–12.46%). 
In addition, we found about 10% of all metabolic features to have significantly changed in at least one time point after a night 
of sleep deprivation when compared to 8 h of sleep.
Conclusion  The majority of significant alterations in metabolites’ abundances were found when sampled in the morning 
hours, which can lead to subsequent misinterpretations of experimental effects in metabolomics studies. Beyond applying 
a within-subject design with identical sample collection times, we highly recommend monitoring participants’ sleep-wake 
schedules prior to and during experiments, even if the study focus is not sleep-related (e.g., via actigraphy).

Keywords  Metabolomics · Sleep · Sleep deprivation · Oral fluid · Saliva · LC-MS
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1  Introduction

The human metabolome is a rich source of information. 
To date, the Human Metabolome Database (HMDB) con-
tains over 200’000 metabolite entries of different chemical 
classes (Wishart et al., 2022). Over the past decades, plenty 
of studies have exploited its potential, mostly for diagnos-
tic, clinical, and forensic applications (Ashrafian et al., 
2021; Johnson et al., 2016; Steuer et al., 2019; Szeremeta 
et al., 2021). Matrices frequently employed in metabolo-
mics research encompass blood, urine, and increasingly, 
oral fluid. The latter, often synonymously but inaccurately 
referred to as saliva, is, by definition, the entirety of liquid 
present in the oral cavity. Its composition is made of the 
secreted products of salivary glands (i.e., saliva), microbi-
ota, lining cells, and extrinsic substances – sometimes mixed 
with other fluids such as bronchial or nasal secretions, or 
blood in case of oral bleedings (Bellagambi et al., 2020). 
Time-of-day variations in flow rates and the sampling loca-
tion, due to the unequal spread of different gland types in 
the oral cavity, have been shown to affect its composition 
(Ciurli et al., 2024). The simple, cheap, non-invasive, and 
repeatable sampling nature in combination with relevant 
biological information has made oral fluid an appealing 
matrix of choice for metabolomics studies, regardless of the 
study topic (Gardner et al., 2020).

Analytical setups in metabolomics typically involve the 
use of separation techniques (e.g., liquid chromatography 
(LC), gas chromatography, capillary electrophoresis, among 
others) in conjunction with mass or structural analyzers that 
utilize mass spectrometry (MS) or nuclear magnetic reso-
nance spectroscopy for the instrumental analysis of biologi-
cal samples. However, various instrumental configurations 
can be employed to meet particular analytical requirements. 
Currently, no comprehensive approach is available to ana-
lyze the complete set of metabolites present in a biological 
system (Tebani et al., 2018). Recent advancements in mass 
spectrometry technology have led to significant enhance-
ments in sensitivity, enabling the measurement of a broader 
range of analytes, including those present in very low abun-
dance (Li et al., 2021). Thus, even small differences between 
study groups can be detected and characterized. However, 
the potential advantages of increased detection rates must 
be weighed against the increased possibility of identifying 
spurious associations resulting from confounding factors in 
research designs (Collins et al., 2021). This phenomenon 
contributes to the lack of successful translation of numerous 
biomarkers into clinical assays (Crutchfield et al., 2016). 
Among the generally known influencers of metabolomics 
studies such as age, sex, body mass index, diet, health and 
medication use, smoking status, and physical activity, it has 
been clearly shown that circadian rhythm and time of day 

impact the metabolome (Gu et al., 2019; Kim et al., 2014; 
Slupsky et al., 2007; Sugimoto et al., 2013; Tolstikov et al., 
2020; Walsh et al., 2006). Although researchers usually put 
good effort into excluding, controlling, or minimizing the 
aforementioned confounding variables when designing a 
metabolomics study, they often forget or neglect the influ-
ence of individuals’ sleep-wake histories – especially if the 
study matter is not related to sleep at all.

Sleep is a vitally important process in the animal king-
dom. Humans spend about one-third of their lifetime sleep-
ing, with vast differences in daily sleep need during different 
stages of life (Chaput et al., 2018). It is understood that 
sleep is an active restorative process with a complex but 
coordinated cascade of metabolic activities. Chronic dis-
ruptions in these mechanisms due to irregular or changing 
sleep-wake schedules (e.g., in shiftwork) have been associ-
ated with metabolic diseases such as diabetes and obesity 
(Knutsson & Kempe, 2014; Zhang et al., 2020). Further-
more, acute disruption of sleep patterns (e.g., a single night 
of total sleep deprivation) influences brain function, cogni-
tive performance, and immune function (Garbarino et al., 
2021; Hudson et al., 2020). It is, therefore, not surprising 
that a night of little or no sleep affects metabolite levels in 
biological matrices (Davies et al., 2014).

