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Abstract

Background: Sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA from wastewater samples has
emerged as a valuable tool for detecting the presence and relative abundances of SARS-CoV-2 variants in a community. By analyzing
the viral genetic material present in wastewater, researchers and public health authorities can gain early insights into the spread of
virus lineages and emerging mutations. Constructing reference datasets from known SARS-CoV-2 lineages and their mutation profiles
has become state-of-the-art for assigning viral lineages and their relative abundances from wastewater sequencing data. However,
selecting reference sequences or mutations directly affects the predictive power.

Results: Here, we show the impact of a mutation- and sequence-based reference reconstruction for SARS-CoV-2 abundance estimation.
We benchmark 3 datasets: (i) synthetic “spike-in”” mixtures; (ii) German wastewater samples from early 2021, mainly comprising Al-
pha; and (iii) samples obtained from wastewater at an international airport in Germany from the end of 2021, including first signals
of Omicron. The 2 approaches differ in sublineage detection, with the marker mutation-based method, in particular, being challenged
by the increasing number of mutations and lineages. However, the estimations of both approaches depend on selecting representa-
tive references and optimized parameter settings. By performing parameter escalation experiments, we demonstrate the effects of
reference size and alternative allele frequency cutoffs for abundance estimation. We show how different parameter settings can lead
to different results for our test datasets and illustrate the effects of virus lineage composition of wastewater samples and references.

Conclusions: Our study highlights current computational challenges, focusing on the general reference design, which directly impacts
abundance allocations. We illustrate advantages and disadvantages that may be relevant for further developments in the wastewater
community and in the context of defining robust quality metrics.
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Background

Coronavirus disease 2019 (COVID-19), the highly contagious viral
illness caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), is the most consequential global health crisis since
the era of the influenza pandemic of 1918. Since its discovery,
SARS-CoV-2 has caused >775 million confirmed cases of COVID-
19 [1], and currently >4,200 SARS-CoV-2 lineages have been de-
fined by the Pango network [2-4]. Genome sequencing has played
a central role during the COVID-19 pandemic and beyond in sup-
porting public health agencies, monitoring emerging mutations
in the SARS-CoV-2 genome, and advancing precision vaccinology
and optimizing molecular tests [5-7]. Massive sequencing of clini-
cal samples has made monitoring of emerging virus variants pos-
sible while emphasizing temporal and spatial variation. With on-
going transmission, further mutations occur in the genome that
are part of the viral evolutionary process and result in unique fin-
gerprints. These fingerprints, along with other metrics such as the
number of samples with the same mutation profile and their ge-
ographic occurrence, are used to label SARS-CoV-2 variants, such
as through the nomenclature system proposed and maintained by

the Pangolin network and tool [2, 3]. These definitions of virus vari-
ants and lineages and the associated mutation profiles can then
be used to search for and estimate the proportion of SARS-CoV-2
lineages in mixed samples (e.g., wastewater).

Sequencing capacity, however, is limited, cannot be sustained
over the long term for so many clinical samples, and only allows
extrapolation based on a relatively small fraction of all infections
occurring during the pandemic. In addition, with decreasing inci-
dence numbers, sampling and sequencing efforts are decreasing,
raising the need for representative, medium-scale, and sustain-
able surveillance systems [7] or other approaches. From 1 January
2020 until 19 April 2023, 931,260 genome sequences of COVID-19-
positive clinical samples from Germany have been uploaded to
the international GISAID platform [8], representing a proportion
of 2.426% out of a total of 38,388,247 reported SARS-CoV-2 cases
in Germany [9]. In Germany and other countries, complete detec-
tion and sequencing of all positive cases were impossible due to
the high infection numbers. However, wastewater-based epidemi-
ology (WBE) has shown the potential to get a much broader snap-
shot of the SARS-CoV-2 variant circulation at a community level

Received: June 12, 2023. Revised: April 30, 2024. Accepted: July 5, 2024

© The Author(s) 2024. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited


http://orcid.org/0000-0002-7249-069X
http://orcid.org/0000-0001-9365-5951
http://orcid.org/0000-0001-7867-4353
http://orcid.org/0000-0002-7521-093X
http://orcid.org/0000-0002-9163-9541
http://orcid.org/0000-0001-7090-8717
mailto:HoelzerM@rki.de
https://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2024, Vol. 13

[10-15]. Integrating genome sequencing with WBE can provide in-
formation on circulating SARS-CoV-2 variants in a region [16, 17].
The sequencing methods commonly used in WBE are similar to
the ones used for clinical samples, using a general strategy that
employs the sequencing of the whole genome via amplification
of small, specific regions of the SARS-CoV-2 genome (i.e., targeted
sequencing of amplicons via predefined primer sequences) [11, 14,
18-20]. Targeted sequencing can achieve a high degree of coverage
of informative regions of the genome and, most important, reveal
to some extent which polymorphisms are linked, making it pos-
sible to track SARS-CoV-2 variants of concern (VOCs) and other
virus variants.

