Table 1. Antimicrobial activity and potential mechanism of chemically synthesized IONPsa.
| NPs | Particle size (nm) | Shape | Precursor | Synthesis method | Coating Material | Con. (μg/mL) | Organism | ZOI (mm) | MIC (μg/mL) | MBC (μg/mL) | IC50 (μg/mL) | Mechanism | ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fe3O4 | ∼254 | Spherical | FeCl3·6H2O, FeCl2·4H2O, NaOH, DW & HCl | COP | RHL | NR | Escherichia coli (O157: H7) | ∼9 | 64 | 128 | NR | The RHL coated-Fe3O4@PVA@p-CoA/GA biosurfactant mediated the structural and confirmational changes on the cell surface. Moreover, the coating material intercalated with the DNA, inhibited the replication, transcription and translation process by generating ROS. The ROS induced oxidative stress that led to apoptosis of bacterial cells. | (87) |
| Escherichia coli (O26: H11) | ∼10 | 4 | 8 | ||||||||||
| Escherichia coli (O78: H10) | ∼12 | 32 | 64 | ||||||||||
| Staphylococcus aureus (MSSA) | ∼12 | 16 | 32 | ||||||||||
| Staphylococcus aureus (MRSA) | ∼10 | 32 | 64 | ||||||||||
| Staphylococcus aureus (VRSA) | ∼8 | 64 | 128 | ||||||||||
| RHL, PVA, GA, p-CoA | NR | Escherichia coli (O157: H7) | 35 | 32 | 64 | ||||||||
| Escherichia coli (O26: H11) | 45 | 1 | 2 | ||||||||||
| Escherichia coli (O78: H10) | 40 | 16 | 32 | ||||||||||
| MSSA | 40 | 4 | 8 | ||||||||||
| MRSA | 30 | 16 | 32 | ||||||||||
| VRSA | 25 | 32 | 64 | ||||||||||
| Fe2O3 | 36.1 | Spherical | FeCl3·6H2O, TiCl4·2H2O, CTAB & NaOH | COP | PR | 5000 | Bacillus subtilis | 13 | NR | NR | NR | The Fe2O3 and TiO2 polyester nanocomposite enhanced the interaction with bacterial cell membranes. It created an ionic imbalance in the bacterial cell, resulting in cell apoptosis. | (88) |
| Staphylococcus aureus | 18 | ||||||||||||
| Escherichia coli | 13 | ||||||||||||
| Pseudomonas aeruginosa | 12 | ||||||||||||
| Candida albicans | 29 | ||||||||||||
| Aspergillus niger | 26 | ||||||||||||
| Fe3O4 | 48 | Spherical | FeSO4, FeCl3, DW, NH4OH & HNO3, | COP | RHL | NR | Pseudomonas aeruginosa | NR | 1000 | NR | NR | Fe3O4 induced oxidative stress in the bacterial cell by producing ROS which caused cell death. Again, the Rhamnolipid-coated Fe3O4 interacted with extracellular polymeric substances (EPS), which could affect the hydrophobicity of bacterial cell surface and hinder biofilm generation. | (89) |
| Staphylococcus aureus | NR | 1000 | NR | ||||||||||
| IO QDNPs | <80 | Spherical | Fe (NO3)3.9H2O, argon gas, DW, ethanol & NaOH | COP and HDT. | NR | NR | Escherichia coli PTCC 1330 | NR | 1 | NR | NR | The IO-QDNPs changed membrane potential and damaged the biological mechanism by interacting with the cell membranes and subunit of the ribosome. Again, ROS-mediated structural and confirmational changes in DNA were responsible for bacterial cell death. | (90) |
| Staphylococcus aureus PTCC 1053 | NR | 0.5 | |||||||||||
| Serratia marcescens PTCC1621 | NR | 0.5 | |||||||||||
| Pseudomonas aeruginosa PTCC1074 | NR | 0.5 | |||||||||||
