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Role of land-ocean interactions in stepwise
Northern Hemisphere Glaciation
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Alex Pullen 9, Keiji Horikawa 10, Jimin Yu11,12, Torben Struve 13,
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Hu Yang 19, André Bahr 20, Tianyu Chen 21, Jingyu Zhang 1, Cao Wei1,
Wenyue Xia1, Sheng Yang1 & Qingsong Liu1,22

The investigation of triggers causing the onset and intensification of Northern
Hemisphere Glaciation (NHG) during the late Pliocene is essential for under-
standing the global climate system, with important implications for projecting
future climate changes. Despite their critical roles in the global climate system,
influences of land-ocean interactions on high-latitude ice sheets remain largely
unexplored. Here, we present a high-resolution Asian dust record from Ocean
Drilling Program Site 1208 in the North Pacific, which lies along themain route
of the westerlies. Our data indicate that atmosphere-land-ocean interactions
affected aeolian dust emissions through modulating moisture and vegetation
in dust source regions, highlighting a critical role of terrestrial systems in
initiating the NHG as early as 3.6Myr ago. Combined with additional multi-
proxy and model results, we further show that westerly wind strength was
enhanced, mainly at low-to-middle tropospheric levels, during major glacial
events at about 3.3 and 2.7Myr ago. We suggest that coupled responses of
Earth’s surface dynamics and atmospheric circulation in the Plio-Pleistocene
likely involved feedbacks related to changes in paleogeography, ocean circu-
lation, and global climate.

The onset and intensification of Northern Hemisphere Glaciation
(NHG) occurred from the mid-Pliocene to the early Pleistocene (ca.
3.6–2.5Myr ago), and represented a major climatic transition within
the broader, gradual Neogene cooling1,2. Proposed mechanisms
responsible for theonset and intensificationofNHG (hereafter referred
to as “oNHG” and “iNHG”, respectively) havemainly focused on factors
such as decreasing atmospheric CO2

3,4, polar ocean stratification5, and
tectonic changes affecting the configuration of major oceanic gate-
ways including the Bering Strait, the Indonesian seaway, and Central
American seaway6. Although teleconnections between the terrestrial
andmarine components of the Earth System can critically affect global
climate7, their potential impacts during the oNHG at ~3.6million years
ago and iNHG at ~2.7million years ago have received less attention2.

To elucidate the role of land-ocean teleconnections, we investi-
gate marine dust records that contain clues about environmental
conditions of the dust source regions as well as the intensity/position
of transporting agents (such as wind, water, and ice)8–11. Pelagic North
Pacific Ocean sediments provide a unique archive for reconstructing
windblown dust delivered from the arid interior of Central and East
Asia and the associated Northern Hemisphere westerlies (Fig. 1). Pre-
vious studies in the North Pacific have focused either on the driving
mechanisms for enhanced aeolian dust production8,12 or the char-
acteristics of wind systems transporting dust12,13. These studies show
that, in addition to the moisture budget in dust source regions of
Central and East Asia, the latitudinal position and strength of prevail-
ing westerly winds might also have influenced the temporal variability
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of aeolian dust fluxes to the North Pacific Ocean13. Furthermore, sev-
eral high-resolution studies previously revealed that dust deposition in
the North Pacific increased between ca. 2.74 and 2.72Myr ago, coeval
with the establishment of large-scale perennial Northern Hemisphere
Ice Sheets (NHIS)13,14 (Fig. 2a). As previously noted13, the timing formid-
latitude North Pacific dust flux enhancement is concomitant with the
first substantial rise in dust fluxes into the North Atlantic15 (Fig. 2i) and
the Southern Ocean16 (Fig. 2j), indicating a tight interhemispheric
connection between enhanced global dust inputs and global cooling
during the late Pliocene. While previous studies have suggested that
variations in the position and intensity of thewesterlies were governed
by similar mechanisms for times before the iNHG13,14, the connection
between pre-iNHG dust fluxes to the North Pacific Ocean and the
underlying mechanisms triggering the oNHG remain uncertain. This
uncertainty persists because of the scarcity of continuous, well-dated
North Pacific dust records with sub-orbital resolution for the period
before ca. 3Myr ago13,14.

