
D I A B E T E S  &  M E T A B O L I S M  J O U R N A L

Associations of Ultra-Processed Food Intake with Body Fat and 
Skeletal Muscle Mass by Sociodemographic Factors 
Sukyoung Jung, Jaehee Seo, Jee Young Kim, Sohyun Park
Diabetes Metab J 2024;48:780-789 | https://doi.org/10.4093/dmj.2023.0335

Highlights
 • �Increased UPF intake was associated with higher adiposity (percent body fat).
 • Increased UPF intake linked to lower percent skeletal muscle mass.
 • These associations were stronger in rural residents and low-educated individuals.
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Background: The effects of excessive ultra-processed food (UPF) consumption on body composition measures or sociodemo-
graphic disparities are understudied in Korea. We aimed to investigate the association of UPF intake with percent body fat (PBF) 
and percent appendicular skeletal muscle mass (PASM) by sociodemographic status in adults.
Methods: This study used data from the Korea National Health and Nutrition Examination Survey 2008–2011 (n=11,123 aged 
≥40 years). We used a NOVA system to classify all foods reported in a 24-hour dietary recall, and the percentage of energy intake 
(%kcal) from UPFs was estimated. PBF and PASM were measured by dual-energy X-ray absorptiometry. Tertile (T) 3 of PBF in-
dicated adiposity and T1 of PASM indicated low skeletal muscle mass, respectively. Multinomial logistic regression models were 
used to estimate odds ratios (OR) with 95% confidence interval (CI) after adjusting covariates.
Results: UPF intake was positively associated with PBF-defined adiposity (ORper 10% increase, 1.04; 95% CI, 1.002 to 1.08) and low PASM 
(ORper 10% increase, 1.05; 95% CI, 1.01 to 1.09). These associations were stronger in rural residents (PBF: ORper 10% increase, 1.14; 95% CI, 1.06 
to 1.23; PASM: ORper 10% increase, 1.15; 95% CI, 1.07 to 1.23) and not college graduates (PBF: ORper 10% increase, 1.06; 95% CI, 1.02 to 1.11; 
PASM: ORper 10% increase, 1.07; 95% CI, 1.03 to 1.12) than their counterparts.
Conclusion: A higher UPF intake was associated with higher adiposity and lower skeletal muscle mass among Korean adults 
aged 40 years and older, particularly in those from rural areas and with lower education levels.
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INTRODUCTION

It is well established that obesity is a strong predictor of a range 
of health problems and premature deaths in adults [1], and 
there has been a rising trend worldwide, including in Korea 
[2,3]. More importantly, changed body composition, charac-
terized by elevation in body fat and redistributing fat into ab-
dominal region (adiposity) and loss of skeletal muscle mass 
and related loss of muscle strength and performance (sarcope-
nia), is associated with an increased risk of cardiovascular dis-

eases, metabolic syndrome, and diabetes [4]. Body composi-
tion has been assessed directly through medical imaging mo-
dalities (e.g., dual-energy X-ray absorptiometry [DEXA], com-
puted tomography [CT], and magnetic resonance imaging 
[MRI]) or indirectly through impedance analysis and anthro-
pometrics [5]. Among them, the body mass index (BMI) and 
waist circumference (WC) have been most commonly used [5]; 
however, they overlook the balance between body compart-
ments (body fat and skeletal muscle), which are of great impor-
tance in health [4]. DEXA can quantify body composition 
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more accurately than anthropometrics and is more feasible 
than CT or MRI [5].

Considering the fact that unfavorable changes in body com-
position are a diet-related chronic condition, it is preventable 
by following a healthy diet [6]. In recent years, ultra-processed 
foods (UPFs) have received extensive attention due to their ris-
ing consumption and related negative health impacts [7]. 
NOVA classification, the most prominent method of food clas-
sification based on food processing levels, defines UPFs as be-
ing often energy-dense, low in some important nutrients, and 
high in sugar, unhealthy fat, and salt [8]. Collective evidence 
from meta-analyses showed that higher UPF intake is linked 
with a 1.26- to 1.55-fold increased risk of obesity; however, 
most individual studies used the BMI to define obesity [9,10].

A few studies have measured body fat and/or lean body mass 
using DEXA and examined its association with UPF intake, 
but no consistent findings are available. A study using a Span-
ish older population showed a positive association between 
UPF intake and overweight, obesity, or metabolic syndrome 
[11]; another study using Brazilian young adults aged 23 to 25 
showed that higher UPF intake was associated with higher 
percent body fat (PBF) in both males and females, but lower 
percent lean body mass only in females [12]; and one study us-
ing Korean adults focused on whether overall diet quality me-
diates the association between UPF intake and body composi-
tion and reported a null association between UPF intake and 
DEXA-measured visceral fat mass [13].

Furthermore, sociodemographic disparities in UPF intake 
have been reported in several studies [14-19]. Although such 
disparities vary by country, the important message is that there 
are more vulnerable subgroups to UPF intake and related 
health outcomes. For example, males, younger adults, and ur-
ban residents are more likely to consume UPFs [18], and the 
prevalence of obesity in these groups is higher than in their 
counterparts [20]. However, no study has yet examined the 
possible differences in associations between UPF intake and 
body composition measurements among different sociodemo-
graphic statuses in Korea.

