Table 2.
Evaluation metric | Penalized Logistic Regression | Classification and regression trees | Random Forest | eXtreme Gradient Boosting |
---|---|---|---|---|
Train set | ||||
AU-ROC* | 0.730 | 0.690 | 0.709 | 0.728 |
Test set | ||||
AU-ROC* | 0.731 | 0.692 | 0.707 | 0.730 |
AU-PRC** | 0.759 | 0.687 | 0.711 | 0.760 |
Accuracy | 0.673 | 0.670 | 0.666 | 0.668 |
Specificity | 0.563 | 0.562 | 0.527 | 0.522 |
Sensitivity | 0.762 | 0.758 | 0.778 | 0.785 |
Precision | 0.684 | 0.682 | 0.671 | 0.671 |
F1 score | 0.721 | 0.718 | 0.721 | 0.723 |
*AU-ROC, Area Under the Receiver Operating Characteristic curve.
**AU-PRC, Area Under the Precision-Recall curve.