Here we fill this critical gap by providing high-resolution rock
magnetic and geochemical records for Ocean Drilling Program (ODP)
Site 1208 (Fig. 1). ODP Site 1208 is well positioned to constrain Asian
dust inputs and sedimentation in the North Pacific during the middle
and late Pliocene (4.0−2.5Myr ago)17. Combined with available stable
isotope stratigraphy (ca. 3.7−1.7Myr ago)18 and extra-terrestrial 3He-
derived sediment fluxes (ca. 4.5−2.5Myr ago)13, our data indicate
increased aeolian dust input to the North Pacific during periods when
NHIS formed and expanded throughout the Pliocene.We propose that
the vegetation turnover in Central Asia and dust inputs to the Pacific in
the mid-Pliocene could promote a link between ice-sheet formation,
land-surface albedo, and ocean-atmosphere coupling. We also present
climate simulations to support the notion that the waxing and waning
of NHIS representing cold and warm intervals, respectively, during the
middle-Pliocene and early Pleistocene can substantially alter the
characteristics of thewesterlies, and thus dust transport into theNorth
Pacific Ocean.

Results and discussion
Plio-Pleistocene dust evolution in the North Pacific Ocean
Elemental (La-Th-Sc) and radiogenic Pb isotope data, along with pre-
viously published Nd and Sr isotope data19 show that detrital fractions
of sediments atODPSite 1208 are sourced fromAsiandust and circum-
Pacific volcanic detritus20, with the TaklimakanDesert as the dominant
source of dust19 (Supplementary Fig. 1a–c). Dust from Central and East

Asia contains abundant haematite (Hm) and goethite (Gt)21, and acts as
the primary control on the overall Hm and Gt signals in depositional
settings where aeolian dust constitutes the majority of the terrestrial
input22. We thus use the flux of Hm and Gt (RelHm+Gt flux) at ODP Site
1208 as a proxy for Asian dust inputs to the North Pacific (see Material
and Methods), with higher fluxes reflecting enhanced atmospheric
dust inputs into the ocean.

Our RelHm+Gt flux record reflects the timing and nature of North
Pacific dust flux variability during the middle to late Pliocene, with a
sufficient temporal resolution to resolve sub-orbital changes over
4.0–2.5Myr ago (Fig. 2c, d). The baseline of RelHm+Gt flux minima
remains remarkably invariant from 4.0–2.5Myr ago, with increased
fluxes associated mostly with cold (glacial) periods (Fig. 2a). Of note,
our data reveal noteworthy variations across three major glacial
periods. Firstly, an initial enhancement of aeolian inputs observed at
both western (ODP Site 1208) and central North Pacific (ODP Site
885) at ca. 3.6Myr ago (Fig. 2b), accompanied by a shift in the
vegetation of Central Asia (Fig. 3d). These coeval changes corre-
sponded to an ice-rafted detritus (IRD) peak in the Arctic Ocean at
the oNHG23 (Fig. 3c). Considering the previously proposed connec-
tion between late Pliocene ice sheet extent and dust fluxes to the
ocean13, our data are consistent with the notion that initial variations
in NHIS volume can be traced back to Marine Isotope Stage (MIS) Gi2
(Fig. 2a), when the NHIS was relatively small in spatial extent and
short in duration24,25. Secondly, dust flux greatly increased from ca.
3.31 to 3.28Myr ago (glacial MIS M2), which was a globally pro-
nounced cooling event that disturbed the climate of the mid-
Piacenzian Warm Period (mPWP, ca. 3.3−3.0Myr ago)26,27. The inter-
val following the mPWP was characterized by larger fluctuations in
dust fluxes, including pronounced dust peaks during pre-iNHG gla-
cial intervals (MIS KM2 and G20). Thirdly, the iNHG is marked by a
prominent dust peak at 2.73Myr ago (Fig. 2c and d), after which dust
inputs during glacial maxima seem to have varied proportionally to
the global ice volume, as reflected by benthic oxygen isotopes28

(Fig. 2a). Pleistocene ice volumewere largely driven by changes in the
Laurentide Ice Sheet29,30.

