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Abstract 

Background: We aimed to identify plasma and urinary metabolites related to colorectal cancer (CRC) risk and elucidate their media-
tor role in the associations between modifiable risk factors and CRC.

Methods: Metabolite quantitative trait loci were derived from 2 published metabolomics genome-wide association studies, and 
summary-level data were extracted for 651 plasma metabolites and 208 urinary metabolites. Genetic associations with CRC were 
obtained from a large-scale genome-wide association study meta-analysis (100 204 cases, 154 587 controls) and the FinnGen cohort 
(4957 cases, 304 197 controls). Mendelian randomization and colocalization analyses were performed to evaluate the causal roles of 
metabolites in CRC. Druggability evaluation was employed to prioritize potential therapeutic targets. Multivariable Mendelian ran-
domization and mediation estimation were conducted to elucidate the mediating effects of metabolites on the associations between 
modifiable risk factors and CRC.

Results: The study identified 30 plasma metabolites and 4 urinary metabolites for CRC. Plasma sphingomyelin and urinary lactose, 
which were positively associated with CRC risk, could be modulated by drug interventions (ie, olipudase alfa, tilactase). Thirteen 
modifiable risk factors were associated with 9 metabolites, and 8 of these modifiable risk factors were associated with CRC risk. 
These 9 metabolites mediated the effect of modifiable risk factors (Actinobacteria, body mass index, waist to hip ratio, fasting insulin, 
smoking initiation) on CRC.

Conclusion: This study identified key metabolite biomarkers associated with CRC and elucidated their mediator roles in the associa-
tions between modifiable risk factors and CRC. These findings provide new insights into the etiology and potential therapeutic tar-
gets for CRC and the etiological pathways of modifiable environmental factors with CRC.

Colorectal cancer (CRC) is the third-most common malignant 
tumor and the second-most common cause of cancer death in 
the world (1). Evidence suggests that metabolic alterations are 
tied to the occurrence and progression of CRC (2). Some meta-
bolic pathways, such as glycolysis (3), fatty acid metabolism (4), 
and gut flora metabolism (5), are distinct between colorectal 
tumors and normal mucosa. A better understanding of these 
metabolic changes may contribute to uncovering the etiological 
mechanism of CRC and the development of novel strategies for 
CRC prevention, diagnosis, and treatment.

Metabolites are the intermediate link between genetic factors 
or environmental exposures and diseases, and they can 

accurately reflect the current health state of individuals as the 
endpoints of cellular pathways and biological processes (6). 
Currently, alterations in the plasma metabolites have been 
observed between patients with CRC and controls (7-13). Most of 
these studies were observational, however, and limited to candi-
date approaches with few numbers of metabolites, single 
biological sample sources, or small sample sizes, which restricted 
their ability to understand the causal role of metabolites in CRC. 
Furthermore, given that plasma and urine metabolites 
are strongly influenced by lifestyle factors such as diet, 
smoking, alcohol, and drugs, these metabolites could 
be potential mediators underlying the detrimental effect of 
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lifestyle risk factors and hence may represent interventional 
targets (14).

As an analytic strategy for investigating causal relationships 
between exposures and outcomes by using genetic variations as 
instrumental variables, Mendelian randomization has the dual 
benefits of minimizing confounding and diminishing reverse cau-
sality (15). Here, we employed metabolome-wide Mendelian ran-
domization and colocalization analyses to identify causal plasma 
and urinary metabolites of CRC by integrating human metabo-
lome with genome data from large-scale genome-wide associa-
tion studies (GWASs). We then evaluated whether the identified 
CRC-related metabolites can be modulated by pharmacologic or 
lifestyle interventions.

Methods
Figure 1 shows the overall study design. First, we performed a 2- 
stage (discovery and replication) metabolome-wide Mendelian 
randomization analysis to examine causal associations of plasma 
and urinary metabolites with CRC risk, using metabolite quanti-
tative trait locus data derived from 2 large-scale metabolomics 
GWASs. The statistically significant associations between metab-
olites and CRC were further prioritized by Bayesian 

colocalization. Then, we evaluated the druggability of identified 

metabolites and systematically scanned modifiable risk factors 

associated with CRC-related metabolites and CRC by employing 

univariate Mendelian randomization. Last, multivariable 

Mendelian randomization and mediation analyses were per-

formed to elucidate the metabolic mediators of the associations 

between modifiable risk factors and CRC.

