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�
 ABSTRACT 

Emerging evidence supports the important role of the tumor microbiome in 
oncogenesis, cancer immune phenotype, cancer progression, and treatment 
outcomes in many malignancies. In this study, we investigated the metastatic 
melanoma tumor microbiome and its potential roles in association with 
clinical outcomes, such as survival, in patients with metastatic disease treated 
with immune checkpoint inhibitors (ICI). Baseline tumor samples were col-
lected from 71 patients with metastatic melanoma before treatment with ICIs. 
Bulk RNA sequencing (RNA-seq) was conducted on the formalin-fixed, 
paraffin-embedded and fresh frozen tumor samples. Durable clinical benefit 
(primary clinical endpoint) following ICIs was defined as overall survival 
≥24 months and no change to the primary drug regimen (responders). We 
processed RNA-seq reads to carefully identify exogenous sequences using the 
{exotic} tool. The age of the 71 patients with metastatic melanoma ranged from 
24 to 83 years, 59% were male, and 55% survived >24 months following the 
initiation of ICI treatment. Exogenous taxa were identified in the tumor RNA- 
seq, including bacteria, fungi, and viruses. We found differences in gene 

expression and microbe abundances in immunotherapy-responsive versus 
nonresponsive tumors. Responders showed significant enrichment of bacte-
riophages in the phylum Uroviricota, and nonresponders showed enrichment 
of several bacteria, including Campylobacter jejuni. These microbes correlated 
with immune-related gene expression signatures. Finally, we found that models 
for predicting prolonged survival with immunotherapy using both microbe 
abundances and gene expression outperformed models using either 
dataset alone. Our findings warrant further investigation and potentially sup-
port therapeutic strategies to modify the tumor microbiome in order to im-
prove treatment outcomes with ICIs. 
Significance: We analyzed the tumor microbiome and interactions with 
genes and pathways in metastatic melanoma treated with immunotherapy 
and identified several microbes associated with immunotherapy response 
and immune-related gene expression signatures. Machine learning models 
that combined microbe abundances and gene expression outperformed 
models using either dataset alone in predicting immunotherapy responses. 
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Introduction 
Advances in immunotherapy, including immune checkpoint inhibitors 
(ICI), have transformed the standard of care for many types of cancer, 
including melanoma. Although ICIs have improved outcomes for patients 
with melanoma, many patients suffer from primary or secondary tumor 
resistance. For example, at 6.5 years, the overall survival (OS) rates with 
ipilimumab plus nivolumab, nivolumab, and ipilimumab were 49%, 42%, 
and 23%, respectively, as reported in the pivotal CheckMate 067 trial (1). 
Furthermore, mechanisms of resistance to immunotherapy remain poorly 
understood, and many treatments are associated with immune-mediated 
toxicities. Therefore, there is an urgent need to develop and improve bio-
markers predictive of benefit from ICI therapy. 

Numerous biomarkers that predict the response of melanoma to ICIs are 
under investigation, including those based on clinical characteristics, geno-
mics, transcriptomics, and epigenomics. For genomic data, these predictive 
biomarkers include tumor mutational burden (TMB; ref. 2), neoantigen load 
(3), genotypes of HLA-I (3, 4), T-cell repertoire (5), aneuploidy (also known 
as somatic copy number alterations; ref. 6), and germline variations (7). On 
the other hand, predictive biomarkers derived from transcriptomic data 
include tumor oncogene expression signatures, such as genes related to MYC 
(8), WNT/β-catenin (9, 10), or RAS (11) signaling; gene expression profiles 
within the tumor immune microenvironment (TIME), such as IFNγ- 
responsive genes (12), chemokines (13, 14), MHC classes I and II (15); and 
cytotoxic T-cell and effector T-cell (16, 17) gene expression markers that 
have been reported to be predictive of ICI response in metastatic melanoma. 
Unfortunately, the predictive power remains low. For example, in terms of 
prediction of ICI response, TMB, IFNγ-responsive gene signatures, or the 
combination of TMB and IFNγ gene signatures produce an area under the 
receiver operating characteristic (AUROC) curve of 0.60 to 0.84 in mela-
noma cohorts (18). 

Recently, high-throughput transcriptome-, genome-, or amplicon-based 
sequencing data demonstrated an abundance and variety of microbes’ 
nucleic acids inside tumors (8). In some cases, 100 of negative controls and 
paraffin-only blocks were sequenced to ensure a thorough understanding of 
the background signal and reagent contamination. Furthermore, the pres-
ence of microbes has been validated using FISH and IHC (19). The microbes 
showed cancer specificity (9, 12, 13), and blood-based measurements could 
predict early-stage disease. These findings suggest that microbes observed in 
high-throughput sequencing data may also correlate with treatment outcomes. 
Recent efforts to use these microbes as biomarkers showed that although 
generally less predictive of prognosis than gene expression, when combined 
with gene expression, they increase the predictive power (20). Furthermore, the 
tumor microbiome was predictive of chemotherapy response. 