Considering the above, this study aimed to examine the as-
sociation of UPF intake with DEXA-measured PBF and per-
cent appendicular skeletal muscle mass (PASM), as well as 
whether such associations differ by sociodemographic factors 
among Korean adults aged 40 years and older using data from 
the Korea National Health and Nutrition Examination Survey 
(KNHANES) 2008 to 2011.

METHODS

Study population
The KNHANES is a nationally representative and cross-sec-
tional study performed since 1998 by the Korea Disease Con-
trol and Prevention Agency for monitoring the health and nu-
tritional status of the civilian non-institutionalized population 
in Korea. For representativeness, a complex and multistage 
probability sampling design is utilized. KNHANES data collec-
tion components vary by survey cycle; however, it generally 
consists of three surveys: health interview surveys, health ex-
amination surveys, and nutrition surveys. More details of the 
KNHANES have been described on the KNHANES website 
(https://knhanes.kdca.go.kr/knhanes/main.do).

Among 11,530 adults aged 40 years and older who partici-
pated in all three surveys and DEXA examination between 
2008 and 2011, we excluded participants if they had the follow-
ing conditions: being pregnant or lactating (n=2); missing or 
implausible energy intakes (<500 or >5,000 kcal) (n=157); 
missing information on covariates (n=248). The final analytic 
sample included 11,123 adults (4,589 males and 6,534 females) 
(Supplementary Fig. 1).

Assessment of exposure: ultra-processed food intake
Each participant’s dietary data was obtained using a 24-hour 
dietary recall interview in their homes 1 week after the health 
interviews and examinations. Participants reported the de-
scription, quantity (in units of volume), and time and place of 
eating all foods and beverages consumed in the previous 24 
hours. The multiple-pass approach was applied to obtain an 
accurate food recall with the assistance of standard measuring 
tools. The 7th Edition of the Korean Food Composition Table 
of the Rural Development Administration [21] was used to es-
timate daily intakes of total energy and nutrients, which are 
publicly available on the KNHANES website.

Food classification using NOVA system
All consumed items at the food or ingredient level were classi-
fied by two investigators (S.J. and J.Y.K.) into one of the four 
NOVA food groups: unprocessed or minimally processed foods 
(group 1), processed culinary ingredients (group 2), processed 
foods (group 3), and UPFs (group 4) [8]. This study focused on 
UPFs, which are defined as “formulations of food substances 
often modified by chemical processes and then assembled into 
ready-to-consume hyper-palatable food and drink products us-
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ing flavours, colours, emulsifiers and a myriad of other cosmet-
ic additives [8].” Some examples of UPFs are mass-produced 
and packaged bread, biscuits, burgers, cakes, cookies, chocolate, 
candies, dumplings, ice cream, nuggets, noodles, sugar-sweet-
ened beverages, pre-prepared dishes, and sausages.

Applying the principle suggested by Monteiro et al. [8], we 
first identified the main ingredients of the food and classified 
them into either group 3 or group 4, depending on the extent 
and purpose of food processing, with a focus on the mainte-
nance of the food matrix. For example, if someone consumed 
seven individual foods (bread, fried eggs, strawberry, chocolate 
milk, steak, banana, and sausage) during the past 24 hours, 
then each was classified as follows: minimally processed (straw-
berry and banana), processed (fried eggs and steak), or ultra-
processed (bread, chocolate milk, and sausage) using a 5-digit 
food code. Some dish-based Korean cuisine is difficult to ex-
plicitly classify as one type because it is combined with many 
different specific ingredients. In such cases, we additionally 
considered traditional eating experiences and the preservation 
of natural foods’ matrix [22]. After classification, the percentage 
of calories (%kcal) that came from each NOVA group was esti-
mated. The main exposure in our study was UPF intake (as % 
kcal from UPFs).

Assessment of outcomes: body composition
Body composition was measured by DEXA (Discovery-W fan-
beam densitometer, Hologic Inc., Marlborough, MA, USA). 
Two body composition measures are the main outcomes of in-
terest in this study: PBF (total body fat [kg]/weight×100) and 
PASM (weight-adjusted appendicular skeletal muscle mass 
[ASM], ASM/weight×100). For further analyses, these body 
composition measures were each scaled to their sex-specific 
tertile distributions, with tertile 3 of PBF indicating adiposity 
(≥24.5% for males; ≥36.0% for females) and tertile 1 of PASM 
indicating low skeletal muscle mass (<30.7% for males; 
<24.1% for females).

Assessment of covariates
Covariates included age (years), sex (male or female), residential 
area (urban or rural), education level (college graduate or not), 
monthly household income (quartiles of equivalized household 
income), marital status (married or not), current smoking (yes 
or no), current drinking (yes or no), walking exercise (yes or 
no), weight training (yes or no), and total energy intake (kcal/
day).