| Staphylococcus aureus PTCC. 1112 | NR | 1 | |||||||||||
| Micrococcus luteus PTCC. 1110 | NR | 4 | |||||||||||
| Bacillus subtilis PTCC. 1023 | NR | 0.5 | |||||||||||
| Staphylococcus epidermidis PTCC 1114 | NR | 0.5 | |||||||||||
| Fe3O4 | ∼39.56 | Spherical | FeCl2·4H2O, FeCl3·6H2O & NH4OH | COP | TiO2 | NR | Escherichia coli | NR | 150 | NR | NR | TiO2-coated IONPs had potent toxicity against bacterial cells, so they exhibited antibacterial activity when they interacted with the cell membranes. | (91) |
| Klebsiella pneumonia | NR | 150 | |||||||||||
| Bacillus subtilis | NR | 150 | |||||||||||
| Staphylococcus aureus | NR | 150 | |||||||||||
| Escherichia coli | NR | 150 | |||||||||||
| Klebsiella pneumonia | NR | 150 | |||||||||||
| Bacillus subtilis | NR | 150 | |||||||||||
| Staphylococcus aureus | NR | 150 | |||||||||||
| SPION | 23.32 ± 1.17 | NR | Iron salt and dimercaptosuccinic acid | Two-step COP process. | NR | NR | MARS | NR | 530.796 ± 15.241 | NR | NR | SPION mediated the conformational and structural changes on the proteins of the cell surface and disrupted the cell membrane. | (92) |
| 495.993 ± 3.909 | NR | ||||||||||||
| 581.353 ± 10.26 | NR | ||||||||||||
| 457.871 ± 21.064 | NR | ||||||||||||
| Fe3O4 | 31.09 | Spherical | FeCl2·2H2O, FeCl3·6H2O, N2, DW & NH4OH. | COP | NR | NR | Staphylococcus epidermidis | 17.33 ± 0.57 | 25 | 50 | NR | Generally, photolytic generation of ROS induces oxidative stress in the cell. Also, due to the vibration of magnetic fields, IONPs lead bacterial cells to death. | (93) |
| Proteus mirabilis | 17.51 ± 0.57 | 50 | 100 | ||||||||||
| Acinetobacter baumannii | 17.66 ± 0.57 | 50 | 100 | ||||||||||
| PEG | NR | Staphylococcus epidermidis | 19.66 ± 0.57 | 25 | 50 | ||||||||
| Proteus mirabilis | 21.66 ± 0.57 | 50 | 100 | ||||||||||
| Acinetobacter baumannii | 22.00 ± 0.46 | 50 | 100 | ||||||||||
| GEN | NR | Staphylococcus epidermidis | 21.33 ± 1.15 | 50 | 100 | ||||||||
| Proteus mirabilis | 23.66 ± 0.57 | 25 | 50 | ||||||||||
| Acinetobacter baumannii | 23.66 ± 0.57 | 50 | 100 | ||||||||||
| PEG+ GEN | NR | Staphylococcus epidermidis | 23.66 ± 0.057 | 50 | 100 | ||||||||
| Proteus mirabilis | 25.66 ± 0.57 | 25 | 50 | ||||||||||
| Acinetobacter baumannii | 26.33 ± 0.57 | 50 | 100 | ||||||||||
| Fe2O3 | 14.2 ± 0.5 | Spherical | FeCl2·4H2O, FeCl3·6H2O, DW, NH4OH, HNO3, HCl & Fe (NO3)3·9H2O | COP | Teicoplanin | NR | Bacillus subtilis (ATCC 6633) | NR | 2 | >128 | NR | Fe2O3 NPs induced ROS, which induced oxidative stress and led to programmed cell death as well as autophagic activity. | (94) |
| Staphylococcus aureus (ATCC 6538Pb (MSSA)) | NR | 2 | 128 | ||||||||||
| Staphylococcus aureus (ATCC 43300 (MRSA) | NR | 2 | >128 | ||||||||||
| Enterococcus. faecalis (ATCC 29212) | NR | 1 | 32 | ||||||||||
| Enterococcus. faecalis (ATCC 51299 (VanB) | NR | 2 | >128 | ||||||||||
| Enterococcus. faecalis (9160188401-EF-34 (VanA) | NR | >128 | >128 | ||||||||||
| Escherichia coli (ATCC 35218) | NR | >128 | >128 | ||||||||||