Sleep-related metabolomics primarily centers on rhyth-
mic alterations, as it is based on a periodic phenomenon. 
Circadian rhythms follow a continuous, nearly 24-hour cycle 
driven by the suprachiasmatic nucleus and remain periodic 
without the influence of external time cues (i.e., they persist 
under constant routine conditions). Diurnal rhythms occur 
under stable real-life conditions (i.e., entrained conditions) 
but disappear without the influence of rhythmic exogenous 
factors (e.g., light conditions, sleep/wake cycles, or fasting/
feeding cycles). Under real-life conditions, both of these 
rhythms contribute to time-of-day variation in metabolite 
profiles (Franken & Dijk, 2023). As shown in a comprehen-
sive review of publications, only a few studies have dealt 
with time-of-day variation of salivary metabolites (Hancox 
et al., 2021). Furthermore, there is virtually no knowledge 
about the effect of sleep (or the loss of sleep) on metabolite 
levels in oral fluid. Since sleep deprivation and prolonged 
wakefulness have been shown to cause distinct metabolic 
changes in plasma (Davies et al., 2014), we hypothesized 
that this is also the case for oral fluid.

Thus, the aim of this study was to characterize the influ-
ence of a single night of sleep deprivation compared to suf-
ficient sleep on the metabolites present in oral fluid and to 
assess its possible implications for the design of metabolo-
mics studies in an era of detection of low abundant analytes.
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2  Materials and methods

2.1  Chemicals, reagents, and materials

Salivette® sampling devices were obtained from Sarstedt 
(Sevelen, Switzerland). Methanol and acetonitrile (Optima® 
LC–MS grade) and ammonium acetate were purchased 
from Fisher Scientific (Basel, Switzerland), water (LC–MS 
grade) from VWR (Dietikon, Switzerland). Formic acid 
(Ultra Liquid Chromatography-MS grade) was obtained 
from Biosolve (via Chemie Brunschwig AG, Basel, Switzer-
land). All heavy-labeled and deuterated internal standards 
(ISTD) arginine-13C6, deoxycholic acid-d4, phenylalanine-
d1, and proline-15 N were purchased from Cambridge Iso-
tope Laboratories, Inc. (Andover, MA, USA) and delivered 
by ReseaChem GmbH (Burgdorf, Switzerland) or Sigma-
Aldrich (Buchs, Switzerland). Compound reference stan-
dards of acetylcarnitine (C2), adenine, adenosine, arginine, 
butyrylcarnitine (C4), cortisol, cortisone, creatinine, glu-
taric acid, glycine, glycocholic acid, hippuric acid, inosine, 
carnitine (C0), leucine, lysine, methylmalonic acid, orni-
thine, phenylalanine, proline, propionylcarnitine (C3), raf-
finose, riboflavin, taurine, tryptophan, tyrosine, uracil, uric 
acid, uridine, and valine, as well as ammonium formate and 
acetic acid (LC-MS quality) were purchased from Sigma-
Aldrich (Buchs, Switzerland). Eppendorf tubes (1.5 mL) 
were delivered by Eppendorf SE (Hamburg, Germany), 
and conic HPLC vials were supplied from infochroma ag 
(Goldau, Switzerland).

2.2  Study

During a randomized, crossover, controlled sleep study, oral 
fluid specimens of healthy young male participants were 
obtained at regular intervals (day 1: 08:30 pm, day 2: 10:55 
pm, day 3: 08:10 am, 01:55 pm, 09:00 pm, 10:55 pm, day 
4: 08:10 am). The study protocol is described in detail else-
where (Hefti et al., 2013). In brief, the study participants 
were selected based on strict inclusion criteria related to 
their sleep quality and psychological well-being. Addition-
ally, they refrained from using medication or drugs during 

the study period and from caffeine and alcohol three days 
prior to each experimental block, controlled through mea-
suring caffeine levels in saliva and breath alcohol tests. All 
subjects were served meals at the same time points. They 
strictly followed a sleep-wake schedule of 8 h of sleep and 
16  h of wakefulness in the pre-experiment phase, which 
was confirmed through wrist actigraphy and sleep logs. The 
study involved two distinct experimental sessions, namely 
the control and sleep deprivation conditions, wherein the 
sole variable was the schedule of sleep and wakefulness (see 
Fig. 1). During the control condition, participants adhered to 
their 16 h/8 h wake/sleep protocol (time in bed from 11:30 
pm to 07:30 am) for a further three nights (baseline, sleep 
control, and recovery night) in the sleep laboratory. Under 
the sleep deprivation condition, the initial night served as 
the baseline and was succeeded by 40 consecutive hours of 
wakefulness. Throughout this period, the participants were 
closely monitored by the research team. In both conditions, 
the recovery night provided a total of 8 h of sleep oppor-
tunity. Oral fluid samples were collected on sterile cotton 
swabs in Salivette® devices (Sarstedt AG, Sevelen, Switzer-
land) and stored immediately at -20 °C until extraction in 
summer 2021 without intermittent freeze-thaw cycles. Out 
of the initial sample sets consisting of 22 people, the sets 
of 13 people (control and sleep deprivation for each par-
ticipant) were available for this study. For the demographic 
characteristics of the participants, see Supplementary Infor-
mation 1.