Here, we describe the use of tumor RNA sequencing (RNA-seq) to predict 
response to ICIs in patients with melanoma (Fig. 1). We demonstrate the 
presence of microbes within tumors and show different microbial commu-
nities in patients whose tumors responded to treatment. We predict treat-
ment response using human gene expression patterns that perform similarly 
to other ICI response prediction efforts. Finally, we show how the presence 
of microbes correlates with these signatures, suggesting an interaction with 
the immune system, and how including tumor microbes in these models 
improves their predictive accuracy. 

Materials and Methods 
Study design 
Established in 2014, the Oncology Research Information Exchange Network 
(ORIEN) is an alliance of 18 US cancer centers. All ORIEN alliance members 
utilize a standard institutional review board (IRB)-–approved protocol: Total 
Cancer Care (TCC). As part of the TCC protocol, participants provide 
written informed consent to have their clinical data followed over time, 
undergo germline and tumor sequencing, and be contacted in the future by 
their provider if an appropriate clinical trial or other study becomes available 
(21). TCC is a prospective cohort study in which a subset of patients elect to 
be enrolled in the ORIEN Avatar program, which provides research use 
only–grade whole-exome tumor sequencing, RNA-seq, germline sequencing, 
and collection of deep longitudinal clinical data with lifetime follow-up. 
Nationally, more than 325,000 participants have enrolled in TCC. M2GEN, 
the commercial and operational partner of ORIEN, harmonizes all ab-
stracted clinical data elements and molecular sequencing files into a stan-
dardized, structured format to enable the aggregation of de-identified data 
for sharing across the network. Data access was approved by the IRB in an 
Honest Broker protocol (2015H0185) and TCC protocol (2013H0199) in 
coordination with M2GEN and participating ORIEN members. In this study, 
we assembled RNA-seq data from the tumor samples of 71 patients with 
metastatic melanoma treated with ICIs. 

Primary clinical endpoint 
In this real-world dataset, no tumor size measurements were available to assess 
treatment response according to immune response evaluation criteria in 
solid tumors (iRECIST) criteria or other standardized scores. Instead, in 
concordance with other studies with similar cohorts (22–24), we defined 
durable clinical benefit as OS ≥24 months after the start of ICI treatment 
(hereafter referred to as responders). Therefore, nonresponders survived for 
<24 months after the initiation of ICI treatment. 

Sequencing methods 
ORIEN Avatar specimens underwent nucleic acid extraction and sequencing 
at HudsonAlpha (Huntsville, AL) or Fulgent Genetics (Temple City, CA). 
For frozen and optimal cutting temperature (OCT) tissue DNA extraction, 
Qiagen QIASymphony DNA purification was performed, generating a 
213 bp average insert size. For frozen and OCT tissue RNA extraction, the 
Qiagen RNeasy Plus Mini Kit was used, generating a 216 bp average insert 
size. For formalin-fixed, paraffin-embedded tissue, a Covaris Ultrasonication 
FFPE DNA/RNA kit was utilized to extract DNA and RNA, generating a 
165 bp average insert size. RNA-seq was performed using the Illumina 
TruSeq RNA Exome with single library hybridization, cDNA synthesis, li-
brary preparation, and sequencing (100 bp paired reads at HudsonAlpha; 
150 bp paired reads at Fulgent Genetics) to a coverage of 100 M total reads/ 
50 M paired reads. 

Data processing and gene expression analyses 
RNA-seq tumor pipeline analysis was processed according to the workflow 
outlined below using GRCh38/hg38 human genome reference sequencing 
and GenCode build version 32. Adapter sequences were trimmed from the 
raw tumor sequencing FASTQ file. Adapter trimming via k-mer matching 
was performed along with quality trimming and filtering, contaminant 