Study population and datasets
The largest CRC GWAS dataset (100 204 cases and 154 587 con-

trols) to date, covering 22 million single-nucleotide variations 

(SNVs; formerly single-nucleotide polymorphisms) (16), was 

employed in the discovery metabolome-wide Mendelian random-

ization analysis. Details of the study population, genotyping, and 

imputation have previously been described (16). Independent 

GWAS summary data covering 20 million SNVs on the basis of 

4957 CRC cases and 304 197 controls from the FinnGen cohort 

were used in the replication stage (17). Supplementary Table 1 

(available online) presents the basic characteristics of these CRC 

GWASs. Ethics approvals were obtained from the relevant 

authorities, and all participants provided informed consent 

(16,17).

Step 1: Identify causal metabolites from plasma and urine for colorectal cancer (CRC)

Plasma: 651 metabolites
Urine: 209 metabolites

Discovery:
CRC meta-GWASs (100204
cases; 154 587controls)

Replication:
FinnGen (4957cases;
304 197 controls)

CRC datasets

Step 2: Uncover modifiable risk factors associated with CRC-related metabolites and CRC

• Dietary (22)
• Gut microbiome (25)
• Lifestyle (12)
• Body measurement

factors (7)

• 32 CRC causal metabolites with
convincing evidence

Step 3: Elucidate the metabolic mediators of effect of modifiable risk factors with CRC

• 13 factors causally associated
with 9 metabolites

• CRC meta-GWASs (100204 cases;
154587controls)

• 8 of 13 factors also causally
associated with CRC

Metabolome-wide
mendelian randomiza!on Colocalization analysis
Discovery: P < 0.05/number
of metabolite
Valida!on: P < 0.05

High colocalization
support: PP4 > 0.8

Outcome 1: Metabolites

Outcome 2: CRC

Univariable mendelian randomiza!on

Significant threshold: FDR < 0.05

Mul!variable mendelian
randomiza!on and Media!on
Significant threshold: P<0.05

Metabolites source

Modifiable risk factors

(((((

Druggability
DrugBank;
ChEMBL

Figure 1. Flowchart of the study design. GWAS ¼ genome-wide association study; PP4 ¼ posterior probability for H4; FDR ¼ false discovery rate.
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Summary statistics of genetic associations with plasma and 
urinary metabolites were extracted from 2 large-scale metabolo-
mics studies with 690 plasma metabolites (18) and 211 urinary 
metabolites (19), respectively. These metabolites were measured 
using an ultra–high-performance liquid chromatography-tandem 
mass spectrometry platform. Supplementary Table 2 (available 
online) shows detailed information about metabolomics studies.

Summary statistics of genetic associations for 66 modifiable 
risk factors (22 dietary factors, 25 gut microbial taxa, 12 lifestyle 
factors, and 7 obesity-related factors) were extracted from 15 
studies. Detailed information about these factors and studies is 
available in Supplementary Table 3 (available online).

Statistical analysis
Metabolome-wide Mendelian randomization 
analysis
The genetic instruments were selected using metabolite quanti-
tative trait loci from the above-mentioned 2 metabolomics stud-
ies. Supplementary Methods (available online) show the details 
for SNV selection criteria. After matching and harmonizing with 
CRC outcome data, a total of 1237 instruments for 651 unique 
plasma metabolites and 233 instruments for 208 unique urinary 
metabolites remained. Details for all the instrumental variables 
are shown in Supplementary Tables 4 and 5 (available online).

The TwoSampleMR package (20) was used to conduct 
metabolome-wide Mendelian randomization analysis. The 
method details are described in Supplementary Methods (avail-
able online). A strict Bonferroni correction method was adopted 
for correction of multiple testing in discovery stage to reduce 
false-positive findings. For statistically significant metabolites in 
the discovery dataset, we further conducted Mendelian random-
ization analysis to replicate their associations using CRC GWAS 
summary statistics from the FinnGen cohort. Finally, the 
random-effects meta-analysis was performed to estimate the 
combined estimate for each metabolite from discovery and repli-
cation datasets.

Bayesian colocalization analysis
Bayesian colocalization analysis was performed using the coloc 
package (21) on the basis of summary statistics of identified 
metabolites and CRC meta-GWASs to assess whether 2 associ-
ated signals (metabolite and CRC risk) were driven by a shared 
causal genetic variant to distinguish the confounding of linkage 
disequilibrium (LD). The strong evidence of colocalization was 
defined as the posterior probability for the hypothesis 4 (H4) 
greater than 80%. The method details are described in 
Supplementary Methods (available online).