A particular challenge in performing sequencing and analysis
of SARS-CoV-2 from wastewater samples concerns the viral RNA
present in many individual fragments rather than complete viral
genomes. In addition, these fragments come from the excretions
of many infected individuals, making it challenging, if not impos-
sible, to reconstruct individual genomes using bicinformatic ap-
proaches like the ones developed for clinical samples of individual
patients. Thus, the degradation and fragmentation of SARS-CoV-
2 RNA, combined with the presence of multiple virus variants in
wastewater samples, make it challenging to reconstruct reliable,
complete consensus genomes, often resulting in sequences that
represent either a mixture of lineages or predominantly the most
abundant variant. In need of computational approaches to ana-
lyze mixed wastewater samples, several groups developed similar
tools for quality control, sequencing data analysis, and SARS-CoV-
2 lineage abundance estimation instead of reconstructing a single
consensus genome [10, 16, 18, 21-31]; see Table 1.

Most approaches focus on detecting predefined characteristic
marker mutations in the sequenced reads and utilize this infor-
mation for abundance estimation. Common to all these tools is
that they require a reference set of either signature marker mu-
tations (hereafter called mutation based) or complete genome se-
quences (hereafter called sequence based) from which characteris-
tic mutation profiles or k-mers (short subsequences of length k)
are derived.

Kayikcioglu et al. [31] compared the performance of 5 se-
lected approaches for SARS-CoV-2 lineage abundance estimation
on simulated and publicly available mixed population samples.
They found that Kallisto [32], as first suggested by Baaijens et al.
[29], followed by Freyja [21], achieved most accurate estimations.
Sutcliffe et al. [33] compared 9 computational tools using simu-
lated genomic data in another recent study. Among other things,
they tested how the background noise of a previously unknown
lineage affects quantification, finding a weak but significant ef-
fect on the estimate of the frequency of known lineages that are
part of the reference.

In a mutation-based approach, to estimate the proportion of spe-
cific SARS-CoV-2 variants present in a mixed sample, mutations
or combinations of mutations characteristic or unique for these
variants based on clinical samples can be compared with the mu-
tations detectable in the sample. In principle, and as implemented
in a previously used approach [20] (which we refer to here as MA-
MUSS, Table 1), the occurrence of mutations can be represented by
the value of the relative abundance of a VOC or other viral vari-
ant. First, the frequency of occurrence of each mutation is cal-
culated from the multiplication of the reads and the allele fre-
quency. The relative abundance describes the percentage ratio of
the sum of the read abundance of the characteristic mutations of
a SARS-CoV-2 virus variant and the sum of the read abundance
of all mutations found in a sample. Accordingly, only the previ-
ously selected virus variants and signature mutations that form

the reference set are evaluated, and others that may occur in the
sample are ignored. Another prominent mutation-based approach
is implemented in the tool Freyja [21]. Freyja solves the demix-
ing problem to recover relative lineage abundances from mixed
SARS-CoV-2 samples using lineage-determining mutational “bar-
codes” derived from the UShER global phylogenetic tree [34]. Us-
ing mutation abundances and sequencing depth measurements
at each position in the genome, Freyja estimates the abundance
of lineages in the sample.

As a different methodological approach to reconstruct a refer-
ence, the full genome sequence information can be used to auto-
matically select appropriate features (e.g., signature mutations,
k-mers) and to use them to evaluate the proportions of SARS-
CoV-2 variants in wastewater samples instead of a preselected set
of marker mutations (sequence based) [27-29] (Table 1). Again, in-
formation derived from sequencing of clinical samples and their
lineage annotation are used to generate a representative refer-
ence dataset that can be then searched via established (pseudo)-
alignment methods such as Kallisto [32], as suggested by Baaijens
et al. in their VQL tool [29].