AACRJournals.org Cancer Res Commun; 4(8) August 2024 1979 

Melanoma Tumor Microbiome and Immunotherapy Response 

https://aacrjournals.org/


filtering, sequence masking, guanosine-cytosine (GC) filtering, length fil-
tering, and entropy filtering. The trimmed FASTQ file was used as input to 
the read alignment process. The tumor adapter–trimmed FASTQ file was 
aligned to the human genome reference (GRCh38/hg38) and the GenCode 
genome annotation v32 using the STAR aligner. The STAR aligner generates 
multiple output files for gene fusion prediction and gene expression analysis. 
RNA expression values were calculated and reported using estimated 
mapped reads, fragments per kilobase of transcript per million mapped 
reads, and transcripts per million (TPM) mapped reads at both the transcript 
and gene levels based on transcriptome alignment generated using STAR. 
RSEM pipeline and gene expressions were quantified as TPM. Gene ex-
pressions were log2(TPM + 1)-transformed, and downstream analyses were 
performed using GE Matrix. To determine differentially expressed genes 
(DEG) of responders versus nonresponders, we used the limma (v. 3.54.0) 
and edgeR (v. 3.40.0) packages, in which genes that have log2 fold change 
greater or less than 1 and adjusted P value ≤0.1 were considered significant 
DEGs. For gene set enrichment analysis (GSEA) of responders vs. nonre-
sponders, we used the Java version of gsea (v. 4.3.2) using the gene set 
permutation of 1000 using Hallmark gene sets or TIMEx cell types. Gene sets 
or cell types that have adjusted P value <0.1 were considered significant. The 
normalized enrichment score (NES) and adjusted P value were provided in 
the plot. 

Microbe abundance and diversity 
RNA-seq reads were used to calculate microbe abundances using the {exotic} 
pipeline v1.2, which included a 16S validation cohort and described a series 
of decontamination and filtering steps in detail (25). Briefly, reads were 
aligned first to the human reference genome, and then unaligned reads were 
mapped to a database of bacteria, fungi, archaea, viruses, and eukaryotic 
parasites. The observed microbes were then proceeded through a series of 

filtering steps to carefully and conservatively remove contaminants, includ-
ing segmenting the CHM13 human transcriptome into 100 base pairs, with 
50 base pair overlaps, running through the exotic pipeline, and filtering out 
any microbe falsely identified in this process. We used raw counts to cal-
culate diversity measures and for differential abundance analyses using 
{DESeq2} (26). The stacked bar plot and correlations used a relative abun-
dance value, generated by dividing raw counts by the number of human 
reads. Diversity measures were estimated by calculating the Shannon and 
Simpson indices, as well as Chao1, ACE, and inverse Simpson using the R 
package {vegan} (27). 

Signature and pathway analyses 
Gene signature scores were calculated using the IOSig and tmesig R pack-
ages. In brief, for each published gene signature, we collected and harmo-
nized gene names using the NCBI Entrez gene number. To quantify the 
published gene expression score, we first transformed the gene expressions 
across samples within a cohort into a Z-score. Next, we averaged the stan-
dardized Z-score across the number of genes in the signature, as previously 
described (15, 28, 29). This score is used to compare responders and non-
responders of immunotherapies within individual cohorts based on the 
AUROC, as previously described (28). We performed clustering of gene 
signatures based on the correlation of AUROC across multiple cohorts. 
Within a cohort of patients, we stratified the patients into “high” or “low” 
groups based on the mean of the Z-score. A Mann–Whitney U test was 
performed by comparing the two groups to determine the difference, and a 
FDR of <0.05 was deemed to be significant. The list of published gene 
signatures is available in Supplementary Table S1. 

For pathway analysis, single-sample GSEA (ssGSEA), via the ssGSEA 
method in the GSVA R package, was utilized to investigate the enriched gene 
sets in each sample. GSVA was run using the log2(TPM + 1) gene expression 

Tumor
RNA-seq

{exotic} Pipeline Microbe abundance
analysis

Microbe-specific analysis

RSEM pipeline

Tumor-specfic analysis

Gene expression
analysis

Integrative
analysis

Correlation of
microbes and gene

expression

Predictive biomarkers
of microbes and gene

expression

NR R

1

0

-1

CD8T
CD8 Teff

CD8 Tex

CD4 Teff

CD4Tn

NK
cDC2

DC
Treg

FIGURE 1 Graphical summary. RNA-seq data from tumor specimens are processed to microbe abundances and human gene expression. Each is 
associated with ICI response, and then integrative analyses combine them into a model to predict outcomes. 
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values with the Gaussian kernel. The Hallmark gene sets, TIMEx cell types, and 
the collected previously published gene expression signatures were used as the 
gene sets. The Hallmark gene sets are a curated list of gene sets that signify well- 
understood pathways that display reliable gene expression (30). The TIMEx cell 
types are formed from pan-cancer single-cell RNA-seq signatures and focus on 
illuminating immune cell infiltration from bulk RNA-seq data (31). A Spearman 
correlation analysis was conducted using the differentially expressed microbe 
data and the three ssGSEA results. The gene sets were clustered according to the 
Euclidean distance with complete linkage, whereas the microbes were ordered 
from the highest to the lowest effect size. 