Initial dust intensification linked to Northern Hemisphere cool-
ing in the mid-Pliocene
Previous studies have suggested thatboth land-ocean connections and
atmospheric circulationmay have played key roles in both the oNHG31

and iNHG7. Combined with terrestrial vegetation and atmospheric

Fig. 1 | Regional wind and topography.Modern (1979-2017) 200hPa winds over
the Pacific Ocean and East Asia in boreal winter (December-January-February),
usingNCEPReanalysis 2 data. The inset shows the topography reconstructed by the
PlioMIP phase 171 and the simulated Northern Hemisphere ice sheet coverage

during MIS M23. Red star denotes studied Ocean Drilling Program (ODP) Site 1208
and yellow circles represent literature marine and paleolake sites with dust proxy
records discussed within the text.
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Fig. 2 | Comparison of ODP Site 1208 dust records with data from other sites.
a Benthic δ18O record at ODP Site 1208 along with the LR04 curve28; (b) Dust flux at
Site 88513; (c) RelHm+Gt flux calculated based on the agemodel atODP Site 1208 (this
study); (d) RelHm+Gt flux calculated from 3He-derived MARs13 at ODP Site 1208 (this
study); (e) Chemical index of alteration (CIA) and (f) Rb/Sr at ODP Site 1208 (this
study); (g) Hard Isothermal Remanent Magnetization (HIRM) flux from ODP Site

120814; (h) Th and 3HeET-deriveddust fluxes fromODP Site 120813; (i) Site U1313 dust
flux15; (j) Ti-based dust fluxes fromODP Site 109016. The dark blue bars indicate the
onset of NHG (~3.6Ma), MIS M2 and the iNHG (MIS G6). Light blue bars indicate
subsequent glacial intervals. RelHm+Gt, Relative concentration of haematite and
goethite. MIS, Marine Isotope Stage; NHG, Northern Hemisphere Glaciation.

Article https://doi.org/10.1038/s41467-024-51127-w

Nature Communications |         (2024) 15:6711 3



Fig. 3 | Dust flux at ODP Site 1208 compared with global and regional records
during the Late Pliocene. a LR04 benthic oxygen isotope stack28; (b) ODP Site
1208 alkenone-derived SST records13; (c) Ice-rafted debris (IRD; wt.%, coarse frac-
tion 100–1000μm) record from the eastern Atlantic-Arctic gateway23; (d) Artemisia
pollen percentages from site SG-1 in the Qaidam Basin39; (e) Flux of RelHm+Gt for
ODP Site 1208 (this study); (f) Flux of RelHm+Gt calculated from 3He-derived MAR13

for ODP Site 1208 (this study). Error bars represent propagated analytical and
statistical uncertainties for 3HeET-derivedMARs (1σ); The heavy dashedgrey lines in

(e–f) indicate average values for the three timewindows discussed in themain text;
(g) Lake surface temperature and tree/shrub percentage records from Lake
El’gygytgyn41; (h) Sea ice-related diatoms (squares)45 and detrital Nd isotopes (cir-
cles) from Bering Sea Hole U1341B33; (i) Atmospheric pCO2 based on planktonic
foraminifera δ11B72. The dark blue bars indicate the onset of NHG (~3.6Ma), MIS M2
and the iNHG (MIS G6). Light pink bars indicate mid-Piacenizian warm period
(mPWP). RelHm+Gt, Relative concentration of haematite and goethite. MIS, Marine
Isotope Stage; NHG, Northern Hemisphere Glaciation.
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circulation records from the Northern Hemisphere, our dust record
from ODP Site 1208 (Fig. 3e and f) reveals two temporally distinct
modes ofmechanisms responsible for cooling over the Pliocene:Mode
1 (3.6–3.3Ma) andMode 2 (3.3–2.5Ma) (Supplementary Fig. 2). Mode 1
(3.6–3.3Ma) is characterized by variations in Earth-surface dynamics in
Central Asia that are connected to shifts in other components of the
climate system farther afield (Supplementary Fig. 2a). Initially, during
the oNHG from ca. 3.6–3.5Myr ago, therewas a reduction of the North
Atlantic Current (NAC) and thus AMOC as indicated by surface-water
cooling (ca. 3.5 °C) and freshening in the North Atlantic Ocean (Sup-
plementary Fig. 3b, c). TheAMOCreductionmight havebeendrivenby
increased inflow of low-salinity Pacific waters through the Bering Strait
into the Arctic and North Atlantic Oceans32. This is evidenced by the
growth of large alpine glaciers from ca. 3.6Myr ago, which produced
increasing influxes of Alaska Range detritus and glacial meltwater to
the Bering Sea33.