In this study, we specifically investigated the effects of refer-
ence design and composition on the assignment of relative abun-
dances of SARS-CoV-2 lineages from wastewater sequencing data.
As mentioned, various tools have been developed during the pan-
demic (Table 1), and they all have different facets in calculating
relative abundances [17, 31, 33]. Here, we tested MAMUSS as a
mutation-based reference representative and VLQ-nf as a sequence-
based reference representative on 3 datasets: (i) a synthetic sce-
nario of “spike-in” mixture samples; (i) samples from Germany
from a European wastewater study from early 2021, mainly com-
prising the VOC Alpha [12]; and (iii) a sample obtained from
wastewater sequencing at the international airport in Frankfurt
am Main, Germany, from the end of 2021, including first signals of
the VOC Omicron [20]. The 2 approaches for lineage abundance es-
timation (mutation based/sequence based) are mainly distinguished
by the input dataset used for the reference set design and sub-
sequent lineage assignment (Fig. 1). Here, we compare exemplary
implementations of both general approaches. MAMUSS, as previ-
ously applied in [20], implements a representative basic workflow
for the mutation-based approach focusing on unique marker muta-
tions. For the sequence-based approach, we use pseudo-alignments
via Kallisto [32] as proposed initially by [29] and their VLQ tool.
Based on their idea and scripts, we implemented a slightly modi-
fied version of VLQ in a Nextflow [35] pipeline that we call VLQ-nf
[36]. We chose VLQ for our sequence-based method because it re-
lies on Kallisto as an established tool for quantifying transcripts
[32]. A major benefit of implementing the representative meth-
ods was the complete control over code, parameters, and inputs,
which allowed us to understand better, compare, and interpret the
results of our benchmark study and the effects on the reference
design. For all 3 datasets, we deliberately selected data from 1 se-
quencing technology, Ion Torrent, to demonstrate reference de-
sign and mutation/sequence-based effects in a specific, controlled
context with which we have much experience [12, 20, 37]. How-
ever, it must be noted as a limitation of our study that we are only
investigating 1 sequencing technology.

We show that both the mutation-based and sequence-based ap-
proach can reflect the proportions of SARS-CoV-2 lineages in
the different samples but also comprise differences in resolution
and the detection of similar sublineages depending on the refer-
ence set. Both approaches also show advantages and disadvan-
tages in selecting signature marker mutations and genome se-
quences, respectively. For the mutation-based approach as imple-
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Table 1: Collection of tools available for sequencing data analysis in WBE and SARS-CoV-2 lineage proportion estimation. We distinguish
the tools roughly based on their approach to define a reference set into those using predefined marker mutations and those relying on
full genome sequences or both. The 2 implementations we selected for reference construction and our comparison are indicated in bold.
Please note that C-WAP [31] wraps multiple approaches while also including a new mutation-based tool, LINDEC.

Mutation based

Tool Citation Code
MAMUSS [20] github.com/lifehashopes/MAMUSS
Freyja [21] github.com/andersen-lab/Freyja
Lineagespot [22] github.com/nikopech/lineagespot
LCS [23] github.com/rvalieris/LCS
Alcov [24] github.com/Ellmen/alcov
VaQuERo [16] github.com/fabou-uobaf/VaQuERo
MMMVI [25] github.com/dorbarker/voc-identify
PiGx [26] github.com/BIMSBbioinfo/
pigx_sars-cov-2
SAMRefiner [18] github.com/degregory/SAM_Refiner
COJAC [10] github.com/cbg-ethz/cojac
[30] —
wastewaterSPAdes
gromstole — github.com/PoonLab/gromstole
CovMix — github.com/chrisquince/covmix

Sequence Based

Tool Citation Code

VLQ-nf this study https://github.com/rki-mf1/VLQ-nf

VLQ [29] github.com/baymlab/
wastewater_analysis

VirPool [27] github.com/fmfi-compbio/virpool

V-pipe SC2 [28] cbg-ethz.github.io/V-pipe/sars-

cov-2

Mutation Based And Sequence Based

Tool Citation Code

C-WAP [31] github.com/CFSAN-Biostatistics/C-

WAP

mented in MAMUSS, it became more and more challenging to se-
lect (sub)lineage-defining marker mutations that provide robust
assignments in the context of the increasing diversity and con-
vergent evolution of SARS-CoV-2 lineages.