Statistical analysis
For categorical analysis, UPF intake was divided into quartile 
groups. General characteristics of the study participants were 
presented as the weighted means and their standard errors 
(SEs) for continuous variables and the weighted prevalence 
and their SEs for categorical variables by UPF intake quartiles. 
To determine the significance of differences in general charac-
teristics between UPF intake quartiles, we used an analysis of 
variance for continuous variables and a chi-square test for cat-
egorical variables, respectively.

We tested departure from a linear association of UPF intake 
with PBF and PASM using the restricted cubic spline model 
fitting with three knots (5th, 50th, and 95th percentiles) [23]. 
The adjusted differences in two body composition measures 
were estimated by using the median of the lowest UPF intake 
quartile (1.6% kcal from UPF) as a reference. There was no evi-
dence of a nonlinear association of UPF intake with both PBF 
and PASM (P for nonlinearity=0.20 for PBF; P for nonlineari-
ty=0.37 for PASM) (Supplementary Fig. 2).

As categorical analyses, multinomial logistic regression mod-
els were used to estimate the covariate-adjusted odds ratios 
(ORs) and 95% confidence intervals (CIs) for higher PBF (ter-
tiles 2 and 3) and lower PASM (tertiles 1 and 2), comparing 
quartiles 2, 3, and 4 with quartile 1 of UPF intake. As continu-
ous analyses (potential linear trends), a 10% increase in UPF 
intake was used to estimate ORs for higher PBF or lower PASM 
in multinomial logistic regression models. A multivariable-ad-
justed model included age, sex, residential area, education level, 
monthly household income level, marital status, current smok-
ing, current drinking, walking exercise, weight training, and to-
tal energy intake. We further conducted stratified analyses to 
examine whether the association of UPF intake with PBF-de-
fined adiposity and low skeletal muscle mass varied across age 
(<65 or ≥65 years), sex (male or female), residential area (ur-
ban or rural), education level (≥college graduate or <college 
graduate), and income level (quartile 4 or quartiles 1 to 3).

Sample weights were incorporated for all analyses to account 
for the complex sampling design of the KNHANES using 
PROC SURVEY procedures in SAS software version 9.4 (SAS 
Institute Inc., Cary, NC, USA). The level of significance was set 
at 0.05 with a two-sided test.

Ethics statement
KNHANES was approved by the Korea Disease Control and 
Prevention Agency ethics review board. All participants gave 
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written informed consent before participation in KNHANES, 
and all survey data were anonymized before analysis. Our study 
protocol was approved by the Institutional Review Board of 
Hallym University (HIRB-2021-087-R-CR).

RESULTS

Participant characteristics
Table 1 shows the characteristics of participants by UPF intake 
quartiles. Among 11,123 participants, the median %kcal from 

UPFs was 1.6% in quartile 1 and 40.7% in quartile 4. A higher 
UPF intake was associated with younger age, urban residency, 
higher education, higher household income, not being married, 
current smoking, current drinking, less walking, more weight 
training, higher intakes of energy, protein, and fat, and lower 
carbohydrate intake.

UPF intake in relation to PBF and PASM
The associations between UPF intake and PBF as well as PASM 
are shown in Fig. 1. When UPF intake was treated categorical-

Table 1. Demographic and lifestyle characteristics of study participants according to ultra-processed food intake (n=11,123)

Characteristic
UPF intake quartiles

P valuea

Q1 (n=2,780) Q2 (n=2,781) Q3 (n=2,782) Q4 (n=2,780)
Median UPF intake, %kcal/day 1.6 9.9 22.0 40.7
Demographic

Age, yr 59.7±0.3 56.4±0.3 54.2±0.3 51.9±0.2 <0.0001
Age group, ≥65 years 35.8±1.2 26.5±1.0 18.1±0.8 12.6±0.7 <0.0001
Female sex 53.8±1.2 52.1±1.2 51.1±1.2 51.1±1.2 0.4158
Rural residents 30.3±2.4 25.9±2.2 25.4±2.4 22.5±2.3 0.0001

Socioeconomic
Education level

Less than college graduate 88.3±1.0 81.4±1.1 76.8±1.3 74.8±1.4 <0.0001
College graduate or above 11.7±1.0 18.6±1.1 23.2±1.3 25.2±1.4

Household income
Q1 32.6±1.3 22.8±1.1 16.7±1.0 14.9±0.9 <0.0001
Q2 25.1±1.3 25.4±1.1 25.0±1.3 24.3±1.2
Q3 21.9±1.2 26.8±1.2 28.8±1.2 28.2±1.2
Q4 20.4±1.3 25.0±1.3 29.4±1.4 32.6±1.5

Married 98.6±0.3 98.8±0.3 98.6±0.3 97.6±0.4 0.0387
Lifestyle

Current smoking 15.4±0.9 20.8±1.0 23.0±1.1 26.9±1.2 <0.0001
Current drinking 56.6±1.2 66.8±1.1 71.9±1.1 78.2±0.9 <0.0001
Walking exerciseb 47.2±1.3 44.0±1.3 39.0±1.2 39.5±1.1 <0.0001
Weight trainingc 18.3±1.1 21.8±1.1 22.5±1.1 23.3±1.0 0.0057