Prediction of response to treatment outcomes 
To assess the predictive ability of the RNA-seq and microbe data for tumor 
response to ICIs, random forest classifiers were created using the random-
Forest R package. Models were based on five sets of input data: (i) microbe 
data, (ii) 31–gene signature Z-score, (iii) immune-activated gene signature 
Z-score, (iv) microbe and 31–gene signature Z-score combined, and (v) 
microbe- and immune-activated gene signature Z-score combined. Models 
were constructed with 500 trees and fivefold cross-validation. Additionally, 5 
seeds were used for each model, resulting in 25 trained models based on each 
set of input features. The AUROC curve was used to assess the overall 
performance of the trained models. This metric assesses the model classifi-
cation accuracy, in which 1 is a perfect classifier and 0.5 is a random clas-
sifier. The overall performance for each input feature–based model was taken 
as the average of the 25 trained models. 

Independent validation datasets 
We downloaded two independent melanoma RNA-seq datasets from public 
repositories: Gide and colleagues (BioProject: PRJEB23709, n ¼ 91; ref. 32) 
and Riaz and colleagues (BioProject: PRJNA356761, n ¼ 105; ref. 33). Both 
datasets contained patients with melanoma receiving various immunother-
apies, similar to the ORIEN Avatar training cohort. Raw RNA-seq files were 
downloaded and aligned as described in RNA-seq data processing and mi-
crobe abundance analyses. We used the random forest models developed in 
the ORIEN Avatar training set and tested the balanced accuracy of these 
models. The balanced accuracy is the arithmetic mean of sensitivity and 
specificity which account for imbalanced data. 

Data availability 
The Ohio State University IRB approved data access in an Honest Broker 
protocol (2015H0185) and TCC protocol (2013H0199) in coordination 

with Aster Insights. The processed data generated in this study are publicly 
available in Gene Expression Omnibus through the BioProject PRJNA856973. 
Analysis scripts to regenerate all figures and tables are available at https:// 
github.com/spakowiczlab/exorien-melio. 

Results 
Patient characteristics 
From the ORIEN networks, we included 71 patients with metastatic mela-
noma in this study (IO_NOVA_Mel). The age of the patients in this cohort 
ranged from 24 to 83 years; 59% were male; and 55% survived >24 months 
following the initiation of ICI treatment (Table 1). ICI treatments included 
anti-CTLA4 (18.8% of nonresponders and 41.0% of responders), anti-PD1/ 
PDL1 (62.5% of nonresponders and 56.4% of responders), and anti-CTLA + 
anti-PD1/PDL1 (18.8% of nonresponders and 2.6% of responders). The 
mean OS of responders (49.58 months) and nonresponders (10.82 months) 
was significantly different (P value <0.001). 

Gene expression analysis and its association with 
response to ICIs 
The gene expression profiles for the 71 patients with metastatic melanoma 
treated with ICIs were obtained from ORIEN. We performed DEG analysis 
and identified five genes (CLEC12A, GBP1P1, CD96, CCL4, and IDO1) that 
were overexpressed in the responders compared with the nonresponders 
with log2 fold change >1 and adjusted P value <0.1 (Fig. 2A; Supplementary 
Table S2). Interestingly, these five genes were involved in immune modu-
lation and have been previously identified in other studies as predictive 
biomarkers associated with responders to ICIs. For example, CCL4 has been 
previously identified as a biomarker in the 12-chemokine signature (13, 14), 
as well as other gene signatures predictive of neoadjuvant ipilimumab re-
sponse (34). IDO1 has been identified as a key marker in the IFNγ signature 
(12), as well as other gene signatures predictive of response to ICIs in lung 
cancer (35). CD96 is a marker that estimates CD8+ T-cell infiltration (36, 37). 
CD96 and TIGIT along with the costimulatory receptor CD226 form a 
pathway that affects the immune response in an analogous way to the CD28/ 
CTLA4 pathway (38). CLEC12A (39, 40) and GBP1P1 (41, 42) were iden-
tified in immune-related gene expression signatures predictive of ICI 
responses. 