| Fe2O3 | 25.34 | Hexagonal | FeSO4·7H2O, Co (NO3)2·6H2O, NaOH & DW | COP | NR | 400 | Bacillus subtilis | 11 | Escherichia coli | Fe2O3 NPs induced ROS, which triggered oxidative stress and led to cell death. | (59) | ||
| Staphylococcus aureus | 12 | 900 | NR | ||||||||||
| Escherichia coli | 19 | ||||||||||||
| Salmonella typhi | 12 | ||||||||||||
| 600 | Bacillus subtilis | 15 | |||||||||||
| Staphylococcus aureus | 13 | ||||||||||||
| Escherichia coli | 20 | ||||||||||||
| Salmonella typhi | 13 | ||||||||||||
| 800 | Bacillus subtilis | 17 | |||||||||||
| Staphylococcus aureus | 15 | ||||||||||||
| Escherichia coli | 21 | ||||||||||||
| Salmonella typhi | 16 | ||||||||||||
| Fe3O4 | 10.64 ± 4.73 | Spherical | FeSO4·7H2O, FeCl3·6 H2O, DW & NaOH | COP | Oleic acid | NR | Escherichia coli | NR | NR | NR | NR | The antibacterial activity of Fe3O4 NPs was mediated by electrostatic interaction between NPs and the cell membranes. Also, the ROS played a vital role in cell apoptosis. | (95) |
| Enterococcus hirae | NR | ||||||||||||
| Fe3O4 | 10–30 | Spherical | NR | COP | NR | 12.5 | Escherichia coli | 7 | NR | NR | NR | Fe3O4 mediated antibacterial activity by causing damaged to the proteins and DNA in the bacterial cell by generating ROS. | (96) |
| Proteus mirabilis | 7 | ||||||||||||
| Bacillus subtills | 7 | ||||||||||||
| 25 | Escherichia coli | 7 | |||||||||||
| Proteus mirabilis | 7 | ||||||||||||
| Bacillus subtills | 7 | ||||||||||||
| 50 | Escherichia coli | 8 | |||||||||||
| Proteus mirabilis | 8 | ||||||||||||
| Bacillus subtills | 8 | ||||||||||||
| Fe3O4 + Plant extract | |||||||||||||
| 12.5 | Escherichia coli | 11 | NR | NR | NR | ||||||||
| Proteus mirabilis | 16 | ||||||||||||
| Bacillus subtills | 7 | ||||||||||||
| 25 | Escherichia coli | 12 | |||||||||||
| Proteus mirabilis | 17 | ||||||||||||
| Bacillus subtills | 8 | ||||||||||||
| 50 | Escherichia coli | 13 | |||||||||||
| Proteus mirabilis | 18 | ||||||||||||
| Bacillus subtills | 10 | ||||||||||||
| Fe3O4 | 6–9 | Spherical | FeCl3, FeSO4, DW, NH4OH, PEG & ethyl alcohol | COP | NR | NR | Serratia marcescens | NR | 32 | NR | NR | ROS produced by IONPs moderated physical damage or chemical damage by interacting with the cell membranes, leading to bacterial cell death. | (97) |
| Escherichia coli | NR | 64 | |||||||||||
| Pseudomonas aeruginosa | NR | 128 | |||||||||||
| Listeria monocytogenes | NR | 32 | |||||||||||
| Fe3O4 | 24 | NR | FeCl3, FeCl2, DW, Argon gas & NaOH | COP | NR | 40 | Bacillus cereus | 13 | 5 | 80 | NR | IONPs could interact with DNA and proteins and mediate their conformational changes. | (66) |
| Klebsiella pneumoniae | 15 | ||||||||||||
| 80 | Bacillus cereus | 22 | |||||||||||
| Klebsiella pneumoniae | 26 | ||||||||||||
| Fe3O4 | 10–14 | Spherical | FeCl3, FeCl2, DW, & NaOH | COP | NR | 500 | Staphylococcus aureus | <10 | Staphylococcus aureus | NR | The IONPs damaged the cell membrane by inducing ROS. When IONPs are conjugated with gentamicin, bacterial growth is constrained by both mechanisms. By inhibiting the protein synthesis and damaging the cell membrane. | (98) | |