Druggability evaluation
We searched the targets and drug information using DrugBank 
(22) and ChEMBL (23) to evaluate whether the identified metabo-
lites could serve as potential therapeutic targets. DrugBank and 
ChEMBL prioritized the potential druggable targets by integrating 
information from text mining, gene function, drug-gene interac-
tions, and expert curation. The information and the development 
process of drugs that targeted identified metabolites were docu-
mented.

Multivariable Mendelian randomization and 
mediation analyses
Furthermore, to uncover modifiable risk factors that can modu-
late CRC-related metabolites, we first employed univariate 

Mendelian randomization analysis to systematically evaluate the 
relationships of modifiable risk factors with identified metabolites 
and CRC risk, respectively. A false discovery rate by Benjamini- 
Hochberg adjusted P< .05 was identified as the significance level. 
We then performed multivariable Mendelian randomization to 
test whether metabolites mediated the effect of modifiable factors 
on CRC. The method details are described in Supplementary 
Methods (available online). Finally, the mediated proportion was 
calculated using the formula (total effect – direct effect)/total 
effect. All statistical analyses were conducted in R, version 4.1.0 (R 
Foundation for Statistical Computing, Vienna, Austria).

Results
Metabolome-wide Mendelian randomization 
analysis identified 33 metabolites for CRC
The F statistics for all instruments of metabolites were above 10, 
indicating a good strength (Supplementary Tables 4 to 5, avail-
able online). Metabolome-wide Mendelian randomization identi-
fied that 102 plasma metabolites and 25 urinary metabolites 
were associated with CRC risk with nominal significance (P< .05) 
(Supplementary Tables 6 to 7, available online). Among them, 
genetically predicted ethylmalonate and methylsuccinate levels 
in both plasma and urine were positively associated with CRC, 
while levels of X-19141 and X-12707 in both plasma and urine 
were inversely associated with CRC (Supplementary Figure 1, 
available online). After Bonferroni correction, a total of 30 plasma 
metabolites (P< 7.68× 10–5) (Table 1, Figure 2) and 4 urinary 
metabolites (P< 2.39× 10–4) (Table 1; Supplementary Figure 2, 
available online) were statistically significantly associated with 
CRC. Genetically predicted levels of 22 plasma metabolites and 2 
urinary metabolites were positively associated with CRC risk, 
while the other 8 plasma metabolites and 2 urinary metabolites 
were inversely associated with CRC. For metabolites that had 2 
sources and survived after Bonferroni correction in at least 1 
source, Mendelian randomization results of both plasma and 
urine sources and power are shown in Supplementary Table 8 
(available online). No evidence of heterogeneity and pleiotropy 
was observed (Pheterogeneity> .05, Ppleiotropy> .05) (Supplementary 
Table 9, available online). For 6 metabolite pairs, covering a total 
of 19 metabolites, that had partly overlapping instruments, mul-
tivariable Mendelian randomization prioritized 6 metabolites 
that had a more dominant effect on CRC risk (P< .008) 
(Supplementary Table 10, available online). In stratification anal-
ysis by ethnicity, most of these metabolite-CRC associations were 
still statistically significant in White and Asian populations with 
consistent effect direction (P< .05) and no statistically significant 
heterogeneity by ethnicity (Supplementary Table 11, available 
online).

In the replication stage, 27 plasma metabolites and 4 urinary 
metabolites were successfully validated in the FinnGen dataset 
(P< .05) (Table 1). In the meta-analysis of discovery and replica-
tion datasets, 29 plasma metabolites and 4 urinary metabolites 
displayed statistically significant associations with CRC risk, 
which could be classified into 13 subcategories (Table 1).

24 Metabolites were supported by colocalization 
evidence
A total of 24 metabolites (23 plasma and 1 urinary) were sup-
ported by strong evidence of colocalization, with posterior proba-
bility for H4 greater than 80% across different window sizes, 
suggesting high probability for a shared causal genetic variant 
for metabolites and CRC risk (Table 1; Supplementary Table 12, 
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available online). Combining the above evidence, CRC-related 

metabolites were classified into 3 tiers: 22 metabolites passed all 

tests and were classified into tier 1, 10 metabolites failed in 

Mendelian randomization replication or colocalization and were 

classified into tier 2, and 2 metabolites failed in both replication 

Mendelian randomization and colocalization and were classified into 

tier 3.