Diet
Energy, kcal/day 1,702±18 1,818±19 1,951±18 2,095±20 <0.0001
Carbohydrate, %kcal/day 75.1±0.2 71.7±0.3 69.6±0.3 68.6±0.2 <0.0001
Protein, %kcal/day 13.5±0.1 14.3±0.1 14.5±0.1 14.3±0.1 <0.0001
Fat, %kcal/day 11.4±0.2 14.0±0.2 15.9±0.2 17.1±0.2 <0.0001

Values are presented as mean±standard error.
UPF, ultra-processed food.
aP values for differences by UPF intake quartiles were obtained using general linear models for continuous variables and Rao-Scott chi-square tests 
for categorical variables, bWalking exercise was defined as walking more than 5 days a week for at least 30 minutes per session, cWeight training 
was defined as weight training more than 2 days a week. 
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Fig. 1. Associations of ultra-processed food (UPF) intake with percent body fat defined adiposity and low skeletal muscle mass. 
Multinomial logistic regression models were used to estimate odds ratios (ORs) and their corresponding 95% confidence intervals 
(CIs) for the tertile (T) 3 of percent body fat and the T1 of percent appendicular skeletal muscle mass (ASM) comparing quartile (Q) 
2, 3, and 4 to Q1 of UPF intake as the exposure variables (T3 of percent body fat: ≥24.5% for male, ≥36.0% for female; T1 of percent 
ASM: <30.7% for male, <24.1% for female). P for trends was determined by treating the median value of UPF intake as a continu-
ous variable using multinomial logistic regression models. A 10% increase in UPF intake was used to estimate ORs for higher adi-
posity or lower ASM. A multivariable-adjusted model was adjusted for age, sex, residential area, education level, monthly household 
income level, marital status, current smoking, current drinking, walking exercise, weight training, and total energy intake. 

UPF intake group No. of cases (%)   OR (95% CI) OR per 10% kcal increase

Percent body fat 
T2 vs. T1 Q1 (n=2,780)

Q2 (n=2,781)
Q3 (n=2,782)
Q4 (n=2,780)

896 (32.5)
916 (34.4)
956 (33.3)
902 (34.4)

1.00 (reference)
0.89 (0.75–1.06)
0.95 (0.80–1.13)
1.05 (0.88–1.25)

1.03 (0.99–1.06)

T3 vs. T1 Q1 (n=2,780)
Q2 (n=2,781)
Q3 (n=2,782)
Q4 (n=2,780)

957 (35.7)
895 (31.0)
954 (35.0)
976 (34.7)

1.00 (reference)
0.73 (0.62–0.87)
0.97 (0.82–1.15)
1.07 (0.89–1.28)

1.04 (1.002–1.08)

Percent ASM
T2 vs. T3 Q1 (n=2,780)

Q2 (n=2,781)
Q3 (n=2,782)
Q4 (n=2,780)

891 (32.6)
896 (34.1)
927 (33.3)
926 (34.0)

1.00 (reference)
0.94 (0.79–1.12)
0.97 (0.82–1.16)
1.10 (0.92–1.31)

1.04 (1.00–1.08)

T1 vs. T3 Q1 (n=2,780)
Q2 (n=2,781)
Q3 (n=2,782)
Q4 (n=2,780)

977 (34.7)
911 (30.6)
910 (31.8)
934 (32.8)

1.00 (reference)
0.79 (0.67–0.93)
0.92 (0.78–1.09)
1.12 (0.94–1.33)

1.05 (1.01–1.09)

0.00	 1.00	 2.00
OR (95% CI)

Fig. 2. Associations of ultra-processed food (UPF) intake with percent body fat defined adiposity (A) and low skeletal muscle mass 
(B) by subgroups. Associations of ultra-processed food (UPF) intake with percent body fat defined adiposity and low skeletal mus-
cle mass by subgroups. Multinomial logistic regression models were used to estimate odds ratios (ORs) and their corresponding 
95% confidence intervals (CIs) for the tertile (T) 3 of percent body fat and the T1 of percent ASM comparing quartile (Q) 4 to Q1 
of UPF intake as the exposure variables (T3 of percent body fat: ≥24.5% for male, ≥36.0% for female; T1 of percent ASM: <30.7% 
for male, <24.1% for female). P for trends was determined by treating the median value of UPF intake as a continuous variable us-
ing multinomial logistic regression models. A 10% increase in UPF intake was used to estimate ORs for higher adiposity or lower 
appendicular skeletal muscle mass (ASM). A multivariable-adjusted model was adjusted for age, sex, residential area, education 
level, monthly household income level, marital status, current smoking, current drinking, walking exercise, weight training, and 
total energy intake, except the corresponding subgroup variates.