2.3  Sample preparation

The sample preparation followed a simple and established 
approach: debris/protein removal and “dilute and shoot.” 
After thawing, Salivette® devices were centrifuged for 
2 min at 1’000 g according to the manufacturer’s protocol. 
From each sample, 200 µL of supernatant oral fluid were 
pipetted to Eppendorf tubes, and 600 µL of cold aceto-
nitrile (-20  °C) were added. After vortexing for 10  s, the 
tubes were shaken in ThermoMixer (Vaudaux-Eppendorf 
AG, Schönenbuch, Switzerland) at 1400  rpm for 10  min 
and incubated overnight at -20 °C. The following day, tubes 

Fig. 1  Different sleep regime timelines and amount of hours of sus-
tained wakefulness of both study interventions (control, sleep depriva-
tion) during the experimental phase in the sleep laboratory. Orange 

bars indicate time awake; blue bars indicate time asleep. t1-t7 repre-
sent oral fluid sampling time points
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2.5  Data analysis

For targeted analysis of specific metabolites, MultiQuant 
2.1 software (Sciex) was used for peak integration of raw 
MS data. The identification of these metabolites was con-
firmed by an in-house database built upon certified refer-
ence standards. In case missing values were present, they 
were substituted with one-fifth of the lowest measured peak 
area of the corresponding metabolite, following the 1/5 limit 
of detection (LOD) method. Raw peak areas were then log-
transformed (base 10) to meet requirements of subsequent 
parametric statistical models, which were applied using 
GraphPad Prism 10 (GraphPad Software, San Diego, CA, 
USA). Z-score normalization (i.e., auto-scaling) was applied 
to overcome expected individual differences in absolute 
metabolite abundance scales. That is, for each molecular 
feature (MF), the abundance value was subtracted by the 
subject’s mean value and divided by its respective standard 
deviation. Thus, the resulting values (z-scores or z-distribu-
tion) have a mean of zero and a standard deviation of one, 
which allows for comparison of rhythmic metabolites irre-
spective of their amplitude.

For untargeted metabolomics analysis, raw MS data pro-
cessing (alignment, deconvolution, peak picking) was per-
formed with Progenesis Qi software (version 2.4.69, Waters 
Corp., Milford, USA). The reference for RT alignment was a 
pooled QC sample, and peak picking was executed utilizing 
the following parameters: automatic sensitivity, value: 3, no 
minimum peak width, retention time limit > 0.5 min (void 
volume), ion species: [M + H]+, [M + 2H]2+, [M + H-H2O]+, 
[M + NH4]+, [M + Na]+, [M + 2Na]2+, [M-H]−, [M-2H]−, 
[M-H2O-H]−, [M + Na-2H]−, [M + HCOOH-H]−. The 
resulting table of MFs’ raw abundances was exported, and 
subsequent data manipulation was performed in Python 
environment (Spyder version 5.1.5, Python version 3.9.12) 
using nPYc-Toolbox module (version 1.2.6) (Sands et al., 
2019). Firstly, batch and run-order correction was applied 
with reference to QC pool samples (adapted LOWESS 
approach proposed by Dunn et al. (Dunn et al., 2011), 
parameter batch_correction_window = 8). Secondly, fea-
ture filtering was performed based on the following quality 
criteria (Broadhurst et al., 2018; Lewis et al., 2016): MF 
removed if present in process blank sample, or relative stan-
dard deviation (RSD) in QC pool samples > 25%, or corre-
lation to dilution r2 < 0.7 in linear regression, or dispersion 
ratio (“D-ratio”) > 50%. In addition, features and individuals 
with more than 30% missing or zero values were excluded 
from subsequent statistical analyses. Missing or zero val-
ues of remaining features were replaced by one fifth of the 
lowest value detected (1/5 LOD method). In total, 29’957 
values had to be replaced (7.1% of all values). The resulting 
feature table was log-transformed (base 10) for subsequent 