Two metabolites as therapeutic targets by drugs
Druggability evaluation showed that 2 of the CRC-related metab-

olites (sphingomyelin [d18:2/14:0, d18:1/14:1]�, lactose) have 

been targeted by pharmacologic intervention (Supplementary 

Table 13, available online). A drug (olipudase alfa) targeting 

sphingomyelin (d18:2/14:0, d18:1/14:1)� has been used to treat 

acid sphingomyelinase deficiency, acting to catalyze the hydroly-

sis of sphingomyelin to reduce the amount of sphingomyelin. A 

drug (tilactase) targeting lactose has been used to treat lactose 

intolerance and developed to treat irritable bowel syndrome.

Nine metabolites as interventional targets by 
modifiable factors
In univariable Mendelian randomization analysis of modifiable 

factors with 32 metabolites that have convincing evidence (tiers 
1 and 2), we found that a total of 13 modifiable risk factors (2 

dietary factors, 2 gut microbial taxa, 5 lifestyle factors, 4 obesity- 
related factors) were associated with 9 CRC-related metabolites 

(false discovery rate < 0.05) (Figure 3; Supplementary Table 14, 
available online), and 8 of 13 modifiable factors were also associ-

ated with CRC risk (false discovery rate < 0.05) (Supplementary 
Table 15, available online).

Metabolites partially mediate the effect of 
modifiable factors on CRC
Figure 4 shows the modifiable factor-metabolites-CRC pairs with 

mediating effects. For 8 modifiable factor-metabolites-CRC pairs, 
7 pairs (except for milk intake) had full summary data and were 

further evaluated using multivariable Mendelian randomization. 
The associations of phylum Actinobacteria, class Actinobacteria, 

body mass index (BMI), waist to hip ratio, fasting insulin, and 
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Figure 2. Volcano plot showing results from plasma metabolome-wide Mendelian randomization in the discovery stage. The metabolome-wide 
Mendelian randomization was performed based on summary statistics of genetic associations of a large-scale plasma metabolomics study and CRC 
meta-GWAS summary data to test associations of 651 plasma metabolites with CRC risk. Metabolites that survived after Bonferroni correction are 
labeled. CRC ¼ colorectal cancer.
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Figure 3. Heatmap showing results from Mendelian randomization of modifiable risk factors with colorectal cancer–related metabolites. � False 
discovery rate corrected P < .05. �� False discovery rate corrected P < .01. ��� False discovery rate corrected P < .001.

Figure 4. Metabolic mediators of the relationships between modifiable risk factors and CRC. A) Phylum Actinobacteria effect on CRC mediated by 
plasma galactonate and urinary lactose. B) Class Actinobacteria effect on CRC mediated by plasma galactonate and urinary lactose. C) Smoking 
initiation effect on CRC mediated by plasma 1-lignoceroyl-GPC (24:0), 1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)�. D) BMI effect on CRC mediated by 
plasma 1-lignoceroyl-GPC, mannonate�, mannose, deoxycholic acid glucuronide, 1,2-dilinoleoyl-GPC(18:2/18:2), and 1-linoleoyl-2-linolenoyl-GPC(18:2/ 
18:3)�. E) Waist to hip ratio effect on CRC mediated by plasma 1,2-dilinoleoyl-GPC (18:2/18:2), hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH))��, and 
mannose. F) Fasting insulin effect on CRC mediated by plasma mannose. BMI ¼ body mass index; CRC ¼ colorectal cancer.
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smoking initiation with CRC risk were attenuated in the multi-
variable Mendelian randomization analyses, with adjustment for 
metabolites (Figure 4), whereas the association of leisure televi-
sion watching with CRC became stronger (Supplementary Figure 
3, available online). Among them, genetically predicted levels of 
plasma galactonate and urinary lactose mediated 95% of the 
effect of phylum Actinobacteria on CRC and 76% of the effect of 
class Actinobacteria on CRC (Figure 4).