A mechanistic link between the opening of the Bering Strait and
NHG has been suggested for the late Pliocene to explain a reduction in
AMOC34,35. However, the Bering Strait likely opened much earlier.
Recent geological and biogeographic evidence indicates that the
Bering Strait was already persistently open around 5.5Myr ago36. If the
opening of this gateway is connected to the strength of AMOC, then
together these findings imply that Bering Strait was open for a pro-
tracted period during which the sill was deep enough to allow the

arrival of Pacific mollusc faunas into the Atlantic Ocean as early as
5.5Ma, but not enough to substantially alter Arctic and North Atlantic
Ocean surface water properties.

Here, we hypothesize that the deepening of Bering Strait below
the required threshold was the westward tectonic extrusion of the
Bering Block in response to a reactivation of the subduction of the
Pacific plate below the Alaska-Aleutian arc36. The likely appearance of
mountainglaciers inAlaskaby the timeofMISM2at ca. 3.3Myr ago3,4 is
consistent with enhanced uplift of the central Alaska Range in
response to accelerated Pacific plate subduction, extrusion of the
Bering block, and deepening of the strait by the mid-Pliocene36,37.
Coupled with broadly simultaneous tectonic uplift and enhancement
of IRD deposition in the Fram Strait area23 (Fig. 3c), this suggests that
tectonic events, surface uplift and the subsequent inception of
mountain glaciers preconditioned the peri-Arctic region to stimulate
AMOC weakening already by ca. 3.6Myr ago.

Comparing modelling results based on an open and closed
Bering Strait under Pliocene boundary conditions34, we further
demonstrate that a weaker AMOC, driven by the persistent inflow of
relatively fresh Pacific waters through an open Bering Strait, could
reduce northward heat transport in the North Atlantic and lead to a
steepening of the meridional temperature gradient in the Northern
Hemisphere (Supplementary Fig. 4). Such a steepened gradient in
an open Bering scenario would strengthen the mid-latitude jet
stream and westerly winds in the mid to lower troposphere
(200–850 hPa) (Fig. 4), facilitating the transport of Asian dust into
the North Pacific. Similar effects on the meridional temperature
gradient in the North Pacific Ocean and the westerlies have been
modelled to be related to narrowing of the Indonesian seaway38.
These proposed connections provide a mechanism linking
enhanced transport of dust from Asia to the North Pacific Ocean
with the oNHG. Furthermore, vegetation and precipitation records
from Central Asian dust sources suggest a change towards condi-
tions that are more conducive for chemical weathering during the
mid-Pliocene7,39, leading to enhanced erosion and sediment pro-
duction. Changes in vegetation and precipitation are consistent
with our chemical weathering indicators and elevated dust fluxes in
the western and central North Pacific Ocean8,10 (Fig. 1), which
together can be interpreted to reflect increased dust emissions
from Central Asia around 3.55Myr ago. Overall, we propose that
enhanced dust input for Mode 1 was driven by increased dust pro-
duction at the source region and intensified mid-latitude atmo-
spheric circulation, both of which ultimately stem from the export
of low-salinity waters from the Bering Sea to the Arctic and then
North Atlantic Oceans around 3.6 Myr ago.

Enhanced Northern Hemisphere westerlies during major Plio-
cene glaciations
Our proposedMode 2 corresponds to changes in the relative influence
of the westerlies and the Siberian High that impacted Asian dust
emissions, transport, anddeposition40 (SupplementaryFig. 2b). During
the middle (ca. 3.4−3.3Myr ago) and late Pliocene (ca. 2.9 and post
2.7Myr ago), cool and arid conditions were widespread across central
Eurasia as recorded in sediments from Lake Baikal41, Arctic Siberia42

(Fig. 3g), and the Tarim Basin43. Sea surface temperatures at ODP Site
1208 cooled by 2–4 °C in the westernmid-latitude North Pacific during
glacial periods of themid to late Pliocene (i.e., glacialMISM2 and post-
iNHG)13 (Fig. 3b). This mid-latitude cooling, in conjunction with rela-
tively small changes in tropical SSTs, could reflect an increase in the
meridional temperature gradient, resulting in the migration and
intensification of Northern Hemisphere westerly winds12,13.