were thawed, vortex mixed (15 s), and centrifuged (5 min 
at 20’000 g). 200 µL of protein-free supernatant was trans-
ferred to conic glass vials, and 20 µL aqueous ISTD solu-
tion (arginine-13C6 (1.5 mM), deoxycholic acid-d4 (0.009 
mM), phenylalanine-d1 (1.5 mM), and proline-15  N (3.5 
mM) was added to monitor chromatographic performance 
consistency over the measurement period. A process blank 
sample (using LC-MS grade water instead of oral fluid in 
the Salivette® device, i.e., a blind sample) was prepared in 
the same manner to correct for false positive results, and 
additionally, pooled quality control (QC) samples were pre-
pared by mixing equal parts of each final filtrate. Lastly, a 
dilution series of QC pool samples (100%, 50%, 20%, 10%) 
was made to assess linearity of metabolic features during 
data cleaning procedures (Broadhurst et al., 2018).

2.4  Instrumental analysis

LC-MS analysis was performed as described in detail else-
where (Boxler et al., 2019). In short, a Thermo Fischer Ulti-
mate 3000 UHPLC system (Thermo Fischer Scientific, San 
Jose, CA, USA) was equipped with two different columns, 
separately. For reversed-phase (RP) chromatography, a 
Waters (Baden-Daettwil, Switzerland) XSelect HSST RP‐
C18 column (150 mm x 2.1 mm i.d., 2.5 μm particle size), 
and for hydrophilic interaction chromatography (HILIC), a 
Merck (Darmstadt, Germany) SeQuant ZIC HILIC column 
(150 mm x 2.1 mm i.d., 3.5 μm particle size) was used. The 
LC system was coupled to a high‐resolution (HR) quadru-
pole-time-of-flight (QTOF) instrument system (TripleTOF 
6600, Sciex, Concord, Ontario, Canada), equipped with 
an electro spray ionization (ESI) source running in both 
positive and negative ionization modes. Thus, four differ-
ent LC-MS modes were tested: RP+, RP-, HILIC+, and 
HILIC-. For detailed gradient profiles and instrument set-
tings, see Supplementary Information 2. Data-dependent 
acquisition (DDA, top 5) mode was used for generation of 
HR (tandem) mass spectra (MS1, MS2), which was con-
trolled by Analyst TF software 1.7 (Sciex). After every 5 
samples, the mass spectrometer was recalibrated using the 
manufacturer’s mass calibration solution.

After system suitability assessment of model substances 
(arginine, cortisol, cortisone, creatinine, glycocholic acid, 
hippuric acid, leucine, raffinose, riboflavin, and tryptophan) 
as described by Steuer et al. (Steuer et al., 2017) and system 
equilibration by injection of ten QC pool samples, the pre-
pared study samples were analyzed batch-wise in random-
ized order. To monitor system stability and for further signal 
adjustments, QC pool samples were reinjected every 5 sam-
ples. Dilution series of QC pool samples were measured at 
the beginning and end of the sample sequence.
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no statistical significance is expected between metabolites 
of both study interventions in t1 and t2 samples, which adds 
further robustness to the results.

2.7  Analysis 1: influence of time and sleep on total 
variance (exemplified for targeted metabolites)

In order to measure the effects of the sampling time points 
and sleep on the overall variance of the targeted metabolites, 
we conducted repeated measures two-way analyses of vari-
ance (ANOVA). This statistical approach uses a general lin-
ear model and multiple measurements to examine the impact 
of two categorical independent variables (factors) on a con-
tinuous dependent variable. The output provides informa-
tion about whether there are significant main effects for each 
factor (here: the sampling time points and the sleep depriva-
tion intervention, labeled as time and sleep), and whether 
there is a significant interaction effect between these two 
factors. Additionally, the subject effect (i.e., inter-individ-
ual variation) is calculated by percentage of total variation. 
The analysis was run on data gathered between sampling 
time points t3 and t6 (when the effects of sleep deprivation 
are to be observed), and to account for the short time inter-
vals between measurements, the Greenhouse-Geisser cor-
rection was employed, leading to more conservative (i.e., 

parametric testing. Applied feature selection, transforma-
tion, statistical analyses, and visualizations were conducted 
using MetaboAnalyst 5.0 (Pang et al., 2021), GraphPad 
Prism 10, and seaborn Python package (version 0.12.2).