Next, we investigated which gene sets and pathways were enriched or de-
pleted in responders to ICIs. We performed GSEA using the MSigDB 
Hallmark gene sets on the RNA-seq and found that several immune-related 

TABLE 1 Patient demographics stratified by response to ICIs 

Nonresponder (n = 32) Responder (n = 39) P value 

Age [mean (SD)] 57.48 (15.85) 58.62 (13.93) 0.748 
Sex ¼ male (%) 18 (56.2) 24 (61.5) 0.835 
ICI [n (%)] Anti-CTLA4 6 (18.8) Anti-CTLA4 16 (41.0) 0.022 

Anti-PD1/PDL1 20 (62.5) Anti-PD1/PDL1 22 (56.4) 
Anti-CTLA4 + anti-PD1/PDL1 6 (18.8) Anti-CTLA4 + anti-PD1/PDL1 1 (2.6) 

Sample collected within 1 year of ICI start ¼ Yes (%) 24 (75.0) 29 (74.4) 1.000 
OS [mean (SD)] months 10.82 (6.23) 49.58 (19.24) <0.001 
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gene sets were significantly enriched in responders (Fig. 2B), for example, 
IFNα response (NES ¼ 1.98; FDR < 0.001), IFNγ response (NES ¼ 1.79; 
FDR < 0.001), and allograft rejection (NES ¼ 1.65; FDR ¼ 0.002). The other 

two gene sets enriched in responders were spermatogenesis (NES ¼ 1.56; 
FDR ¼ 0.005) and the pancreas β cell gene sets (NES ¼ 1.40; FDR ¼ 0.036). 
In contrast, many cell-intrinsic gene sets were enriched in ICI 
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nonresponders, as shown in Fig. 2B. The GSEA results identified in this 
cohort are similar to previously published studies (28). 

We next hypothesized that tumor-infiltrating immune cells could associate 
with responses to ICIs. To test this hypothesis, we performed cell-type 
deconvolution of the bulk RNA-seq using CIBERSORT. From CIBERSORT 
results, we observed that responders had significantly (P value <0.05) higher 
abundances of CD8+ T cells, activated CD4+ memory T cells, activated NK 
cells, and M1 macrophages relative to nonresponders, who were shown to have 
a significantly higher amount of resting mast cells (Supplementary Fig. S1). 
Similarly, when we performed GSEA using TIMEx gene sets, we observed that 
13 CD4+-, CD8+-, and NK-related cell types were enriched in responders (FDR 
< 0.1), whereas the stromal cell type was enriched in nonresponders (Fig. 2C). 
This suggests that the tumor microenvironment (TME) of responders had an 
“immune-inflamed” phenotype, whereas nonresponders had either “immune- 
excluded” or “immune-desert” TME phenotypes. 

To further delineate the immune phenotypes of responders versus nonre-
sponders of ICIs, we used previously published gene signatures. We collected 30 
gene expression signatures from the literature that have been implicated to be 
predictive of ICIs (28). By performing a Z-score for each signature and associ-
ating them with responders versus nonresponders, we identified 16 gene sig-
natures (Supplementary Fig. S2) in which high Z-scores are associated with ICI 
responsiveness in this cohort (FDR <0.05), and the top four gene signatures are 
illustrated in Fig. 2D. These 16 gene signatures were related to immune activation 
and inflammation signatures (Supplementary Fig. S2; ref. 28). 

We next used our recently developed IOSig portal (28) to evaluate the predictive 
values of these 16 gene signatures in our ORIEN cohort (IO_NOVA_Mel), as 
well as 22 other melanoma cohorts treated with ICIs. We used AUROC to assess 
the predictive value of these signatures. For the 16 gene signatures, the AUROC 
values ranged from 0.78 to 0.66 in the IO_NOVA_Mel cohort (Supplementary 
Fig. S3; Supplementary Table S3). On average, the AUROC values for these 16 
gene signatures ranged from 0.61 to 0.68 in the separate 22 melanoma cohorts 
(Supplementary Fig. S3; Supplementary Table S3). 

The melanoma tumor microbiome and its association 
with response to ICIs 
Exogenous taxa were identified in the tumor RNA-seq, including bacteria, 
fungi, and viruses. A total of 54 phyla were observed, with Firmicutes being 
the most abundant phylum, followed by Uroviricota (Fig. 3A). Within the 
tumors responsive to immunotherapy, we found a significant enrichment of 
the Uroviricota phylum. Comparatively, the cohort of nonresponsive tumors 
was found to have significant intratumoral enrichment of bacteria and vi-
ruses, including Campylobacter jejuni, Acinetobacter calcoaceticus, and the 
Baculoviridae family (Fig. 3B; Supplementary Table S4). In order to provide 
further validation, we conducted an analysis checking The Cancer Genome 
Atlas data for the microbes most significantly enriched in our response 
groups. All of the microbes that best discriminate between SKCM responders 
and nonresponders to ICIs were observed in The Cancer Genome Atlas 
dataset. The prevalences were consistent with the exception of A. calcoace-
ticus, which was observed but not as prevalent as in the ORIEN dataset 
(Supplementary Fig. S4). However, the genus Acinetobacter was consistently 
prevalent between the two datasets. We observed no significant differences 
between α-diversity metrics of responders and nonresponders (Welch two- 
sample t tests P value >0.4; Fig. 3C). We found that the random forest 

classifiers based on microbe diversity measures with five rounds of fivefold 
cross-validation performed poorly relative to our other microbe-based 
classifiers (Fig. 3D). 

