Skip to main content
. 2024 Jul 25;9(31):33303–33334. doi: 10.1021/acsomega.4c02822

Table 1. Antimicrobial activity and potential mechanism of chemically synthesized IONPsa.

NPs Particle size (nm) Shape Precursor Synthesis method Coating Material Con. (μg/mL) Organism ZOI (mm) MIC (μg/mL) MBC (μg/mL) IC50 (μg/mL) Mechanism ref.
Fe3O4 ∼254 Spherical FeCl3·6H2O, FeCl2·4H2O, NaOH, DW & HCl COP RHL NR Escherichia coli (O157: H7) ∼9 64 128 NR The RHL coated-Fe3O4@PVA@p-CoA/GA biosurfactant mediated the structural and confirmational changes on the cell surface. Moreover, the coating material intercalated with the DNA, inhibited the replication, transcription and translation process by generating ROS. The ROS induced oxidative stress that led to apoptosis of bacterial cells. (87)
              Escherichia coli (O26: H11) ∼10 4 8      
              Escherichia coli (O78: H10) ∼12 32 64      
              Staphylococcus aureus (MSSA) ∼12 16 32      
              Staphylococcus aureus (MRSA) ∼10 32 64      
              Staphylococcus aureus (VRSA) ∼8 64 128      
          RHL, PVA, GA, p-CoA NR Escherichia coli (O157: H7) 35 32 64      
              Escherichia coli (O26: H11) 45 1 2      
              Escherichia coli (O78: H10) 40 16 32      
              MSSA 40 4 8      
              MRSA 30 16 32      
              VRSA 25 32 64      
Fe2O3 36.1 Spherical FeCl3·6H2O, TiCl4·2H2O, CTAB & NaOH COP PR 5000 Bacillus subtilis 13 NR NR NR The Fe2O3 and TiO2 polyester nanocomposite enhanced the interaction with bacterial cell membranes. It created an ionic imbalance in the bacterial cell, resulting in cell apoptosis. (88)
              Staphylococcus aureus 18          
              Escherichia coli 13          
              Pseudomonas aeruginosa 12          
              Candida albicans 29          
              Aspergillus niger 26          
Fe3O4 48 Spherical FeSO4, FeCl3, DW, NH4OH & HNO3, COP RHL NR Pseudomonas aeruginosa NR 1000 NR NR Fe3O4 induced oxidative stress in the bacterial cell by producing ROS which caused cell death. Again, the Rhamnolipid-coated Fe3O4 interacted with extracellular polymeric substances (EPS), which could affect the hydrophobicity of bacterial cell surface and hinder biofilm generation. (89)
              Staphylococcus aureus NR 1000 NR      
IO QDNPs <80 Spherical Fe (NO3)3.9H2O, argon gas, DW, ethanol & NaOH COP and HDT. NR NR Escherichia coli PTCC 1330 NR 1 NR NR The IO-QDNPs changed membrane potential and damaged the biological mechanism by interacting with the cell membranes and subunit of the ribosome. Again, ROS-mediated structural and confirmational changes in DNA were responsible for bacterial cell death. (90)
              Staphylococcus aureus PTCC 1053 NR 0.5        
              Serratia marcescens PTCC1621 NR 0.5        
              Pseudomonas aeruginosa PTCC1074 NR 0.5        
              Staphylococcus aureus PTCC. 1112 NR 1        
              Micrococcus luteus PTCC. 1110 NR 4        
              Bacillus subtilis PTCC. 1023 NR 0.5        
              Staphylococcus epidermidis PTCC 1114 NR 0.5        
Fe3O4 ∼39.56 Spherical FeCl2·4H2O, FeCl3·6H2O & NH4OH COP TiO2 NR Escherichia coli NR 150 NR NR TiO2-coated IONPs had potent toxicity against bacterial cells, so they exhibited antibacterial activity when they interacted with the cell membranes. (91)
              Klebsiella pneumonia NR 150        
              Bacillus subtilis NR 150        
              Staphylococcus aureus NR 150        
              Escherichia coli NR 150        
              Klebsiella pneumonia NR 150        
              Bacillus subtilis NR 150        
              Staphylococcus aureus NR 150        
SPION 23.32 ± 1.17 NR Iron salt and dimercaptosuccinic acid Two-step COP process. NR NR MARS NR 530.796 ± 15.241 NR NR SPION mediated the conformational and structural changes on the proteins of the cell surface and disrupted the cell membrane. (92)
                  495.993 ± 3.909 NR      
                  581.353 ± 10.26 NR      
                  457.871 ± 21.064 NR      
Fe3O4 31.09 Spherical FeCl2·2H2O, FeCl3·6H2O, N2, DW & NH4OH. COP NR NR Staphylococcus epidermidis 17.33 ± 0.57 25 50 NR Generally, photolytic generation of ROS induces oxidative stress in the cell. Also, due to the vibration of magnetic fields, IONPs lead bacterial cells to death. (93)
              Proteus mirabilis 17.51 ± 0.57 50 100      
              Acinetobacter baumannii 17.66 ± 0.57 50 100      