       0.00        1.00        2.00
OR (95% CI)

Percent body fat (tertile 3 vs. tertile 1) Percent ASM (tertile 1 vs. tertile 3)

       0.00        1.00        2.00
OR (95% CI)

A B

Subgroup No. of cases (%) OR (95% CI): Q4 vs. Q1 OR per 10% increase

Age, yr
   <65 (n=7,381)
   ≥65 (n=3,742)

723 (33.3)
253 (44.3)

1.03 (0.83–1.29)
1.37 (0.99–1.88)

1.05 (1.00–1.09)
1.07 (1.00–1.15)

Sex
   Male (n=4,589)
   Female (n=6,534)

417 (37.2)
559 (32.3)

1.31 (1.00–1.71)
1.02 (0.81–1.29)

1.08 (1.02–1.14)
1.03 (0.98–1.07)

Area
   Urban (n=7,690)
   Rural (n=3,433)

756 (34.0)
220 (37.0)

0.92 (0.74–1.13)
1.74 (1.22–2.49)

1.01 (0.97–1.05)
1.14 (1.06–1.23)

Education
   College+ (n=1,819)
   <College (n=9,304)

220 (36.6)
756 (34.1)

1.01 (0.65–1.56)
1.33 (1.08–1.64)

1.10 (1.01–1.20)
1.06 (1.02–1.11)

Income
   High (Q4) (n=2,698)
   Low (Q1-Q3) (n=8,425)

274 (32.5)
702 (35.7)

0.90 (0.62–1.30)
1.13 (0.92–1.39)

1.04 (0.96–1.12) 
1.04 (0.998–1.09)

Subgroup No. of cases (%) OR (95% CI): Q4 vs. Q1 OR per 10% increase

Age, yr
   <65 (n=7,381)
   ≥65 (n=3,742)

679 (31.2)
255 (43.3)

1.13 (0.93–1.39)
1.28 (0.94–1.74)

1.07 (1.02–1.11)
1.05 (0.98–1.12)

Sex
   Male (n=4,589)
   Female (n=6,534)

395 (33.8)
539 (31.8)

1.18 (0.91–1.53)
1.14 (0.92–1.43)

1.07 (1.01–1.13)
1.05 (1.00–1.10)

Area
   Urban (n=7,690)
   Rural (n=3,433)

716 (31.8)
218 (36.1)

0.95 (0.78–1.17)
1.75 (1.23–2.48)

1.02 (0.98–1.07)
1.15 (1.07–1.23)

Education
   College+ (n=1,819)
   <College (n=9,304)

198 (32.0)
736 (33.0)

0.97 (0.63–1.48)
1.40 (1.14–1.72)

1.11 (1.02–1.21)
1.07 (1.03–1.12)

Income
   High (Q4) (n=2,698)
   Low (Q1-Q3) (n=8,425)

255 (30.1)
679 (34.0)

0.93 (0.64–1.34)
1.18 (0.97–1.43)

1.03 (0.95–1.12)
1.06 (1.02–1.10)



Ultra-processed foods and body composition

785Diabetes Metab J 2024;48:780-789 https://e-dmj.org

ly, after adjusting for demographic and lifestyle covariates, UPF 
intake had a suggestive positive association with odds of hav-
ing PBF-defined adiposity (OR Q4 vs. Q1, 1.07; 95% CI, 0.89 to 
1.28) and with odds of having low PASM (OR Q4 vs. Q1, 1.12; 95% 
CI, 0.94 to 1.33). When UPF intake was treated continuously, a 
per 10% kcal increase in UPF intake was associated with a 4% 
higher odds of having PBF-defined adiposity (OR, 1.04; 95% 
CI, 1.002 to 1.08) and a 5% higher odds of having low PASM 
(OR, 1.05; 95% CI, 1.01 to 1.09).

Subgroup analysis
Fig. 2 shows the stratified associations of UPF intake with PBF-
defined adiposity and low PASM according to sociodemograph-
ic factors. Although there were differences in statistical signifi-
cance, ORs per 10% kcal increase in UPF intake for higher PBF 
between age or sex subgroups were not remarkably different 
(<65 years 1.05 vs. ≥65 years 1.07; males 1.08 vs. females 1.03). 
Similar trends were observed for lower PASM (<65 years 1.07 
vs. ≥65 years 1.05; males 1.07 vs. females 1.05). When stratified 
by residential area, UPF intake was positively associated with 
both PBF-defined adiposity and low PASM in rural residents 
but not in urban residents (urban vs. rural residents: 1.01 vs.  
1.14 for higher PBF; 1.02 vs. 1.15 for lower PASM). In education-
stratified analyses, adults with less than a college degree had 
positive associations with PBF-defined adiposity (OR Q4 vs. Q1, 
1.33; 95% CI, 1.08 to 1.64; ORper 10% increase, 1.06; 95% CI, 1.02 to 
1.11), but those with a college degree or higher had positive as-
sociations only when UPF intake was treated continuously 
(OR Q4 vs. Q1, 1.01; 95% CI, 0.65 to 1.56; ORper 10% increase, 1.10; 95% 
CI, 1.01 to 1.20). Similar trends were observed for the associa-
tion between UPF intake and low PASM (<college graduate: 
OR Q4 vs. Q1, 0.97; 95% CI, 0.63 to 1.48; ORper 10% increase, 1.11; 95% 
CI, 1.02 to 1.21; ≥college graduate: OR Q4 vs. Q1, 1.40; 95% CI, 
1.14 to 1.72; ORper 10% increase, 1.07; 95% CI, 1.03 to 1.12). ORs per 
10% kcal increase in UPF intake for higher PBF or lower 
PASM between income levels were not remarkably different.