Modern observations of dust activity indicate that several factors
influence dust emissions, including surface wind speed, gustiness,
vegetation cover, and soil wetness44. To assess the potential of chan-
ging dust flux during mid and late Pliocene glaciations, we further

Fig. 4 | Effects of Bering Strait opening on large-scale atmospheric circulation
during Pliocene. a 200hPa zonal wind speed anomalies (shadings; positive values
indicate stronger westerlies) and climatological 200 hPa zonal wind pattern (solid
contours: westerly winds; dashed contours: easterly winds; thick solid contours:
zero contour line; the contour interval is 5m/s). b Anomalies in wind pattern
(vectors) and speed (shadings) at 500 hPa. c As in (b) but for 850 hPa winds. The
white star indicates the location of ODP Site 1208. Anomalies indicate the differ-
ences between open and closed BS conditions (i.e., open BS climate minus closed
BS climate).
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analysedmodelling results representing the climate of the mPWP, MIS
M2 and iNHG (seeMethods). In the three scenarios, the extent of NHIS
differs substantially between glacial and interglacial periods. During
the cold intervals of the mPWP, the Northern Hemisphere continental
ice was restricted to Greenland (Fig. 5a). We note, however, that con-
tinental ice may have covered the mountainous regions of Alaska and
northern Scandinavia during glacial M26,7 (Fig. 5b). The growth of
Alaskan alpine glaciers during glacial M2 is supported by increasing
fluxes of detritus from the Alaska Range at Site U1341 in the Bering Sea
(Fig. 3h), possibly due to seasonal glacial meltwater45. The major
growth of the NHIS occurred during the iNHG (ca. 2.7Myr ago)31 and is
represented by the LGM NHIS scenario in our model simulations. We
note that this is probably an overestimation of Northern Hemisphere
ice volume (Fig. 5c), but it may represent a possible scenario for the
extent of the Laurentide ice-sheet as reported previously46. We chose
this extreme scenario to investigate the sensitivity of the atmospheric
circulation to changes in ice sheet extent under Pliocene boundary
conditions. Compared to the warmer mPWP, the two glacial scenarios
considered (glacialM2 and post-iNHG glacials) experienced a decrease
in both summer precipitation and evaporation over East, South, and
Central Asia. However, the simulations show that the reduction in
evaporation caused by cooling exceeded the reduction in precipita-
tion, driving a slightly positive change in the soil moisture budget
(precipitation minus evaporation) over inland Asia, which may have
helped maintain soil moisture during glacial periods (Supplementary
Fig. 5), and further increased weathering and could favour the for-
mation of fine-grained dust to some extent8.

Aside from just increased dust formation, the characteristics of
winds driving dust tranport are also different between our simulations.
Specifically, our model results suggest that changes in mid-latitude
wind circulation play an additional role in enhanced dust flux at our
core site. With the build-up of a more extensive NHIS, zonal winds
increased at 850 and 500hPa levels (Fig. 5d–f). The average zonal wind
along 120°E–150°E becamestronger throughout the yearduring glacial

M2 and following the iNHG, with wind strength being even stronger
during the latter (Fig. 5d, e; Supplementary Fig. 6).

Modern studies show that the strength of the westerlies is related
to the meridional temperature gradient47. Relatively stronger westerly
winds during glacial M2 and the iNHG in the lower and middle atmo-
spheric layers are associated with an increased meridional tempera-
ture gradient (Supplementary Fig. 7a, b). However, this is not the case
in the upper troposphere. The meridional temperature gradient dur-
ing glacial M2 is stronger than that during iNHG, but the latter
experienced stronger westerly wind speeds (Supplementary Fig. 7c).
Notably,modelling of the dust cycle has shown that themain transport
of dust occurs below the middle troposphere (3−6 km48). As such, the
westerly winds in the upper troposphere do not contribute sig-
nificantly to the total dust transport in the Northern Hemisphere, in
contrast to long-range dust transport in the Southern Hemisphere49.
Therefore, we suggest that the westerly winds in the lower to middle
troposphere promoted dust transport from the interior of Asia to the
North Pacific when a larger NHIS formed in the mid-Pliocene (MISM2)
and post-iNHG.