| Escherichia coli | <10 | 25,000 | 30,000 | ||||||||||
| Bacillus subtills | <10 | ||||||||||||
| Pseudomonas aeruginosa | <10 | ||||||||||||
| 1000 | Staphylococcus aureus | <10 | Escherichia coli | NR | |||||||||
| Escherichia coli | <10 | 28,000 | 35,000 | ||||||||||
| Bacillus subtills | <10 | ||||||||||||
| Pseudomonas aeruginosa | <10 | ||||||||||||
| 3000 | Staphylococcus aureus | <10 | Bacillus subtills | NR | |||||||||
| Escherichia coli | <10 | 20,000 | 25,000 | ||||||||||
| Bacillus subtills | <10 | ||||||||||||
| Pseudomonas aeruginosa | <10 | ||||||||||||
| 5000 | Staphylococcus aureus | <10 | Pseudomonas aeruginosa | NR | |||||||||
| Escherichia coli | <10 | 30,000 | 35,000 | ||||||||||
| Bacillus subtills | <10 | ||||||||||||
| Pseudomonas aeruginosa | <10 | ||||||||||||
| GEN | 500 | Staphylococcus aureus | <10 | Staphylococcus aureus | NR | ||||||||
| Escherichia coli | <10 | 2000 | 3000 | ||||||||||
| Bacillus subtills | 12.5 | ||||||||||||
| Pseudomonas aeruginosa | <10 | ||||||||||||
| 1000 | Staphylococcus aureus | 10 | Escherichia coli | NR | |||||||||
| Escherichia coli | <10 | 2500 | 3000 | ||||||||||
| Bacillus subtills | 13 | ||||||||||||
| Pseudomonas aeruginosa | <10 | ||||||||||||
| 3000 | Staphylococcus aureus | 13 | Bacillus subtills | NR | |||||||||
| Escherichia coli | <10 | 1500 | 2500 | ||||||||||
| Bacillus subtills | 25 | ||||||||||||
| Pseudomonas aeruginosa | <10 | ||||||||||||
| 5000 | Staphylococcus aureus | 16 | Pseudomonas aeruginosa | NR | |||||||||
| Escherichia coli | 11 | 3000 | 4000 | ||||||||||
| Bacillus subtills | 33 | ||||||||||||
| Pseudomonas aeruginosa | <10 | ||||||||||||
| Fe3O4 | ∼100 | Spherical | Oleic amine, ethylene glycol, FeCl3·6H2O, & sodium acetate | HDT | NR | 200 | Klebsiella pneumoniae | 22 ± 1.0 | Klebsiella pneumoniae | NR | IONPs generate ROS molecules that interact with the ion transportation channel and the DNA and induce oxidative stress to eliminate bacterial cells. | (68) | |
| Staphylococcus aureus | 28 ± 0.5 | 50 | 100 | ||||||||||
| Enterococcus faecalis | 25 ± 0.0 | ||||||||||||
| Pseudomonas aureginosa | 18 ± 1.0 | ||||||||||||
| 100 | Klebsiella pneumoniae | 20. ± 0.0 | Staphylococcus aureus | ||||||||||
| Staphylococcus aureus | 25 ± 0.0 | 6.25 | 12.5 | ||||||||||
| Enterococcus faecalis | 20 ± 1.0 | ||||||||||||
| Pseudomonas aureginosa | 16 ± 0.0 | ||||||||||||
| 50 | Klebsiella pneumoniae | 18 ± 1.0 | Enterococcus faecalis | ||||||||||
| Staphylococcus aureus | 22 ± 2.0 | 6.25 | 12.5 | ||||||||||
| Enterococcus faecalis | 17 ± 0.5 | ||||||||||||
| Pseudomonas aureginosa | 15 ± 0.5 | ||||||||||||
| 25 | Klebsiella pneumoniae | 15 ± 0 | Pseudomonas aureginosa | ||||||||||
| Staphylococcus aureus | 20 ± 1.0 | 50 | 50 | ||||||||||
| Enterococcus faecalis | 11 ± 0.0 | ||||||||||||
| Pseudomonas aureginosa | 12 ± 0.0 | ||||||||||||