Correlation of tumor RNA-seq (GSEA) with microbes 
We next asked whether microbe abundance in the tumor could be associated 
with tumor-intrinsic pathways or the composition of cell types in the TIME. We 
focused on the nine microbes identified to be differentially abundant in relation 
to immunotherapy response in melanoma. For the top nine microbes, one mi-
crobe associated with responders to immunotherapy and eight with nonre-
sponders (Fig. 4). To investigate the intrinsic pathways that correlated with the 
microbes, we performed ssGSEA on patients with melanoma using MSigDB 
Hallmark gene sets. Uroviricota, which was found to be highly abundant in 
responders, was correlated with inflammation and immune-related gene sets and 
pathways (Fig. 4). Conversely, we observed that the microbes that were highly 
abundant in nonresponders, bacteria in the Moraxellaceae family, correlated most 
strongly with notch signaling–related, myogenesis-related, and p53 pathway– 
related genes (Fig. 4). The full list of adjusted P values is available in Supple-
mentary Table S5. These results are consistent with our previous findings, in 
which we observed similar Hallmark gene sets and pathways enriched in re-
sponders versus nonresponders across five melanoma cohorts of 
immunotherapy-treated patients with pre- and on-treatment tumor biopsies (28). 

To further dissect the association of microbe abundance and the composition of 
cell types in the context of immunotherapy responses in melanoma, we per-
formed cell-type deconvolution using the bulk RNA-seq with TIMEx. We found 
that Uroviricota was highly correlated with the enrichment of tumor-infiltrated 
immune cell types, including CD8+ T cells, which are known predictors of 
immunotherapy response (Fig. 4). In contrast, the lack of tumor-infiltrated 
immune cell types was correlated with microbes associated with nonresponders. 
In particular, we observed that stromal cell types, such as fibroblasts and en-
dothelial cells, were enriched in association with the microbes noted in nonre-
sponders, the Moraxellaceae and Microbacteriaceae families (Fig. 4). The tumor 
immune cell composition corroborated our previous findings (28). 

Next, we asked whether the microbe abundance was associated with any gene 
signatures predictive of immunotherapy responses. To investigate this ques-
tion, we utilized 31 previously published gene signatures that have been in-
dicated to be associated with immunotherapy responses (28). We correlated 
microbe abundance with these signatures and found that gene signatures as-
sociated with inflammation or immune activation were highly associated with 
microbes abundant in responders (Fig. 4). On the other hand, gene signatures 
associated with immune-suppressive or -intrinsic signaling were highly asso-
ciated with microbes abundant in nonresponders (Fig. 4). These results suggest 
that microbe abundance could provide a different dimension in understanding 
the TIME in predicting immunotherapy responsiveness in melanoma. 

Prediction of response using tumor gene expression 
and microbe abundance 
We further hypothesized that combining microbe abundance features with 
gene expression signatures could improve response prediction of melanoma 
to immunotherapy. To test this hypothesis, we developed an ensemble 
learning random forest classifier using microbe abundance and gene signa-
tures identified to be associated with immunotherapy responses in mela-
noma (see Supplementary Fig. S5 for testing of other machine learning 
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approaches). We first developed the random forest classifier based on mi-
crobe abundance with 15 input features (microbe) and performed 5 rounds 
of fivefold cross-validation on the melanoma cohort (Fig. 5). The average 
AUROC for the microbe classifier was 0.651. We also constructed a random 
forest classifier based on 31 gene signatures (GeneSig_Z_score) or the 