Implications for future climate change
Our North Pacific dust flux record and modelling results aid in better
characterizing large-scale Northern Hemisphere Pliocene glaciation
events and their associated impacts. In particular, our work (1) pro-
vides evidence for long-term Northern Hemisphere ocean-
atmosphere-land interactions associated with the oNHG and iNHG,
(2) points to enhanced dust production during the intense Pliocene
glacial interval M2 that is likely linked to shifts in atmospheric circu-
lation, and (3) supports existing evidence that the iNHGwas associated
with increased meridional temperature gradients and a strengthening
of the westerlies13–15.

Although the controls on Northern Hemisphere westerlies are
determined by stepwise glacial expansion, the response of Earth’s
surface dynamics to Plio-Pleistocene climatic change in continental

Fig. 5 | Modelled ice sheet and zonal wind changes under three climate con-
ditions. The shaded colour in (a–c) indicates the land ice fraction. Average zonal
winds at different pressure levels (d–f) are calculated for longitudes between 120°E
and 150°E, corresponding to the dominant dust source region for the North Pacific.
The orange, blue, and purple curves represent PlioMIP1, MIS M2, and iNHG

simulations, respectively. The 850 hPa, 500 hPa and 200hPa pressure levels gen-
erally correspond to altitudes of ~1.5 km, ~5.5 km and, ~12 km, respectively, but can
vary due to air conditions and geographic locations. MIS, Marine Isotope Stage;
NHG, Northern Hemisphere Glaciation.
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landscape likely generated terrestrial feedbacks affecting atmospheric
circulation. We propose that this redistribution of global water vapour
linked to North Atlantic ocean-atmosphere feedback was coupledwith
the reorganization of vegetation patterns in Central Asia7,39 (Fig. 3d).
There is also evidence that East and Central Asia experienced multiple
steps of C4 vegetation expansion through the Pliocene, depending on
local monsoon rainfall50. Collectively, this significant regional vegeta-
tion expansion was common at least in Northwest Australia51, and the
Indian subcontinent52,53 (Supplementary Fig. 8). At the oNHG, the
major dust pulse (Fig. 3e and Supplementary Fig. 8d) was intrinsically
linked to regional vegetation change (Supplementary Fig. 8), thus
showing the coupling between ice-sheet growth (Supplementary
Fig. 8a), land-surface and ocean-atmosphere systems. Moreover, the
increased inland weathering and C4 expansion would have induced
additional feedbacks related to the carbon cycle54 (Supplemen-
tary Fig. 3e).

With respect to anthropogenic warming, the high-latitude
Northern Hemisphere shows a larger magnitude of warming than at
lower latitudes because of the polar amplification, while at the same
time a proposed slowdown of the AMOC is expected to result from
North Atlantic cooling and freshening55. Based on our Pliocene data
and modelling, these changes will likely cause counteracting impacts
on the mid-latitude westerlies, which has important implications for
future climate conditions across the Northern Hemisphere. A com-
prehensive understanding of these processes regarding large-scale
climate system feedbacks, atmospheric circulation, and dust produc-
tion is necessary to better represent these components of the climate
system in climate models to provide improved projections of future
climate change.

Methods
Core locations and age models
ODPSite 1208 (36.1°N, 158.2°E, 3,346mwater depth) was drilled on the
Shatsky Rise in the western North Pacific56. We use a combined ago
model and linear interpolation between age tie points to determine
our sample ages. The age model18 is based on a benthic δ18O record
tuned to the LR04 benthic stack28 for the period of ca. 1.7−3.7Myr ago
and astronomically-tuned paleomagnetic reversal boundaries for the
remainder of our record to ca. 4.1Myr ago57.

Calculation of dust components from magnetic proxies
Diffuse Reflectance Spectroscopy (DRS) was measured for all samples
using a Cary 5000 ultraviolet-visible-infrared spectrometer equipped
with BaSO4 as the white standard. DRS data were transformed into the
Kubelka-Munk (K-M) remission function using:

FðRÞ= ð1� RÞ2=2R ð1Þ

where R is reflectance.
The band intensities for haematite and goethite from second

derivative curves of F(R) are defined as IHm and IGt, which are pro-
portional to the concentration of haematite and goethite58,59. Rock
magnetic properties were measured in the Centre for Marine Mag-
netism (CM2), Southern University of Science and Technology (China).