Discussion
In this study, we performed a comprehensive investigation on 
associations of plasma and urinary metabolites with CRC risk. 
The discovery metabolome-wide Mendelian randomization anal-
ysis identified 30 plasma and 4 urinary metabolites associated 
with CRC, and most of them showed cross-ethnicity effect con-
sistencies. The replication Mendelian randomization validated 30 
candidate metabolites, and 24 metabolites were supported by 
colocalization evidence. Collectively, 22, 10, and 2 metabolites 
were classified into the most convincing evidence (tier 1), con-
vincing evidence (tier 2), and low evidence (tier 3) groups, respec-
tively. Druggability evaluation prioritized 2 CRC-related 
metabolites (ie, sphingomyelin, lactose) that could be modified 
by drug interventions; additionally, 9 of these metabolites could 
be modulated by modifiable risk factors. Multivariable Mendelian 
randomization analyses indicated that the effect of modifiable 
factors (ie, Actinobacteria, smoking initiation, BMI, waist to hip 
ratio, and fasting insulin) on CRC were partially mediated by 
these identified metabolites.

Our findings indicated a potentially important role of long 
chain polyunsaturated fatty acid (n3 and n6) (adrenate [22:4n6], 
arachidonate [20:4n6], stearidonate [18:4n3], EPA, n3 DPA, n6 
DPA, nisinate [24:6n3], docosatrienoate [22:3n6]�) in CRC liability. 
The observed relationships of adrenate (22:4n6), arachidonate 
(20:4n6), and stearidonate (18:4n3) with CRC are consistent with 
previous findings (24-26), but current evidence of EPA and DPA 
on CRC are conflicting. Previous Mendelian randomization stud-
ies and our findings indicated that high plasma EPA, n3 DPA, and 
n6 DPA were positively associated with CRC (25,27). 
Observational studies showed null association between blood 
DPA and EPA levels and CRC and even inverse association 
between dietary their intake and CRC risk (27). Given that in diet-
ary assessments it is difficult to be precise and observational 
studies are susceptible to confounding factors, further interven-
tion studies are needed to explain these inconsistent findings. 
We additionally found positive associations of nisinate (24:6n3) 
and docosatrienoate (22:3n6)� with CRC. In rodents, nisinate 
(24:6n3) is both a product of and a precursor to docosahexaenoic 
acid in the n-3 PUFA biosynthetic pathway, and docosahexaenoic 
acid has been reported to influence the invasion in CRC cells (28).

Our findings also suggested a potential role of phosphatidyl-
choline and choline metabolites in CRC development. 
Phosphatidylcholine is a structural component of mammalian 
membranes and an important source of lipid second messengers; 
it has been reported to be closely involved in carcinogenesis (29). 
Choline metabolites are derived from the synthesis and catabo-
lism of phosphatidylcholine, and the phosphatidylcholine cycle 
of synthesis and catabolism helps maintain the proliferative phe-
notype of tumor cells and supports tumor progression and culmi-
nate in resistance to therapy (30). Consistently, we found a 
detrimental effect of plasma arachidonoylcholine (an acylated 
derivative of choline) on CRC. We found that genetically pre-
dicted higher levels of plasma 1-stearoyl-2-arachidonoyl-GPC 

(18:0/20:4), 1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6), and 1- 
palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) and lower levels of 
1,2-dilinoleoyl-GPC (18:2/18:2) and 1-linoleoyl-2-linolenoyl-GPC 
(18:2/18:3)� were associated with an increased risk of CRC, which 
expanded the causal evidence of PC subclass metabolites with 
CRC.

We observed detrimental effects of plasma mannose and uri-
nary lactose and the protective effect of plasma galactonate on 
CRC. Consistently, Long et al. (9) found that patients with CRC 
had higher levels of mannose than controls. A randomized con-
trolled trial indicated that intake of lactose-rich foods increased 
the risk of diarrhea in patients with CRC (31). Galactonate is a 
metabolic breakdown product of galactose, a monosaccharide 
that together with glucose forms lactose. Intestinal galactose 
shows a protective effect against colon cancer through binding 
lectins and inhibiting mucosal proliferation, and the lower level 
of galactose leads to the pathogenetic process of CRC (32). 
γ-Glutamylthreonine is a dipeptide composed of γ-glutamate and 
threonine. Both our study and a previous Mendelian randomiza-
tion study reported a positive association between blood γ-gluta-
mylthreonine and CRC (12).