DISCUSSION

In this nationally representative sample of Korean adults, high-
er %kcal from UPFs were associated with greater PBF (adipos-
ity) and lower PASM (low muscle mass) after controlling for 
sociodemographic and lifestyle variables. Residential-stratified 
analyses showed that a significant positive association of UPF 
intake with PBF-defined adiposity and low ASM was observed 

in rural residents but not in urban residents. Education-strati-
fied analyses showed that a stronger positive association of 
UPF intake with PBF-defined adiposity and low ASM was ob-
served in those with less than a college degree than those with 
a college degree or above. There were no substantial differences 
between age groups, sexes, or income levels.

There are purported mechanisms underlying UPF intake and 
adiposity. First, it is related to food choice. Relatively low pric-
ing due to inexpensive ingredients, attractive packaging, and 
the hyperpalatability of UPFs might promote excessive UPF 
consumption, which increases total energy intake and adiposity 
[24]. Second, it is related to food composition (e.g., nutrients, 
food texture, added sugar, fat, and salt, energy density, artificial 
sweeteners, and additives) [24]. For example, unfavorable pro-
files of nutrients may increase oxidative stress and inflamma-
tion in adipose tissue (added sugar, folate) [25,26], stimulate li-
pogenesis, leading to visceral adipocyte hypertrophy (vitamin 
C, fiber) [27,28], and inhibit thermogenesis (iron, fiber) [28,29]. 
Indeed, our study participants in the highest UPF quartile con-
sumed lower amounts of most nutrients (e.g., fiber, iron, vita-
min C, etc.) than those in the lowest quartile (Supplementary 
Table 1). Thus, the given mechanisms may explain the positive 
association between UPF intake and adiposity in our study. 
Lastly, it is related to digestive processes. For example, industrial 
processing may disrupt food matrices, which leads to reduced 
effort in oral processing, decreased oral transit time, and an in-
creased eating rate [24,30].

We observed a positive association between UPF intake and 
adiposity, which has been well supported by previous studies 
based on meta-analysis or review of observational studies [9-
11,31,32], a randomized controlled trial [33], or a cross-sec-
tional design [13,34,35]. Despite consistent findings, it should 
be noted that most studies employ anthropometric measure-
ments to define adiposity (e.g., BMI and WC), which are sim-
ple to use but only surrogates of visceral adiposity [5]. Espe-
cially, the correlation between BMI and visceral adipose tissue 
was fairly low, and it was weaker in certain racial groups [5]. A 
previous study using data from both Korea and the United 
States showed that BMI may not be an accurate measure of ad-
iposity in Korean adults compared to United States adults [36]. 
A possible explanation is that Asians tend to show relatively 
higher PBF with low BMI patterns [37], and especially the Ko-
rean population showed a narrower range of BMI than the 
United States population [36]. Thus, it may be more reliable to 
use DEXA-measured adiposity, particularly when targeting 
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Koreans.
To date, there are three studies that used DEXA to measure 

adiposity and examined the association with UPF intake but 
did not show consistent findings. A longitudinal study using 
Spanish adults aged 55 to 75 revealed that a higher UPF intake 
is associated with greater visceral fat and total fat accumula-
tion, irrespective of sex [11]. In a study using a birth cohort of 
healthy Brazilian adults aged 23 to 25 years, a higher UPF in-
take was associated with higher PBF, fat mass index, android 
fat, and gynoid fat, but it was associated with a lower percent 
lean body mass only in females [12]. Although the main objec-
tive is to examine the mediation role of overall diet quality in 
the association between UPF intake and adiposity, a study us-
ing Korean adults aged 30 to 64 years showed that a higher UPF 
intake is associated with a higher bioimpedance-measured PBF 
but not with DEXA-measured visceral fat mass [13]. We ob-
served positive associations of UPF intake with adiposity de-
fined by DEXA-measured PBF and low DEXA-measured mus-
cle mass but no association with BMI or WC (Supplementary 
Fig. 3).

The positive association of UPF intake with PBF and PASM 
was stronger in adults from rural areas and with lower educa-
tion levels in our study. The observed residential disparities may 
be explained by disparities in access to “premium” UPFs that 
could have a beneficial impact on adiposity between geographi-
cal areas. UPFs are not necessarily harmful because there are 
certain types of UPFs (plain yogurt, nutrient-rich granola, and 
UPFs with organic ingredients) that are highly processed but 
can be beneficial to health [38-40]. Large grocery stores are 
more prevalent in urban than rural areas, and they are likely to 
provide a broader selection of foods, including premium UPFs. 
Thus, access to premium UPFs may be more challenging for ru-
ral residents. It is possible that rural residents in our study may 
have consumed more conventional (unhealthy) UPFs than pre-
mium ones, despite consuming less UPFs than urban residents 
overall. The level of understanding of UPFs may explain the ob-
served education disparities. It is likely that increased knowl-
edge of nutritional quality and concern for health among people 
with higher education levels lead to valuing nutritional quality 
over convenience and taste in food choices [15,41]. Thus, peo-
ple with lower education levels may be more likely to choose 
unhealthy UPFs due to insufficient knowledge of traditional or 
premium UPFs and nutrition overall. Since premium UPFs are 
usually more expensive than conventional ones, individuals 
with lower socioeconomic levels are less likely to easily access 

premium UPFs than those with higher socioeconomic levels 
[19,42]. In the current NOVA classification system, it would be 
challenging to distinguish premium UPFs from other tradition-
al UPFs; thus, further studies need to address this issue.