          PEG NR Staphylococcus epidermidis 19.66 ± 0.57 25 50      
              Proteus mirabilis 21.66 ± 0.57 50 100      
              Acinetobacter baumannii 22.00 ± 0.46 50 100      
          GEN NR Staphylococcus epidermidis 21.33 ± 1.15 50 100      
              Proteus mirabilis 23.66 ± 0.57 25 50      
              Acinetobacter baumannii 23.66 ± 0.57 50 100      
          PEG+ GEN NR Staphylococcus epidermidis 23.66 ± 0.057 50 100      
              Proteus mirabilis 25.66 ± 0.57 25 50      
              Acinetobacter baumannii 26.33 ± 0.57 50 100      
Fe2O3 14.2 ± 0.5 Spherical FeCl2·4H2O, FeCl3·6H2O, DW, NH4OH, HNO3, HCl & Fe (NO3)3·9H2O COP Teicoplanin NR Bacillus subtilis (ATCC 6633) NR 2 >128 NR Fe2O3 NPs induced ROS, which induced oxidative stress and led to programmed cell death as well as autophagic activity. (94)
              Staphylococcus aureus (ATCC 6538Pb (MSSA)) NR 2 128      
              Staphylococcus aureus (ATCC 43300 (MRSA) NR 2 >128      
              Enterococcus. faecalis (ATCC 29212) NR 1 32      
              Enterococcus. faecalis (ATCC 51299 (VanB) NR 2 >128      
              Enterococcus. faecalis (9160188401-EF-34 (VanA) NR >128 >128      
              Escherichia coli (ATCC 35218) NR >128 >128      
Fe2O3 25.34 Hexagonal FeSO4·7H2O, Co (NO3)2·6H2O, NaOH & DW COP NR 400 Bacillus subtilis 11 Escherichia coli     Fe2O3 NPs induced ROS, which triggered oxidative stress and led to cell death. (59)
              Staphylococcus aureus 12 900 NR      
              Escherichia coli 19          
              Salmonella typhi 12          
            600 Bacillus subtilis 15          
              Staphylococcus aureus 13          
              Escherichia coli 20          
              Salmonella typhi 13          
            800 Bacillus subtilis 17          
              Staphylococcus aureus 15          
              Escherichia coli 21          
              Salmonella typhi 16          
Fe3O4 10.64 ± 4.73 Spherical FeSO4·7H2O, FeCl3·6 H2O, DW & NaOH COP Oleic acid NR Escherichia coli NR NR NR NR The antibacterial activity of Fe3O4 NPs was mediated by electrostatic interaction between NPs and the cell membranes. Also, the ROS played a vital role in cell apoptosis. (95)
              Enterococcus hirae NR          
Fe3O4 10–30 Spherical NR COP NR 12.5 Escherichia coli 7 NR NR NR Fe3O4 mediated antibacterial activity by causing damaged to the proteins and DNA in the bacterial cell by generating ROS. (96)
              Proteus mirabilis 7          
              Bacillus subtills 7          
            25 Escherichia coli 7          
              Proteus mirabilis 7          
              Bacillus subtills 7          
            50 Escherichia coli 8          
              Proteus mirabilis 8          
              Bacillus subtills 8          
            Fe3O4 + Plant extract              
            12.5 Escherichia coli 11 NR NR NR    
              Proteus mirabilis 16          
              Bacillus subtills 7          
            25 Escherichia coli 12          
              Proteus mirabilis 17          
              Bacillus subtills 8          
            50 Escherichia coli 13          
              Proteus mirabilis 18          
              Bacillus subtills 10          
Fe3O4 6–9 Spherical FeCl3, FeSO4, DW, NH4OH, PEG & ethyl alcohol COP NR NR Serratia marcescens NR 32 NR NR ROS produced by IONPs moderated physical damage or chemical damage by interacting with the cell membranes, leading to bacterial cell death. (97)
              Escherichia coli NR 64        
              Pseudomonas aeruginosa NR 128        
              Listeria monocytogenes NR 32        
Fe3O4 24 NR FeCl3, FeCl2, DW, Argon gas & NaOH COP NR 40 Bacillus cereus 13 5 80 NR IONPs could interact with DNA and proteins and mediate their conformational changes. (66)
              Klebsiella pneumoniae 15          
            80 Bacillus cereus 22          
              Klebsiella pneumoniae 26          
Fe3O4 10–14 Spherical FeCl3, FeCl2, DW, & NaOH COP NR 500 Staphylococcus aureus <10 Staphylococcus aureus   NR The IONPs damaged the cell membrane by inducing ROS. When IONPs are conjugated with gentamicin, bacterial growth is constrained by both mechanisms. By inhibiting the protein synthesis and damaging the cell membrane. (98)
              Escherichia coli <10 25,000 30,000      
              Bacillus subtills <10          
              Pseudomonas aeruginosa <10          