2.6  Data evaluation

If metabolic changes are driven by rhythmic processes, 
they may only occur in one or two time points after the 
sleep deprivation/sleep control night, whereas linear pro-
cesses would lead to significant differences in all four time 
points after sleep deprivation. These repercussions for data 
interpretation are schematically illustrated in Fig. 2, where 
expected levels of four different metabolite types are por-
trayed (referring to sampling time points t3, t4, t5, and t6). 
Very importantly, the sampling time point after the recov-
ery night (t7) serves as a proof-of-concept control. The 
underlying rationale is that metabolic alterations are only 
due to prolonged wakefulness if they recede to baseline 
after recovery sleep (i.e., adaptive sleep-wake regulation). 
Therefore, if metabolite abundances measured after recov-
ery night are of significant difference between the sleep 
deprivation condition and the control condition, they cannot 
be associated with adaptive sleep-wake regulation and are 
hence to be excluded from further investigation. Likewise, 

Fig. 2  Theoretical profiles of fictitious metabolites. Sun icon indicates 
biological day, moon icon and gray fields indicate biological nighttime. 
t1-t7 and Salivette® devices highlight necessary sampling time points 
of which t1 and t2 should be before the experimental night, and t7 after 
recovery night. Group A represents the control condition that offers 
sleep in both the second (experimental night) and the third biological 
night (recovery). Group B represents the sleep deprivation condition, 
which is kept awake during the experimental night but allows recovery 
sleep in the following night. Theoretically expected levels of four dif-
ferent metabolite types are portrayed in either green or red lines for the 
different conditions A and B, respectively. Asterisks indicate sampling 
time points when a statistical analysis results in a significant difference 

between the two metabolite levels. Metabolite 1 mimics a sleep-related 
metabolite following a linear model as the changes in metabolite levels 
occur during experimental night, increase linearly during the follow-
ing daytime, and recede after recovery night. Likewise, metabolite 2 is 
sleep-related, as changes occur during the experimental night but can 
only be detected at sampling time points t3 and t4. This holds true for 
metabolites that are influenced by daily rhythm patterns under natural 
conditions (i.e., rhythmic model). Levels of metabolite 3 do not align 
after recovery night and can therefore not be related to adaptive sleep-
wake regulation. Metabolite 4 shows significant differences between 
the two conditions even before the experiment starts and can thus not 
be reliably used for such studies
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in standard reference kits (i.e., targeted analysis). These 
metabolites are summarized in Table 1. In a second analy-
sis, the range was broadened to also include all tentatively 
identified or unknown features (i.e., untargeted or global 
metabolomics analysis).

3.1  Results of quality controls

System suitability was verified by assessment of peak areas 
of model substances. The mean relative standard deviations 
were 6%, 13%, 10%, and 8% for RP+, RP-, HILIC+, and 
HILIC- setup, respectively. Chromatographic performance 
consistency was confirmed by monitoring retention time 
shifts of ISTD across all batches. The differences between 
minimal and maximal retention times were on average 0.07, 
0.18, 0.14, and 0.07  min for arginine-13C6, deoxycholic 
acid-d4, phenylalanine-d1, and proline-15  N, respectively. 
For single results, please refer to Supplementary Informa-
tion 3.

3.2  Analysis 1: Influence of factors ‘time’ and 
‘sleep’ on total variance (exemplified for targeted 
metabolites)

The results of the analyses are presented in Table 1. In the 
non-normalized dataset, the subject effect (median 44.82% 
of total variation, range 5.67–64.85%) outshined both the 
factors ‘time’ (median 5.10%, range 1.11–35.06%) and 
‘sleep’ (median 0.63%, range 0.02–5.91%). The output for 
the z-normalized dataset suggests mitigation of the inter-
individual variation, as the subject effect decreased substan-
tially (median 5.94% of total variation, range 2.04–10.34%). 
It became apparent that ‘time’ (i.e., sampling time point) 
represents the major influencer (median 9.24%, range 3.02–
42.91%), surpassing the intervention of sleep deprivation 
(median 1.81%, range 0.19–12.46%). In fact, 15 out of the 
25 investigated metabolites were significantly impacted by 
‘time’, whereas 5 out of 25 were significantly impacted by 
sleep deprivation. The interaction between these two factors 
was significant for 4 out of 25 metabolites (refer to Table 1). 
The main effect of ‘time’ was predominantly observed for 
the rhythmic metabolites cortisone and glycine (p < 0.0001, 
see Fig. 4d and i).

3.3  Analysis 2: Influence of sleep deprivation on 
metabolites’ abundances

In the field of biomarker research, researchers aim to iden-
tify significant differences in metabolite abundances across 
various experimental conditions. The results of the statisti-
cal testing for the targeted metabolites between time points 
are displayed in a heat map in Fig. 3. As outlined above, 

larger) p-values and to prevent the inflation of Type I error 
rates. Applied models for each metabolite were checked for 
residual distribution, homoscedasticity, and normality. The 
strong influence of interindividual differences on metabo-
lite levels poses a substantial challenge in the identification 
of reliable biomarkers. To control or mitigate this effect, 
metabolomics studies usually apply a within-subject design 
and normalize the respective datasets. In our case, a subject-
wise z-score normalization was applied, and the analyses 
were rerun.

