Table 2.
Metric | Value by algorithm |
||||
---|---|---|---|---|---|
GB | NB | PNN | DT | RF | |
Accuracy | 92.12 | 68.08 | 81.92 | 87.17 | 90.29 |
AUC | 0.97 | 0.64 | 0.91 | 0.87 | 0.97 |
Specificity | 98.24 | 36.41 | 100.00 | 76.47 | 96.60 |
Sensitivity | 74.42 | 79.01 | 29.54 | 84.31 | 74.23 |
NPV | 91.76 | 83.41 | 80.28 | 93.38 | 91.57 |
PPV | 93.92 | 30.01 | 91.06 | 55.27 | 88.27 |
Cohen’s kappa | 0.78 | 0.15 | 0.38 | 0.64 | 0.51 |
F1-score | 0.84 | 0.37 | 0.46 | 0.73 | 0.84 |
DT, decision tree; GB, gradient boosted; NB, naïve bayes; NPV, negative predictive value; PNN, probabilistic neural network; PPV, positive predictive value; RF, random forest.