16 immune-activated gene signatures (Imm_Act_Z_score), and the AUROC 
values for GeneSig or Imm_Act classifier were 0.72 and 0.744, respectively 
(Fig. 5). Notably, when we combined the microbe abundance and gene sig-
natures to develop the random forest classifier, the ensemble learning random 
forest classifier for gene signatures plus microbe (GS_Z_microbe) and 
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immune-activated gene signatures plus microbe (Imm_Act_Z_microbe) 
achieved 0.772 and 0.805, respectively (Fig. 5). Finally, to validate the gener-
alizability of this combined microbe and gene expression signature random 
forest classifier, we tested this signature in two independent previously pub-
lished datasets of Gide and colleagues (32) and Riaz and colleagues (33). Raw 
RNA-seq data were downloaded from BioProject, processed, aligned, and 
quantified for the gene expression and microbe abundance according to Fig. 1. 
As illustrated in Fig. 6, we found that the combined microbe and gene sig-
nature random forest classifier achieved 69.9% and 69.11% balanced accuracy 
in Gide and Riaz datasets, respectively. This suggests that microbe abundance 
features provide a distinct layer of information in predicting response to 

immunotherapy and, when combined with gene expression signatures, can 
improve the prediction of response to immunotherapy in melanoma. 

Discussion 
We utilized tumor RNA-seq from patients with melanoma to explore 
the tumor microbiome’s influence on clinical outcomes, specifically in 
response to ICIs. We observed microbes in all samples and showed that 
tumors that responded to ICIs had significantly different taxa present 
from those that did not respond to treatment. Consistent with previous 
findings, gene expression seems to be predictive of response to ICIs. In 
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addition, we showed that microbes are also predictive of response to 
ICIs, particularly when combined with gene expression, suggesting that 
the inclusion of microbes in these models enhances predictive ability. 

A correlation between the gut microbiome and response to ICIs has been con-
sistently indicated in previous research (43–45). Altering the gut microbiome via 
responder-derived fecal microbiota transplantation has been shown to induce a 
clinical response to anti-PD1 treatment in patients with melanoma (46, 47). 
However, many of the efforts in this area have focused solely on the gut micro-
biome. Therefore, we assessed the tumor microbiome to further explore the 
impact of microbes on clinical outcomes in body sites beyond the gut. 

We observed the presence of microbiota in all 71 tumor samples, as is 
consistent with previous findings with regard to the tumor microbiome 
(48, 49). Our study explicitly exhibits the microbial characteristics of tu-
mors in patients with metastatic melanoma. Previous research has shown 
that the tumor microbiome in this specific subset of cancer is predictive of 
response to treatment, but these findings have been limited in scope be-
cause of samples having been collected before the use of modern ICIs as a 
standard treatment regimen for metastatic melanoma (20). We showed 
distinct, significantly enriched taxa, including fungi, at baseline for patients 
treated with contemporary ICI-based treatment plans. 

The mechanisms by which tumor microbes affect response to ICIs may relate to 
interactions with the immune system or several other established mechanisms 
(50).The World Health Organization has officially recognized a causal association 
between 11 microbes and cancer (51). However, in recent years, the number of 
likely carcinogenic microbes and more loosely related “complicit” microbes has 
increased dramatically. These have been shown to interact with the host via 
diverse mechanisms. For example, in colon cancer, Bacteroides fragilis biofilms 

on colon polyps have been found to secrete a toxin that directly damages DNA 
(52, 53), as have some Escherichia coli (54). In another mechanism, Helicobacter 
pylori secrete a series of molecules eliciting an inflammatory cascade shown to 
drive tumorigenesis in gastric adenocarcinoma and mucosa-associated lym-
phoma (55, 56). The fungal genus Malassezia caused pancreatic ductal adeno-
carcinoma growth through activation of the C3 complement pathway (57). The 
microbe enriched in responders has a precedence for interacting with the human 
immune system in the context of cancer. Uroviricota, which contains diverse 
bacteriophages, has been shown to contain antigens with cross-reactivity to 
melanoma tumors (58). On the other hand, C. jejuni has not been associated 
with the tumor microbiome or response to ICIs, although it is an established 
pathogen that has been linked to food-borne illness (59). In our study, it is 
associated with the distinct immune expression pathways as Uroviricota, sug-
gesting that it acts through a very different mechanism. Furthermore, recent 
studies have identified bacteria-derived HLA-bound peptides in melanoma 
presented by tumor cells could elicit immune reactivity. This intratumoral bac-
teria peptide repertoire could be further explored to understand the mechanism 
by which microbes modulate the immune system and responses to therapy (60). 
The demonstration of the utility of high-throughput sequencing to explore these 
correlations warrants a broader search. 