2.8  Analysis 2: Influence of sleep deprivation on 
metabolites’ abundances

The transformed dataset was analyzed by multiple paired 
t-tests for each sampling time point between the sleep depri-
vation and the control condition to identify alterations in 
abundances of metabolites. In order to address the issue of 
multiple testing, the significance level alpha was reduced 
to 0.01 for the untargeted metabolite analysis. Addition-
ally, the same stringent dropout criteria were applied to time 
points t1, t2, and t7 as mentioned previously. This adjust-
ment allows for a false positive rate of 0.97% (calculated as 
0.01 multiplied by 0.99 three times) for a molecular feature 
to be considered significantly altered in a single time point 
between t3 and t6.

2.9  Metabolite identification

Various databases (HMDB (Wishart et al., 2022), METLIN 
(Guijas et al., 2018), and the National Institute of Standards 
and Technology (NIST) were queried via Progenesis Qi 
for features of interest at both the MS1 and MS2 levels. In 
addition, SIRIUS software (version 5.8.3 (Dührkop et al., 
2019)) was used for molecular formula deduction and its 
tools CANOPUS (Dührkop et al., 2021) and CSI: FingerID 
(Dührkop et al., 2015) for compound class prediction and 
structure annotation. If available, the identity confirmation 
was achieved through the correlation of library search out-
comes, precise precursor masses and fragment ions, and 
retention time with certified reference standards. Based on 
the Metabolomics Standards Initiative (MSI) convention 
(Sumner et al., 2007), tentative identification confidences 
were categorized into four levels, ranging from 1 (highest 
confidence) to 4 (unknown compound).

3  Results

We applied a semi-targeted approach: In a first analysis, 
we focused on 25 metabolites that are often reported due 
to either their physiological relevance or their presence 
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of the morning trough. After the recovery night, however 
(at t7), both conditions exhibit similar characteristics once 
more, with a natural morning trough. Lower levels of 
metabolites for uric acid and cortisol were observed follow-
ing sleep deprivation in comparison to the control nights at 
time points t3 and t4, respectively. Out of the 25 targeted 
metabolites, only uric acid abundance was significantly 
changed after the maximum period (i.e., after 40 h of sus-
tained wakefulness). However, we observed no evidence of 
a linear relationship between sustained wakefulness of 15 to 
40 h and any changes in single metabolite levels.

For the untargeted metabolomics analysis, 2307 molecu-
lar features (RP positive/negative: 695/70, HILIC positive/
negative: 1103/439) remained for subsequent statistical 
analysis after filtering procedures. It is important to men-
tion that the number of authentic metabolites is lower than 
the number of MF, as metabolites may be duplicated in MF 
if they are ionizable in both positive and negative mode or 
show acceptable retention and peak shape characteristics on 
both RP and HILIC columns. The statistical testing revealed 
231 molecular features (10.0% of all detected) with signifi-
cant alterations in at least one time point. Among these, eight 
features were found to be significant at two different time 

changes are only sleep-related if they occur at sampling time 
points t3-t6. Additionally, an insignificant outcome is sought 
for analytical robustness at t1, t2, and t7, respectively.

Five metabolites (carnitine, propionylcarnitine, butyr-
ylcarnitine, methylmalonic acid, and taurine) did not meet 
these criteria, as they exhibited significant results at t1 or 
t2. Six metabolites (adenine, arginine, glycine, lysine, pro-
line, and tyrosine) significantly changed exclusively at t3 
(08:10 am, after sleep deprivation), one metabolite (corti-
sol) exclusively at t4 (01:55 pm), and one metabolite (uric 
acid) at two time points, namely t3 and t6 (08:10 am and 
10:55 pm). The normalized profiles for these eight metabo-
lites are shown in Fig. 4. Naturally, the metabolites found to 
be significantly altered in the t-test analyses overlap with the 
ones that were found to be significantly affected by the main 
effect of ‘sleep’ or the interaction between the two factors 
’time’ and ‘sleep’ (see above). For all metabolites that were 
significantly changed at t3 except uric acid, the measured 
abundance was higher after sleep deprivation compared to 
the control condition. In fact, these metabolites are typi-
cally low in the early morning hours (at t3 and t7). Sleep 
deprivation, on the other hand, maintained elevated levels 
of these metabolites, effectively preventing the occurrence 

Fig. 3  Heat map of p-values of paired t-tests for targeted metabolites between the sleep deprivation and the control condition across different sam-
pling time points. Values below 0.05 are colored in grey shades and annotated. Values higher than 0.05 are represented in white boxes
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in HILIC chromatography. For single analyte results, please 
refer to Supplementary Information 4.