Data Description

We selected 3 wastewater datasets for our comparison to cover (i)
a synthetic scenario of “spike-in” mixture samples (Standards; n =
16 samples); (i) actual wastewater samples from early 2021 from a
large European study and collected in Germany [12], mainly com-
prising the VOC Alpha (Pan-EU-GER; n = 7 samples); and (iii) 1
sample from the end of 2021, including first signals of the VOC
Omicron obtained from wastewater at the international airport
in Frankfurt am Main, Germany (FFM-Airport; n = 1 sample) [20].
The Standards comprise RNA from 10 SARS-CoV-2 variants (includ-
ing the original Wuhan-Hu-1 A.1 lineage), which were mixed in
different proportions to generate 16 samples for library prepara-
tion and sequencing via Ion Torrent (Table 2). The sequencing data
for the Standards benchmark are available under the NCBI BioPro-
ject number PRINA912560. Please note that no real wastewater
was used to construct the Standards (see Methods). The Pan-EU
WBE study produced high-quality sequencing data for SARS-CoV-
2 wastewater samples across 20 European countries, including 54
municipalities, and is available under the NCBI BioProject num-

ber PRINA736964 [12]. We selected the 7 German samples from
this study (SRX11122519 and SRX11122521-SRX11122526; Pan-EU-
GER) for our benchmark, which were sampled in March 2021 and
mainly cover the rise of the VOC Alpha during that time. Lastly,
we obtained 1 sample (SRR17258654; NCBI BioProject number PR-
JNA789814) from wastewater sampling in November 2021 at the
international airport in Frankfurt am Main (FFM-Airport), where
we found first signals and low proportions of the VOC Omicron
arriving during that time in Germany [20]. Note that we deliber-
ately selected Ion Torrent as sequencing technology to harmonize
between the selected datasets and to focus on the reference de-
sign and mutation/sequence-based effects in a specific, controlled
context with which we have much experience [12, 20, 37] (see also
“Potential implications” section).

Analyses

Both the mutation-based and sequence-based
approaches yield similar SARS-CoV-2 lineage
proportions for mixed Standard samples but
differ on sublineage level

We analyzed our Standards dataset (Table 2) using the sequence-
based approach implemented in VLQ-nf and an implementation
of a mutation-based approach, MAMUSS (Table 1). Given ground-
truth knowledge, we assessed the qualitative and quantitative
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Figure 1: Schematic overview of reference design and lineage abundance estimation from SARS-CoV-2 wastewater sequencing data. (A) Wastewater
samples are collected from sewer influent, for example. RNA is extracted and, in the context of SARS-CoV-2, usually amplified as cDNA using
established primer schemes and then sequenced to obtain short snippets of viral RNA (reads). (B) Current methods (Table 1 for lineage assignment and
abundance estimation) need a reference dataset, usually constructed from genomes and mutations derived from clinical sequencing and patient
samples. Here, we distinguish 2 general approaches to design the reference, where either marker mutations are preselected (mutation based) or
full-genome sequences are selected (sequence based). (C) The data analysis part may differ considerably depending on the implementation. However, all
tools attempt to assign known lineages and estimate their frequency in the mixed sample based on mutations that can be detected in the reads. Our
study uses MAMUSS as an exemplary mutation-based approach based on a 2-indicator classification and preselected marker mutations characteristic
for certain lineages [20]. For the sequence-based approach, we use a Nextflow implementation (VLQ-nf) of the slightly adjusted VLQ pipeline as proposed
by Baaijens et al. [29] and is based on the tool Kallisto. AAF: alternative allele frequency, used as a cutoff to define a mutation as a feature.

performance of both methods, yielding controlled insights into
the strengths and limitations of each approach. When comparing
the results with the actual sample composition in the following
sections, we define a false-positive hit as a lineage that was esti-
mated with a frequency above zero without being included in the
sample mixture. Analogously, we define a false-negative hit as a
lineage that was not detected by a tool even though it is included
in the sample mixture by design.

VLQ-nf detected all correct spike-in lineages across all samples.
The output for every sample showed, however, a certain amount
of false-positive predictions comprising lineages that are part of
our reference set but not used as spike-ins (Fig. 2). We observed the
most consistent false-positive estimations for Gamma (P.1), with

up to 1.61% abundance across all samples. In contrast, MAMUSS
did not detect all spike-in lineages but showed more robust results
in quantifying fewer false positives in the samples (Fig. 2).

When comparing false detection and over- or underestimation
for both approaches, we partly observed similar patterns among
specific groups of lineages: the mutation-based approach showed
a bias in samples comprising A.1 toward not being able to detect
A.1. In sample Mix_06, the mutation-based approach could not de-
tect Iota (B.1.526) and falsely detected BA.1. The sequence-based ap-
proach considerably underestimated B.1.526 in Mix_06, whereas it
falsely detected B.1.526 in Mix_01 and Mix_02.