Our study had important strengths. First, we used DEXA-
measured PBF as well as ASM as more reliable measurements  
of body composition than anthropometric measurements. Sec-
ond, to our knowledge, this is the first study showing a targeted 
analysis of the differential association of UPF intake with body 
fat and muscle mass according to several sociodemographic fac-
tors in a nationally representative sample of Korean adults. Our 
findings could urge policymakers to address this disparity and 
several public health strategies could be pursued, particularly 
targeting rural residents and people with lower education levels.

There are some limitations that should be noted as well. First, 
we cannot make a strong causal statement that consuming 
more UPFs is likely to lead to a higher incidence of obesity or 
low muscle mass because of the cross-sectional study design. 
Second, despite the use of standardized protocols, self-reported 
dietary intake is subject to underreporting issues and measure-
ment errors, and the use of a single 24-hour dietary recall may 
not fully capture an individual’s usual intake because of day-to-
day variation. Compared with the double-labeled water meth-
od, total energy intake estimated by a 24-hour dietary recall is 
12% underreported in Korean adults [43]. Furthermore, wom-
en living alone and with a lower education level are more likely 
to underreport than their counterparts [44]. Thus, cautious in-
terpretations are needed. Third, our study participants are Ko-
rean adults, limiting the generalizability of our study findings 
to other study settings (e.g., different races and ethnicities, ages, 
or locations). Fourth, there are uncontrolled confounders (e.g., 
unmeasured factors like genetic predisposition, knowledge of 
UPFs, food environment, or unknown factors) that may have 
affected the size and/or direction of the association. Finally, it is 
possible that individuals aware of adiposity may change their 
diet and avoid UPFs, leading to potential reverse causality and 
underestimating such associations.

In conclusion, Korean adults who consumed more UPFs 
may have higher odds of adiposity and low muscle mass than 
those who consumed fewer UPFs. These associations of UPF 
intake with adiposity and low muscle mass were stronger 
among adults from rural areas and with lower education levels 
than their counterpart. Although causality cannot be estab-
lished due to the cross-sectional design, our findings could be 
used as evidence to recommend limiting UPF intake for better 
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body composition. Further studies with a more advanced 
study design are required to support our results and establish a 
causal relationship that provides more definite evidence.
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Supplementary Table 1. Nutritional characteristics by ultra-processed food intake quartiles