In-silico structure annotation analysis of the eight molec-
ular features that were highlighted revealed five different 
compound classes to be present, namely carboxylic acid 

points. Considering the different sampling time points, the 
predominant alterations occurred at t3 (154 MFs, 6.7% of 
all), with subsequent occurrences observed at t4 (49, 2.1%), 
t5 (25, 1.1%), and t6 (11, 0.5%). Notably, the majority 
(76%, 176 out of 231) of the significant MFs were detected 

Fig. 4  Normalized profiles of significantly changed targeted metabo-
lites (a-h) and cortisone (i). Three gray bars signal biological nighttime 
(23:30 − 07:30). The second night accentuates that participants in the 
sleep-deprivation condition were kept awake. Green circles (control 
condition) and red squares (sleep deprivation condition) indicate mean 

values of z-scores; whiskers indicate respective standard errors of the 
mean. Asterisks highlight sampling time points with significant dif-
ference between the control and the sleep-deprivation condition (i.e., 
p-value of paired t-test < 0.05)
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tyrosine, uric acid, lactosylurea, sulfopantetheine, and a 
norvaline derivative. Most of the changes could be ascribed 
to polar substances, as most of the changed metabolic fea-
tures were detected through HILIC chromatography. The 
distribution between the two different chromatography col-
umns underlines the prevalent polar properties of the sali-
vary metabolome. This seems understandable as oral fluid 
consists to its greatest extent of water (Álvarez-Sánchez et 
al., 2012; Dame et al., 2015). As of practical importance, 
the majority of metabolites were found to be significantly 
altered when sampled in the morning hours (here at 08:10 
am). Both the results of the targeted and the global metabo-
lomics approach underlined this finding. It was frequently 
observed in metabolites that exhibited a rhythmical low 
under control conditions (morning trough) but showed an 
irregular pattern following sleep deprivation. These obser-
vations in oral fluid are consistent with metabolomics analy-
ses of blood plasma samples, which demonstrated that the 
circadian clock and sleep interact to control the human 
metabolome (Chua et al., 2015; Davies et al., 2014; Grant 
et al., 2019). Taken together, these studies showed that up to 
20% of all metabolites vary with time of day and that their 
oscillation can be attenuated or abolished by sleep restric-
tion (Bell et al., 2013) and sleep deprivation (Davies et al., 
2014). Particularly amino acids and related biochemicals 
are typically increased after repeated sleep restriction and 
sleep deprivation (Bell et al., 2013; Davies et al., 2014). 
Given the results in blood/plasma and the understanding of 
salivary secretions as an ultrafiltrate of blood, it seems logi-
cal that our findings suggest that the effects of inadequate 

amides, peptides, disaccharides, alpha amino acid deriva-
tives, and N-acyl amines (MSI level 3). Furthermore, anno-
tation software could tentatively identify three substances 
as sulfopantetheine, lactosylurea, and a norvaline deriva-
tive (MSI level 2). The normalized profiles of these are 
displayed in Fig. 5. For their MS2 spectra, please refer to 
Supplementary Information 5.

4  Discussion

In this work, we have investigated the influence of sleep 
deprivation on metabolite abundances in oral fluid. Moni-
toring more than 2300 metabolic features employing a 
semi-targeted metabolomics approach, we found about 
10% to have significantly changed in at least one time point 
after a night of sleep deprivation when compared to 8 h of 
sleep. The design of the original sleep study allowed us to 
make use of a pragmatic and hypothesis-driven statistical 
approach, which allowed us to flag and exclude MF that 
were either not following adaptive sleep-wake regulation or 
were of non-robust nature. With additional measures taken 
regarding significance level adjustment, we made sure that 
the performed statistical tests were more conservative (i.e., 
stricter) than conventional limits concerning false positive 
errors, adding further validity to the detected changes. Con-
sequently, the observed changes are related to the lack of 
sleep, as they did not occur before sleep deprivation and after 
recovery sleep. Of these metabolites, eleven could be identi-
fied as adenine, arginine, cortisol, glycine, lysine, proline, 