| Fe3O4 | 35 | Spherical | Fe (NO3)3·9H2O, DW, & NH3 | CC | NR | 25 | Escherichia coli | 15 | NR | NR | NR | Fe3O4 generated ROS that disrupted membrane protein and penetrated the bacterial membrane. It induced oxidative stress, which led to cell death. | (99) |
| Proteus vulgaris | 11 | ||||||||||||
| Staphylococcus aureus | 9 | ||||||||||||
| Xanthomonas | 10 | ||||||||||||
| 30 | Escherichia coli | 16 | |||||||||||
| Proteus vulgaris | 12 | ||||||||||||
| Staphylococcus aureus | 12 | ||||||||||||
| Xanthomonas | 12 | ||||||||||||
| 40 | Escherichia coli | 17 | |||||||||||
| Proteus vulgaris | 15 | ||||||||||||
| Staphylococcus aureus | 14 | ||||||||||||
| Xanthomonas | 14 | ||||||||||||
| 50 | Escherichia coli | 17 | |||||||||||
| Proteus vulgaris | 20 | ||||||||||||
| Staphylococcus aureus | 15 | ||||||||||||
| Xanthomonas | 15 | ||||||||||||
| 60 | Escherichia coli | 15 | |||||||||||
| Proteus vulgaris | 20 | ||||||||||||
| Staphylococcus aureus | 11 | ||||||||||||
| Xanthomonas | 8 | ||||||||||||
| 80 | Escherichia coli | 15 | |||||||||||
| Proteus vulgaris | 12 | ||||||||||||
| Staphylococcus aureus | 12 | ||||||||||||
| Xanthomonas | 14 | ||||||||||||
| 100 | Escherichia coli | 21 | |||||||||||
| Proteus vulgaris | 21 | ||||||||||||
| Staphylococcus aureus | 15 | ||||||||||||
| Xanthomonas | 15 | ||||||||||||
| IO | 14–23 | Hexagonal | FeSO4·7H2O, β-Cyclodextrin, N2 & sodium borohydride | CS | Beta-cyclodextrin | NR | Staphylococcus aureus | 43.83 ± 0.75 | 100 | NR | NR | IONPs interacted with the cell wall and facilitated cell permeability, hindering cellular activity and resulting in the disruption of bacterial cells. | (100) |
| Klebsiella pneumonia | 39.83 ± 1.33 | 300 | |||||||||||
| Salmonella typhi | 20 ± 0.63 | 200 | |||||||||||
| Fe3O4 | ∼25 | NR | Fe (NO3)3, DW, Ethylene glycol. | SG | NR | 5 | Bacillus spp. | 23 | NR | NR | NR | The addition of citric acid increased the ROS generation and the electro-hole pair generation, leading to the decay of the bacterial surface. | (101) |
| Escherichia coli | 19 | ||||||||||||
| 10 | Bacillus spp. | 25 | |||||||||||
| Escherichia coli | 20 | ||||||||||||
| 15 | Bacillus spp. | 26 | |||||||||||
| Escherichia coli | 21 | ||||||||||||
| 20 | Bacillus spp. | 27 | |||||||||||
| Escherichia coli | 22 | ||||||||||||
| Citric acid | 5 | Bacillus spp. | 32 | ||||||||||
| Escherichia coli | 29 | ||||||||||||
| 10 | Bacillus spp. | 31 | |||||||||||
| Escherichia coli | 22 | ||||||||||||
| 15 | Bacillus spp. | 33 | |||||||||||
| Escherichia coli | 23 | ||||||||||||
| 20 | Bacillus spp. | 36 | |||||||||||
| Escherichia coli | 26 | ||||||||||||
| Fe3O4 | NR | NR | Fe (NO3)3·9H2O, ethanol | SG | NR | 50 | Enterobacter aerogenes | NR | NR | NR | NR | Fe3+ ions interact with the negatively charged membrane, decreasing the membrane integrity. By entering the cell, IONPs produce ROS, which disrupts the cell organelles and eradicates the cell. | (102) |
| 100 | |||||||||||||
| 150 | Staphylococcus aureus | ||||||||||||
| 200 | |||||||||||||