Our aeolian proxy is defined as RelHm+Gt, which is the sum of IHm
and IGt

22. To determine the input history of haematite and goethite at
ODP Site 1208, we derive the flux of RelHm+Gt using two different
approaches. The first uses the traditional method based on depth-age
tie-points via the equation:

Flux of RelHm+Gt =RelHm+Gt �DBD � LSR ð2Þ

where DBD represents dry bulk density and LSR stands for linear
sedimentation rate. DBD data are calculated by linear interpolation of

shipboard data56. The second approach utilizes the constant flux proxy
extra-terrestrial 3He:

Flux of RelHm+Gt =RelHm+Gt � MARCFP ð3Þ

where MARCFP is the vertical sediment mass accumulation rate, inde-
pendently of lateral sediment advection by bottom currents and age
model tie-point interpolation13.

Geochemical and Pb isotopic analysis
Geochemical analysis of major and trace element concentrations was
performed on the siliciclastic fraction of a total of 191 sediment samples
fromODP Site 1208. After removal of organic matter, carbonate and Fe-
Mn oxides by treating with 10% H2O2 at 60 °C for 1 h and 0.5N HCl at
60 °C for 2h, respectively, the sediments were rinsed with deionized
water three times and dried at 80 °C before grinding into powder. The
pre-treated sediments were then digested by a mixture of concentrated
HF, HNO3, and HClO4 in Teflon vessels for elemental analysis. Major and
trace element concentrations were determined at the Qingdao Sparta
Analysis & Test Co., Ltd., using a Varian 720ES ICP-OES and a Thermo
ScientificTM iCAPQ ICP-MS, respectively. Several USGS and Chinese rock
and sediment standards (BHVO-2, GBW07315 andGBW07316), as well as
procedural blanks, were repeatedly digested and analysed in parallel
with the samples to monitor the quality of ICP-MS and ICP-AES mea-
surements. The results are generally within the range of ±6% of the
certified values. The analytical precision is generally better than 3% for
major elements and 5% for the trace elements.

We assess the chemical weathering intensity of the source
sediments via the chemical index of alteration (CIA). The CIA is based
on the relative mobility of Na, K, and Ca in aqueous fluids, compared
to immobile Al that tends to be concentrated in the residues of
weathered rocks60. CIA is calculated as follows: CIA = [Al2O3/
(Al2O3 + CaO* +Na2O + K2O)] × 100 (ref. 61). CaO* represents the cal-
cium content from the silicate fraction of the terrigenous sediments,
which had been corrected for calcium phosphate and calcium car-
bonate contents in this study.

Pb isotopic compositions of the silicate fractions from ODP Site
1208 samples were measured following digestion with a mixture of
distilled HF andHNO3 and purification using conventional ion-exchange
chromatography. Isotopic analysis was performed using a Nu Instru-
ments multi-collector ICP-MS housed at the State Key Laboratory of
Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese
Academy of Sciences. Internal analytical uncertainty was estimated
based on repeatedmeasurements of the Pb referencematerial NIST 981,
using Tl-doping for mass bias correction62, yielding an internal repro-
ducibility better than 200ppm/amu for Pb isotopic ratios. Repeated
analyses of the USGS rock reference material W-2a gave a reproduci-
bility of 206Pb/204Pb = 16.946±0.001, 207Pb/204Pb = 15.506 ±0.001,
208Pb/204Pb = 36.745 ±0.001 (2sd, n =30).