            1000 Staphylococcus aureus <10 Escherichia coli   NR    
              Escherichia coli <10 28,000 35,000      
              Bacillus subtills <10          
              Pseudomonas aeruginosa <10          
            3000 Staphylococcus aureus <10 Bacillus subtills   NR    
              Escherichia coli <10 20,000 25,000      
              Bacillus subtills <10          
              Pseudomonas aeruginosa <10          
            5000 Staphylococcus aureus <10 Pseudomonas aeruginosa   NR    
              Escherichia coli <10 30,000 35,000      
              Bacillus subtills <10          
              Pseudomonas aeruginosa <10          
          GEN 500 Staphylococcus aureus <10 Staphylococcus aureus   NR    
              Escherichia coli <10 2000 3000      
              Bacillus subtills 12.5          
              Pseudomonas aeruginosa <10          
            1000 Staphylococcus aureus 10 Escherichia coli   NR    
              Escherichia coli <10 2500 3000      
              Bacillus subtills 13          
              Pseudomonas aeruginosa <10          
            3000 Staphylococcus aureus 13 Bacillus subtills   NR    
              Escherichia coli <10 1500 2500      
              Bacillus subtills 25          
              Pseudomonas aeruginosa <10          
            5000 Staphylococcus aureus 16 Pseudomonas aeruginosa   NR    
              Escherichia coli 11 3000 4000      
              Bacillus subtills 33          
              Pseudomonas aeruginosa <10          
Fe3O4 ∼100 Spherical Oleic amine, ethylene glycol, FeCl3·6H2O, & sodium acetate HDT NR 200 Klebsiella pneumoniae 22 ± 1.0 Klebsiella pneumoniae   NR IONPs generate ROS molecules that interact with the ion transportation channel and the DNA and induce oxidative stress to eliminate bacterial cells. (68)
              Staphylococcus aureus 28 ± 0.5 50 100      
              Enterococcus faecalis 25 ± 0.0          
              Pseudomonas aureginosa 18 ± 1.0          
            100 Klebsiella pneumoniae 20. ± 0.0 Staphylococcus aureus        
              Staphylococcus aureus 25 ± 0.0 6.25 12.5      
              Enterococcus faecalis 20 ± 1.0          
              Pseudomonas aureginosa 16 ± 0.0          
            50 Klebsiella pneumoniae 18 ± 1.0 Enterococcus faecalis        
              Staphylococcus aureus 22 ± 2.0 6.25 12.5      
              Enterococcus faecalis 17 ± 0.5          
              Pseudomonas aureginosa 15 ± 0.5          
            25 Klebsiella pneumoniae 15 ± 0 Pseudomonas aureginosa        
              Staphylococcus aureus 20 ± 1.0 50 50      
              Enterococcus faecalis 11 ± 0.0          
              Pseudomonas aureginosa 12 ± 0.0          
Fe3O4 35 Spherical Fe (NO3)3·9H2O, DW, & NH3 CC NR 25 Escherichia coli 15 NR NR NR Fe3O4 generated ROS that disrupted membrane protein and penetrated the bacterial membrane. It induced oxidative stress, which led to cell death. (99)
              Proteus vulgaris 11          
              Staphylococcus aureus 9          
              Xanthomonas 10          
            30 Escherichia coli 16          
              Proteus vulgaris 12          
              Staphylococcus aureus 12          
              Xanthomonas 12          
            40 Escherichia coli 17          
              Proteus vulgaris 15          
              Staphylococcus aureus 14          
              Xanthomonas 14          
            50 Escherichia coli 17          
              Proteus vulgaris 20          
              Staphylococcus aureus 15          
              Xanthomonas 15          
            60 Escherichia coli 15          
              Proteus vulgaris 20          
              Staphylococcus aureus 11          
              Xanthomonas 8          
            80 Escherichia coli 15          
              Proteus vulgaris 12          
              Staphylococcus aureus 12          
              Xanthomonas 14          
            100 Escherichia coli 21          
              Proteus vulgaris 21          
              Staphylococcus aureus 15          
              Xanthomonas 15          
IO 14–23 Hexagonal FeSO4·7H2O, β-Cyclodextrin, N2 & sodium borohydride CS Beta-cyclodextrin NR Staphylococcus aureus 43.83 ± 0.75 100 NR NR IONPs interacted with the cell wall and facilitated cell permeability, hindering cellular activity and resulting in the disruption of bacterial cells. (100)
              Klebsiella pneumonia 39.83 ± 1.33 300        