| Fe2O3 | 50–110 | Spherical | SDS, DMF & iron pressed pellet. | PLA | NR | Fe2O3 + DMF | The electrons in the photocatalytic process were absorbed by free radicals and produced OH– radicals. These radicals inhibited the growth of bacteria by induced oxidative stress generated by ROS. | (103) | |||||
| 4250 (20 mJ) | Escherichia coli | 19 | NR | NR | NR | ||||||||
| Pseudomonas aeruginosa | 17 | ||||||||||||
| Serritia marcescens | 20 | ||||||||||||
| Staphylococcus aureus | 21 | ||||||||||||
| 4250 (40 mJ) | Escherichia coli | 22 | |||||||||||
| Pseudomonas aeruginosa | 16 | ||||||||||||
| Serritia marcescens | 24 | ||||||||||||
| Staphylococcus aureus | 18 | ||||||||||||
| 4250 (60 mJ) | Escherichia coli | 18 | |||||||||||
| Pseudomonas aeruginosa | 27 | ||||||||||||
| Serritia marcescens | 17 | ||||||||||||
| Staphylococcus aureus | 22 | ||||||||||||
| 4250 (80 mJ) | Escherichia coli | 17 | |||||||||||
| Pseudomonas aeruginosa | 27 | ||||||||||||
| Serritia marcescens | 20 | ||||||||||||
| Staphylococcus aureus | 23 | ||||||||||||
| Fe2O3 + SDS | |||||||||||||
| 4250 (20 mJ) | Escherichia coli | 25 | |||||||||||
| Pseudomonas aeruginosa | 13 | ||||||||||||
| Serritia marcescens | 27 | ||||||||||||
| Staphylococcus aureus | 30 | ||||||||||||
| 4250 (40 mJ) | Escherichia coli | 27 | |||||||||||
| Pseudomonas aeruginosa | 27 | ||||||||||||
| Serritia marcescens | 30 | ||||||||||||
| Staphylococcus aureus | 35 | ||||||||||||
| 4250 (60 mJ) | Escherichia coli | 23 | |||||||||||
| Pseudomonas aeruginosa | 22 | ||||||||||||
| Serritia marcescens | 15 | ||||||||||||
| Staphylococcus aureus | 28 | ||||||||||||
| 4250 (80 mJ) | Escherichia coli | 20 | |||||||||||
| Pseudomonas aeruginosa | 19 | ||||||||||||
| Serritia marcescens | 18 | ||||||||||||
| Staphylococcus aureus | 30 |
NPs: Nanoparticles; Con.: Concentration; ZOI: zone of inhibition; ref: References; ROS: Reactive oxygen species; NR: Not reported; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; IC50: Half maximal inhibitory concentration; COP: Coprecipitation; HDT: Hydrothermal; CS: Chemical synthesis; SG: Sol–gel; TDP: Thermal decomposition; PLA: Pulsed laser ablation; FeCl3·6H2O: Ferric chloride hexahydrate; FeCl2·4H2O: Ferrous chloride tetrahydrate; FeSO4: Ferrous sulfate; TiCl4·2H2O: Titanium tetrachloride; FeSO4·7H2O: Ferrous sulfate; Fe (NO3)3·9H2O: Ferric nitrate nonahydrate; DW: Deionized water; CTAB: Trimethylammonium bromide; PR: polyester resin; RHL: Rhamnolipid; DMF: Dimethylformamide; GEN: Gentamicin; kan: Kanamycin; CC: Chemical combustion; PEG: Poly(ethylene glycol); IO: Iron oxide; QNDPs: Quantum dots nanoparticles; SPION: Superparamagnetic Iron oxide nanoparticles; PVA: Poly(vinyl alcohol) polymer; GA: Gallic acid; p-CoA: p-Coumaric acid; RHL coated-Fe3O4@PVA@p-CoA/GA: Rhamnolipid coated Iron oxide with Poly(vinyl alcohol) polymer; Gallic acid & p-Coumaric acid; MSSA: Methicillin-sensitive Staphylococcus aureus; MRSA: Methicillin-resistant Staphylococcus aureus; VRSA: Vancomycin-resistant Staphylococcus aureus.