Characteristic
UPF intake quartiles

P valuec

Q1 Q2 Q3 Q4

Nutrient densitya

Fiber, g 4.9±0.1 4.5±0.1 4.2±0.1 3.6±0.1 <0.0001

Calcium, mg 280.3±4.3 291.8±6.5 275.0±3.8 237.1±3.6 <0.0001

Phosphorous, mg 655.3±3.9 648.0±3.6 610.9±3.4 531.8±3.3 <0.0001

Iron, mg 8.7±0.2 9.0±0.2 8.2±0.1 7.0±0.2 <0.0001

Sodium, mg 2,612±44 2,685±40 2,595±32 2,539±32 0.0318

Potassium, mg 1,768±21 1,709±15 1,624±16 1,392±13 <0.0001

Vitamin A, μgRE 462.2±15.1 436.5±11.4 429.7±13.0 334.1±7.7 <0.0001

Carotene, μg 2,572±88 2,332±66 2,275±74 1,724±44 <0.0001

Vitamin B1, mg 0.64±0.01 0.66±0.01 0.65±0.01 0.60±0.01 <0.0001

Vitamin B2, mg 0.56±0.01 0.59±0.01 0.59±0.01 0.55±0.01 <0.0001

Niacin, mg 8.1±0.1 8.6±0.1 8.4±0.1 7.5±0.1 <0.0001

Vitamin C, mg 63.6±1.3 59.9±1.1 56.8±1.1 45.4±0.9 <0.0001

Food group intakeb

Grains 312.6±2.7 291.8±2.3 291.9±3.0 318.2±3.8 <0.0001

Potatoes 51.0±3.9 44.2±3.1 33.3±2.2 22.4±2.2 <0.0001

Sugars 5.0±0.2 7.9±0.3 8.9±0.4 7.6±0.4 <0.0001

Legumes 43.1±2.0 42.9±1.9 44.0±2.1 31.4±2.0 <0.0001

Nuts 4.9±0.7 7.1±1.9 4.2±0.7 1.7±0.8 0.0056

Vegetables 371.6±5.9 360.4±5.8 342.7±6.4 281.8±5.1 <0.0001

Mushrooms 4.9±0.5 3.8±0.4 4.3±0.5 2.5±0.3 0.0008

Fruits 242.2±15.2 208.8±9.4 179.7±8 107.2±6.1 <0.0001

Seaweeds 6.3±0.5 6.7±0.5 5.5±0.4 3.8±0.3 <0.0001

Meats 53.1±2.5 83.7±3.8 78.3±3.0 58.6±2.9 <0.0001

Eggs 11.2±0.7 16.1±1.0 16.8±0.8 17.6±0.9 <0.0001

Seafoods 50.5±2.1 55.3±2.1 57.1±2.3 47.8±2.2 0.0091

Dairy products 44.0±3.3 55.9±3.5 66.3±4.4 59.1±3.5 <0.0001

Values are presented as mean±standard error.
UPF, ultra-processed food; Q, quartile; μgRE, μg retinol equivalents. 
aNutrient density is expressed as each nutrient intake per 1,000 kcal, and values were obtained using the general linear model after adjusting for 
age and sex and weighted, bFood group intake is expressed as g/day, and values were obtained using the general linear model after adjusting for 
age, sex, and total energy intake and weighted, cP values for differences between quartile 1 and quartile 4 are determined using a two-sample t-
test. 
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Participants ≥40 years who have DEXA-
measured body composition data in 
KNHANES 2008–2011 (n=11,530)

Not pregnant and lactating
(n=11,528)

Complete and reliable dietary data
(n=11,371)

Final analytic sample
(n=11,123)

Pregnant or lactating
(n=2)

Incomplete 24 hours (n=11) or 
implausible total energy intake

(n=146)

Missing information on covariates  
(n=248)

Supplementary Fig. 1. Study participant flow chart, Korea National Health and Nutrition Examination Survey (KNHANES) 2008 
to 2011. DEXA, dual-energy X-ray absorptiometry.
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Supplementary Fig. 2. Adjusted differences in adiposity indicators by the percentage of energy intake (%kcal) from ultra-pro-
cessed foods (UPFs) (reference, 1.6%). (A) Differences in percent body fat by UPF intake. (B) Differences in percent appendicular 
skeletal muscle mass (ASM) by UPF intake. Multivariable linear regression models were used to estimate the adjusted differences 
(95% confidence intervals [CIs]) in percent body fat and percent ASM by the percentage of energy intake from UPFs after adjust-
ing for age, sex, residential area, education level, monthly household income level, marital status, current smoking, current drink-
ing, walking exercise, weight training, and total energy intake. 
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Supplementary Fig. 3. Comparison of the associations of ultra-processed food (UPF) intake with dual-energy X-ray absorptiom-
etry measured adiposity indicators and anthropometric adiposity indicators. Multinomial logistic regression models were used to 
estimate odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) for the tertile (T) 3 of percent body fat and the 
T1 of percent appendicular skeletal muscle mass (ASM) comparing quartile (Q) 2, 3, and 4 to Q1 of UPF intake as the exposure 
variables (T3 of percent body fat: ≥24.5% for male, ≥36.0% for female; T1 of percent ASM: <30.7% for male, <24.1% for female; 
T3 of body mass index: ≥25.0 kg/m2 for male, ≥25.1 kg/m2 for female; T3 of waist circumference: ≥88.8 cm for male, ≥84.7 cm 
for female). P for trends was determined by treating the median value of UPF intake as a continuous variable using multinomial 
logistic regression models. A 10% increase in UPF intake was used to estimate ORs for higher adiposity or lower ASM. A multi-
variable-adjusted model was adjusted for age, sex, residential area, education level, monthly household income level, marital sta-
tus, current smoking, current drinking, walking exercise, weight training, and total energy intake.

P trend
Percent body fat 

UPF intake quartiles No. of cases (%)   OR (95% CI) OR per 10% kcal increase

T3 vs. T1 Q1 (n=2,780)
Q2 (n=2,781)
Q3 (n=2,782)
Q4 (n=2,780)  

957 (35.7)
895 (31.0)
954 (35.0)
976 (34.7)

1.00 (reference)
0.73 (0.62–0.87)
0.97 (0.82–1.15)
1.07 (0.89–1.28)

0.02 1.04 (1.00–1.08)

Percent ASM
T1 vs. T3 Q1 (n=2,780)

Q2 (n=2,781)
Q3 (n=2,782)
Q4 (n=2,780)

977 (34.7)
911 (30.6)
910 (31.8)
934 (32.8)

1.00 (reference)
 0.79 (0.67–0.93)
0.92 (0.78–1.09)
1.12 (0.94–1.33)

0.02 1.05 (1.01–1.09)

Body mass index
T3 vs. T1 Q1 (n=2,780)

Q2 (n=2,781)
Q3 (n=2,782)
Q4 (n=2,780)

954 (34.9)
905 (32.9)
946 (36.1)
977 (35.9)

1.00 (reference)
0.84 (0.71–1.00)
0.98 (0.82–1.17)
0.95 (0.80–1.13)

0.72 1.01 (0.97–1.05)

Waist circumference
T3 vs. T1 Q1 (n=2,780)

Q2 (n=2,781)
Q3 (n=2,782)
Q4 (n=2,780)

1,017 (35.1)
924 (30.7)
947 (33.9)
908 (32.0)

1.00 (reference)
0.73 (0.62–0.86)
0.86 (0.72–1.02)
0.87 (0.73–1.03)

0.88 1.00 (0.97–1.04)

0.00	 1.00	 2.00
OR (95% CI)