Fig. 5  Normalized profiles of untargeted metabolic features with sig-
nificant changes in two time points. Three gray bars signal biological 
nighttime (23:30 − 07:30). The second night accentuates that partici-
pants in the sleep-deprivation condition were kept awake. Green cir-
cles (control condition) and red squares (sleep deprivation condition) 
indicate mean values of z-scores; whiskers indicate respective stan-

dard errors of the mean. Asterisks highlight sampling time points with 
significant differences between the control and the sleep deprivation 
condition (i.e., p-value of paired t-test < 0.01). Metabolic features are 
labeled as retention time, underscore, and mass, the latter being either 
neutral (n) or m/z. Tentative identifications with MSI levels 2 (a-c), 3 
(d,e), 4 (f-h) in brackets underneath, if applicable
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examined the extreme case of total sleep deprivation (acute 
sleep deprivation) in this study. The effect of restricted or 
unsatisfying sleep on the salivary metabolome was not 
investigated. The study cohort comprised exclusively of 
male volunteers who were in good health. Consequently, 
the influence of female gender, age, and health conditions 
on the observed outcomes could not be assessed. Lastly, the 
samples used in this study had been stored frozen immedi-
ately after sampling for a decade without intermittent thaw-
ing. Unfortunately, there are no studies published focusing 
on the long-term stability of metabolites in oral fluid. How-
ever, comparable studies in the more precarious matrices 
blood and urine stated that time-to-storage, inter-individual 
differences, and freeze-thaw cycles were by far the strongest 
factors for variation and instability (Hebels et al., 2013; Ste-
vens et al., 2019). In comparison, storage time and tempera-
ture played minor roles, encouraging the use of adequately 
stored biospecimens, e.g., from biobanks. In this study, all 
specimens were sampled, stored, and analyzed in the same 
manner, thus avoiding systematic bias.

5  Conclusion

In summary, our study assessed the extent of variation 
induced by sleep deprivation and different sampling times. 
These influences were present in metabolites that are fre-
quently monitored in metabolomics studies due to their 
physiological meaning or association with specific condi-
tions. This may lead to biased result interpretations. We 
hereby encourage designers of metabolomics studies to 
mind the following three recommendations: Firstly, apply 
a within-subject design whenever possible to control for 
inter-individual variation. Secondly, establish identical time 
points for sample collection across all participants. Lastly, 
monitor participants’ sleep-wake schedules prior to and dur-
ing experiments, even if the study focus is not sleep-related 
(e.g., via actigraphy).

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s11306-
024-02158-3.
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sleep on the human metabolome can also be detected in oral 
fluid and may be most pronounced in the morning hours.

We further examined the influence of different sampling 
time points throughout a day. In numerous metabolomics 
investigations, the monitoring of participants spans across 
extended periods of time, encompassing days, weeks, or 
even months, with the aim of examining the long-term 
effects of particular stimuli. Consequently, it is frequently 
observed that the timing of sample collection varies between 
each visit. In our targeted analysis, 60% of the investigated 
metabolites were significantly impacted by the factor ‘time’ 
(time of day), especially if controlled in a certain rhythm. 
As our study did not apply a constant routine protocol, we 
were unable to differentiate whether these rhythms were of 
a circadian or diurnal nature. However, a separate study has 
reported 15% of the total salivary metabolome to follow 
circadian paces, with over half of these metabolites being 
amino acids and their associated compounds (Dallmann et 
al., 2012). Another study solely focusing on plasma metabo-
lites described about one fifth of these showing significant 
time-of-day variation (Ang et al., 2012). We found the influ-
ence of the factor ‘time’ (i.e., time-of-day variation) most 
pronounced for the well-described circadian metabolite cor-
tisone and could confirm this phenomenon for the amino 
acids glycine, arginine, leucine, lysine, ornithine, phenyl-
alanine, tyrosine, and valine. In addition, we could expand 
this group with nucleobases and derivatives (inosine, uracil, 
uridine), organic acids (glutaric acid, methylmalonic acid), 
and butyrylcarnitine. The analysis of metabolites in samples 
collected at various time points may therefore introduce 
unintended sources of variation, potentially leading to mis-
interpretation of the results. We advocate for the implemen-
tation of uniform sampling time points in metabolomics 
studies, particularly in the context of long-term investi-
gations. It should, however, be noted that the described 
metabolite alterations are not to be understood as potential 
biomarkers for sleep pressure because each participant’s 
inner body time (i.e., circadian time) was not monitored. 
Therefore, we could not directly compare each participant’s 
sleep pressure at identical circadian times.

Although being widely accepted as an influencing factor, 
very few metabolomics studies pay attention to the sleep 
amounts of their participants. The application of monitor-
ing strategies such as actigraphs or sleep/wake diaries is 
simple and cheap, however. We have shown that a consid-
erable number of metabolites are prone to changes after 
sleep deprivation, which can lead to subsequent misinter-
pretations of experimental effects. We therefore encourage 
all designers of metabolomics studies to ensure a minimum 
sleep amount and consequent sleep/wake monitoring, e.g., 
via actigraphy or sleep/wake diaries, irrespective of the 
study focus. It has to be considered that we have exclusively 
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