Climate model and simulations
Mode 1 simulations. To contextualize and improve our understanding
of the proxy results ca. 3.6Myr ago, we use a set of Pliocene climate
simulations reported in Otto-Bliesner et al. 34. This set of simulations
was conducted with the Community Climate System Model version 4
(CCSM4)63, which has fully coupled atmosphere (Community Atmo-
sphere Model, version 4, CAM4), land (Community Land Model, ver-
sion 4, CLM4), ocean (Parallel Ocean Program, version 2, POP2), and
sea ice (Community Sea IceModel, version 4, CICE4) components. The
atmosphere and land components were run at a 0.9° × 1.25° horizontal
resolution, and the ocean and sea ice components were run with a
common grid of 320 × 384 points. The baseline simulation follows the
PlioMIP1 forcing protocol, with atmospheric CO2 of 405 ppmv (parts
per million by volume) and the Pliocene Research, Interpretation, and
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Synoptic Mapping, version 3 (PRISM3) boundary conditions. Notably,
PRISM3 includes an open Bering Strait (BS) and Canadian Archipelago
Straits (CA)64, both of which have since been changed to closed in the
updated PRISM4 Pliocene topography65,66.

In this study, we use two of the Arctic gateway sensitivity tests
reported in Otto-Bliesner et al.34, including (1) open BS + closed CA,
and (2) closedBS + closedCA to test the hypothesis that the openingof
the Bering Strait in the late Pliocene strengthens thewesterly winds. By
comparing the differences between the climate outputs of the two
simulations, we can assess the impact of opening/closing of the Bering
Strait on global climate. The simulations show that Bering Strait
opening as early as 5.5Ma enables the transport of relatively fresh
North Pacific waters to the North Atlantic, which weakens AMOC by
freshening North Atlantic surface waters (Supplementary Fig. 4). This
weakening of the AMOC, in turn, leads to a reduction in poleward heat
transport and thus a steepened meridional temperature gradient
(Supplementary Fig. 4). Because westerly wind intensity is strongly
controlled by the meridional temperature gradient, a steepened tem-
perature gradient is responsible for intensified the westerly winds as
simulated (Fig. 4). Our model results provide a physical mechanism to
explain our proxy data reconstructions which show increased dust
transport associated with Mode 1 during the mid-Pliocene.

Mode2 simulations. Climate simulations used to understandMode 2 of
late Pliocene climate change were performed using the Institute Pierre
Simon Laplace atmosphere–ocean coupled general circulation model,
IPSL-CM5A. The atmosphere component in this AOGCM is the LMDZ5A
and theORCHIDEE land-surfacemodel with a resolution of 3.75° x 1.875°
and 39 vertical layers. The oceanmodel is NEMOv3.2, which includes the
ORCA2.3 ocean configuration and uses a tri-polar global grid. More
details about the IPSL-CM5Amodel can be found in Dufresne et al. 67. In
this study, three climate simulations were performed, namely the
“PlioMIP1”, “MISM2”, and “iNHG” simulations. “PlioMIP1”was performed
based on the PRSIM3D boundary conditions68,69, whereas “MIS M2” was
performed by adding different driving factors based on the equilibrated
state of “PlioMIP1” in order to represent the onset of MIS M2. Specifi-
cally, changes in the Central American seaway, lowering of pCO2 from
400 ppmv to 220 ppmv, different orbital parameters ca. 3.313Myr ago,
altered vegetation (replacing boreal biomes north of 50°N with tundra
biomes based on the PRISM3D vegetation map70), and ice-sheet growth
were taken into account in this simulation (see Tan et al.3. for more
details). The “iNHG” simulation was performed using the “PlioMIP 1”
palaeogeography, but with a Last Glacial Maximum (LGM) ice-sheet
configuration and orbital parameters corresponding to 2.601Myr ago
(for more details, see Tan et al.4).

Data availability
Source data are provided with this paper. The data generated in this
study have been deposited in the https://doi.org/10.5281/zenodo.
10633222.

Code availability
The information for the applied climate model IPSL-CM5A can be
found in the IPSL Climate Modelling Centre Wiki page (http://forge.
ipsl.jussieu.fr/igcmg) and in Dufresne et al.67. Since this version has
been updated to a new version, the code of this model is not publicly
available, and might be available on quest to the IPSL group. The
information for the Community Climate System Model (CCSM4) can
be found in (https://www.cesm.ucar.edu/models/ccsm). CCSM4 is now
a subset of Community Earth System Model (CESM 1.0). The CCSM4
code base is frozen, and all future model updates will come from the
CESM1.0 code base. Figures were plotted with the NCAR Command
Language (version NCL 6.4.0). Information on NCL is available at
https://www.ncl.ucar.edu/.
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