Efforts have been made to identify predictors of response and resistance to ICIs. 
As previously discussed, expression signatures have been established as predictors 
of ICI response in metastatic melanoma (9, 12, 14, 15, 28, 61). One such study 
assessing the model combining IFNγ and TMB found that it was predictive 
of response but not resistance (61). Another such study developed a 
multiomics-based classifier that successfully predicted response but was 
unable to predict resistance (20). We showed significantly enriched taxa in 
both response groups. We also showed that microbes alone are predictive 
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of response/resistance to immunotherapy and when combined with gene 
expression, enhance the model’s predictive ability. These accuracies are 
consistent with other studies. For example, Mihály and colleagues reported 
that the best performing genes for predicting OS had AUC values of 0.64, 
0.62, and 0.62 (62). Liu and colleagues reported that the AUC values for “1- 
year, 3-year, and 5-year OS were 0.832, 0.850, and 0.768; 0.712, 0.591, and 
0.602; and 0.773, 0.702, and 0.673 for the training set, testing set, and 
whole set, respectively,” for their 6-gene signature (15). Long and col-
leagues reported that the AUC values of their 4-gene biomarker prognostic 
model were 0.7561, 0.7674, 0.7366, 0.7040, and 0.6919 (63). Although these 
values are too low for clinical relevance, they provide a proof of concept 
that the inclusion of tumor microbes in predictive models can improve 
accuracy. Although a more rigorous approach to these predictive models 
would include a subgroup analysis on the ICI treatment types, we still see 
predictive power on the broader groups, providing evidence that we could 
harness yet more predictive power with the inclusion of treatment-type 
information. Further studies are warranted to combine tumor microbiome 
abundance with other clinical and “omics” (e.g., genomics and pathomics) 
for developing an accurate classifier for predicting immunotherapy re-
sponses in melanoma. Our findings also warrant further research to 
evaluate whether these correlations are causally associated with outcomes 
and their effect on the TIME and immune cell infiltration. 

Although there is much utility in assessing a real-world clinical dataset, it also 
presents significant limitations. Notably, critical information such as stage, 
progression-free survival, Eastern Cooperative Oncology Group score, and prior 
treatment were unavailable. Additionally, although the majority of patients were 
treated with anti-PD1/PDL1 inhibitors, a small subset differed in treatment 

regimen. This introduces a major limitation as a stratified analysis could provide 
a meaningful insight, but the study is not sufficiently powered for this because of 
its small sample size. Previous studies have observed different microbes affecting 
anti-CTLA4 versus anti-PD1/PDL1 responses owing to distinct mechanisms of 
action. For instance, Bacteroides may induce an antitumor immune response in 
anti–CTLA4-treated tumors by activating dendritic cells in the gut to produce 
IL12, thereby stimulating T helper cells (64). It has been suggested that in anti– 
PDL1-treated tumors, microbes found in the gut may modulate the immune 
response through mechanisms such as secretion of small molecules such as 
inosine or indole-3-acetic acid (65, 66). However, tumors with evidence of im-
mune activation (as measured by T-cell infiltration, PDL1 expression, IFNγ- 
related gene expression, or high TMB) have been shown to be susceptible to ICIs 
whether anti-PD1 treatment was used as monotherapy or in combination with 
anti-CTLA4 antibodies (1, 67). Therefore, intratumoral microbiome features that 
enhance the immunogenicity of the TME are expected to make these tumors 
more susceptible to the ICI regimens included in our cohort. Furthermore, we 
have no means by which microbes are assessed as intra- or extracellular. We note 
that both have been observed by microscopy (19), though the intra–cancer cell 
observations have recently been called into question (not, however, the intra– 
immune cell observations; ref. 68). Further studies are needed to confirm the 
location of tumoral microbes. Our findings also raise the continued question of 
whether additional filtering steps to control for contamination are required. 
Recent work suggests that more stringent human filtering, including the removal 
or masking of contaminating human reads in draft microbial genomes, is nec-
essary. Many of the associations are conducted on a large number of microbes 
and genes or signatures, leading to many independent tests. Multiple hypothesis 
correction is likely insufficient to remove all false discoveries, driving further 
need for experimental validation. Finally, we validated the combined microbe 
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and gene expression random forest classifier in two independent datasets and 
showed that the balanced accuracy is about 69%. We acknowledge that there is 
room for improvement for the machine learning classifier, especially testing the 
model, on more independent datasets to confirm the value of adding microbes 
when overfitting can be more accurately assessed. 

In conclusion, we found that the tumor microbiome in patients with metastatic 
melanoma was significantly different in those that responded (>24 months 
survival) to treatment with ICIs from those who did not respond. Furthermore, 
the microbial communities had the ability to predict response when incor-
porated into machine learning models. The tumor microbiome further en-
hanced models to predict response when combined with gene expression data. 
Future research has the potential to support therapeutic strategies to modify 
the tumor microbiome to improve ICI treatment outcomes. 
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