              Salmonella typhi 20 ± 0.63 200        
Fe3O4 ∼25 NR Fe (NO3)3, DW, Ethylene glycol. SG NR 5 Bacillus spp. 23 NR NR NR The addition of citric acid increased the ROS generation and the electro-hole pair generation, leading to the decay of the bacterial surface. (101)
              Escherichia coli 19          
            10 Bacillus spp. 25          
              Escherichia coli 20          
            15 Bacillus spp. 26          
              Escherichia coli 21          
            20 Bacillus spp. 27          
              Escherichia coli 22          
          Citric acid 5 Bacillus spp. 32          
              Escherichia coli 29          
            10 Bacillus spp. 31          
              Escherichia coli 22          
            15 Bacillus spp. 33          
              Escherichia coli 23          
            20 Bacillus spp. 36          
              Escherichia coli 26          
Fe3O4 NR NR Fe (NO3)3·9H2O, ethanol SG NR 50 Enterobacter aerogenes NR NR NR NR Fe3+ ions interact with the negatively charged membrane, decreasing the membrane integrity. By entering the cell, IONPs produce ROS, which disrupts the cell organelles and eradicates the cell. (102)
            100              
            150 Staphylococcus aureus            
            200              
Fe2O3 50–110 Spherical SDS, DMF & iron pressed pellet. PLA NR Fe2O3 + DMF           The electrons in the photocatalytic process were absorbed by free radicals and produced OH radicals. These radicals inhibited the growth of bacteria by induced oxidative stress generated by ROS. (103)
            4250 (20 mJ) Escherichia coli 19 NR NR NR    
              Pseudomonas aeruginosa 17          
              Serritia marcescens 20          
              Staphylococcus aureus 21          
            4250 (40 mJ) Escherichia coli 22          
              Pseudomonas aeruginosa 16          
              Serritia marcescens 24          
              Staphylococcus aureus 18          
            4250 (60 mJ) Escherichia coli 18          
              Pseudomonas aeruginosa 27          
              Serritia marcescens 17          
              Staphylococcus aureus 22          
            4250 (80 mJ) Escherichia coli 17          
              Pseudomonas aeruginosa 27          
              Serritia marcescens 20          
              Staphylococcus aureus 23          
            Fe2O3 + SDS              
            4250 (20 mJ) Escherichia coli 25          
              Pseudomonas aeruginosa 13          
              Serritia marcescens 27          
              Staphylococcus aureus 30          
            4250 (40 mJ) Escherichia coli 27          
              Pseudomonas aeruginosa 27          
              Serritia marcescens 30          
              Staphylococcus aureus 35          
            4250 (60 mJ) Escherichia coli 23          
              Pseudomonas aeruginosa 22          
              Serritia marcescens 15          
              Staphylococcus aureus 28          
            4250 (80 mJ) Escherichia coli 20          
              Pseudomonas aeruginosa 19          
              Serritia marcescens 18          
              Staphylococcus aureus 30          
a

NPs: Nanoparticles; Con.: Concentration; ZOI: zone of inhibition; ref: References; ROS: Reactive oxygen species; NR: Not reported; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; IC50: Half maximal inhibitory concentration; COP: Coprecipitation; HDT: Hydrothermal; CS: Chemical synthesis; SG: Sol–gel; TDP: Thermal decomposition; PLA: Pulsed laser ablation; FeCl3·6H2O: Ferric chloride hexahydrate; FeCl2·4H2O: Ferrous chloride tetrahydrate; FeSO4: Ferrous sulfate; TiCl4·2H2O: Titanium tetrachloride; FeSO4·7H2O: Ferrous sulfate; Fe (NO3)3·9H2O: Ferric nitrate nonahydrate; DW: Deionized water; CTAB: Trimethylammonium bromide; PR: polyester resin; RHL: Rhamnolipid; DMF: Dimethylformamide; GEN: Gentamicin; kan: Kanamycin; CC: Chemical combustion; PEG: Poly(ethylene glycol); IO: Iron oxide; QNDPs: Quantum dots nanoparticles; SPION: Superparamagnetic Iron oxide nanoparticles; PVA: Poly(vinyl alcohol) polymer; GA: Gallic acid; p-CoA: p-Coumaric acid; RHL coated-Fe3O4@PVA@p-CoA/GA: Rhamnolipid coated Iron oxide with Poly(vinyl alcohol) polymer; Gallic acid & p-Coumaric acid; MSSA: Methicillin-sensitive Staphylococcus aureus; MRSA: Methicillin-resistant Staphylococcus aureus; VRSA: Vancomycin-resistant Staphylococcus aureus.