The identified metabolites could be modulated by either phar-
macological intervention or modifiable factors. Specifically, 2 
metabolites (sphingomyelin, lactose) could be modulated by 
drugs used to treat acid sphingomyelinase deficiency or irritable 
bowel syndrome. Also, avoiding excessive consumption of food 
products containing lactose could be efficient. Nine of the identi-
fied CRC-related metabolites were observed to be affected by 
modifiable factors. The identified metabolites partially mediated 
the effect of Actinobacteria, BMI, waist to hip ratio, fasting insu-
lin, and smoking initiation on CRC. The positive association 
between Actinobacteria and CRC was found to be mediated by 
higher levels of urinary lactose and decreased levels of plasma 
galactonate. Similarly, a nested case-control study reported that 
compared with controls, patients with CRC had more abundant 
oral Actinobacteria (33). Other studies also showed that 
Actinobacteriota was 1 of the dominant colonic mucosal micro-
biota in patients with CRC (34) and has shown abundance even in 
the colorectal adenomas stage (35). Because these results are 
derived by retrospective studies, however, they may be due to 
reverse causality. The association of Actinobacteria with lactase 
gene (LCT) has previously been documented, suggesting an inter-
action of Actinobacteria with the gut and lactose metabolism 
(36). Consumption of lactose may increase its availability in 
colonic bacteria (such as Actinobacteria and Negativibacillus) 
that use it as the energy source for which to compete, especially 
for adults with lactase deficiency (36). An abundance of 
Actinobacteria may lead to metabolic disorders of lactose and 
galactonate and could contribute to an increased CRC risk. 
Plasma mannose was found to partially mediate the relation-
ships of smoking initiation, BMI, and waist to hip ratio with CRC. 
Similarly, Long et al. (9) found a statistically significant joint 
effect of smoking with mannose and a statistically significant 
interaction between BMI and mannose in modifying CRC risk. We 
found that fasting insulin was positively associated with CRC and 
that the association was partially mediated by plasma 1-ligno-
ceroyl-GPC (24:0) and 1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)�. 
Gut microbiota, obesity, insulin resistance, and smoking have 
been linked to the etiology of CRC by abundant evidence from 
observational studies (37). We expanded the causal evidence and 
elucidated the potential etiologic metabolic pathways of these 
modifiable factors with CRC.
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The current study has several strengths. First, to our knowl-
edge, this study is the first to comprehensively evaluate the 
causal associations of metabolites from plasma and urine with 
CRC, which helps provide new insights into the etiology and 
potential therapeutic targets for CRC. Second, the present study 
was performed by employing Mendelian randomization design 
and colocalization based on well-designed GWASs with large sam-
ple sizes, which enhanced the statistical power and reduced the 
risk of confounding bias and reverse causation. Additionally, we 
assessed the mediating role of CRC-related metabolites in modifi-
able factors and CRC, which provided new insights into the etio-
logic pathways of modifiable environmental factors with CRC. 
Several limitations of this study should be acknowledged, as well. 
First, the strict significance threshold of Bonferroni correction in 
discovery Mendelian randomization may filter out some impor-
tant metabolites, although these findings may be less prone to 
false-positive errors. Second, instrumental variables for gut micro-
biota in multivariable Mendelian randomization stage were 
selected at a more lenient threshold value (P< 5×10−6), as indi-
cated by the original microbiome GWAS of MiBioGen consortium 
and other Mendelian randomization studies that the selection of 
associated SNVs using lenient P value thresholds had the greatest 
explained variance on microbial features (38,39). The F statistics of 
all instrumental variables used in the current study were above 
10, indicating low risk of weak instruments bias. Third, partici-
pants of urine metabolites GWASs had reduced kidney function, 
which may not be representative of the general population, 
despite the relevant genetic effects on most urine metabolite con-
centrations between individuals with reduced kidney function and 
the general population (19). Further studies based on the general 
population are required. Fourth, the mediation effects of modifi-
able factor-metabolite-CRC pairs were discovered mainly by stat-
istical analysis. Further experiment research is needed to verify 
these findings and elucidate the underlying biological mechanism.

This study identified key metabolites with a potential causal 
association with CRC risk and elucidated the metabolic media-
tors of the effect of modifiable risk factors on CRC. Our findings 
provide new insights into the etiology and potential therapeutic 
targets for CRC and the etiologic pathways of modifiable environ-
mental factors with CRC. Further interventional studies are 
needed to evaluate whether the concentrations of these metabo-
lites could be modified through drug intervention or lifestyle 
changes and ultimately reduce CRC risk.
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