Furthermore, both approaches showed distinct patterns of
false estimation among B.1.617.2 (Delta) and its sublineages AY.1
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Table 2: Composition of synthetic mixture “spike-in” Standards.
Here we show the proportions of which different SARS-CoV-2 lin-
eages were mixed to generate a collection of artificial samples
for our benchmark. For example, the sample Mix_01 comprises
25% original Wuhan-Hu-1 A.1 and 75% Alpha B.1.1.7 (0.25q4 —
0.75a1pna)- All samples were sequenced with Ion Torrent and raw
data are available under BioProject number PRINA912560 in the
NCBI Sequence Read Archive. Please note that no real wastewa-
ter was used to construct these synthetic mixtures because we
wanted to reduce any side effects for our gold standard in the con-
text of this study.

Sample ID Composition

Mix_01 0.250r5 — 0.75411a

MlX_02 0.25079 — 0.25;9@“1 — O~5alpha

Mix_03 0.2541pma — 0.25eta — 0.25gamma — 0.250r,

Mix_04 0.50@ — 0.5i4ta

Mix_05 0.250rg — 0.25i0t4 — 0.50mia2.5

MlX_06 0-25a1pha — O-QSiota — 0-250m13A2,5 — 0-250miBA2

Mix_07 0.50miBa2.5 — 0-5omiBa2

Mix_08 0.250rg = 0.25q1pha — 0.250mipa2.5 — 0.250minA2

Mix_09 0.5geltaar1 — 0-5deltanr2

MiX_lO 0'25deltaAYl - O~25deltaAY2 - O-Sdelta

Mix_11 0.25ge1taav1 — 0-254eitaay2 — 0-Somina1

Mix_12 0.254¢1taay1 — 0.254¢1tany2 — 0-250mia1 —
O-ZsomiBAZ.S

Mix_13 0.254¢1taav1 — 0.254¢1taay2 — 0-250mia1 —
OQSm‘mBAZ

MiX_14 O'Sdelm - O'ZsomiBAl - 0-250miBA2

Mix_15 0.25ge1taav1 — 0-254eitaay2 — 0-250mipa1 —
0.25gmipa2.5

Mix_16 0.25g1pha = 0-25ge1ta — 0-250mipa1 — 0-250mina2

org — Wuhan-Hu-1 A.1; gpne — Alpha B.1.1.7; petq — Beta B.1.351; ggmme — Gamma P.1;
iota — lota B.1.526; gorq — Delta B.1.617.2; geraay1 — Delta AY.1; geaavo — Delta AY.2;
omiza1 — Omicron BA.1; smigas — Omicron BA.2; guipass — Omicron BA.2.5

and AY.2. In samples containing no Delta and only Delta sublin-
eages, both approaches falsely detected Delta while underesti-
mating AY.1 or AY.2. In samples containing only Delta and no Delta
sublineages, MAMUSS falsely detected AY.1 and AY.2, while un-
derestimating Delta. In samples containing Delta and Delta sub-
lineages, VLQ-nf overestimated Delta and underestimated AY.1,
while MAMUSS overestimated Delta sublineages and underesti-
mated Delta.

Both approaches estimated BA.1 and BA.2 without distinct con-
flicts among each other. We observed slight over- or underestima-
tion in the abundance of Omicron lineages to co-occur with un-
derestimation of Delta sublineages in samples Mix_10-16.

Finally, we found both approaches to match the ground-truth
proportions of the Standards samples well on the parent lineage
level. On the sublineage level, we found the false-negative detec-
tion of B.1.526 in sample Mix_06 and the quantification conflicts
among Delta (sub)lineages to be the most prominent differences
between both approaches. For the mutation-based approach, we
found the false-negative detection of A.1 to be the second most
prominent shortcoming observed in this experiment.

VLQ-nf detects Alpha sublineages while
MAMUSS finds distinctly larger abundances for
rising lineages Beta, Gamma, and Delta in the
Pan-EU-GER data

We analyzed German samples from the Pan-EU study [12] using
both approaches to assess their performance on wastewater se-
quencing data. In the lack of ground-truth knowledge, we eval-
uated both approaches by relating the lineage predictions and

quantification to the pandemic background in Germany based on
data from clinical sampling strategies. Moreover, we performed
experiments on wastewater sequencing data to evaluate the po-
tential benefits of wastewater-based surveillance compared to
clinically based data.

According to global surveillance projects based on clinical ge-
nomic sequence data [38-41], the pandemic situation in Europe
from February until April 2021 was mainly dominated by the
SARS-CoV-2lineages Alpha, Beta, cases of B.1.177 and sublineages,
B.1.258 and sublineages, and B.1.160 (Supplementary Fig. S1). The
pandemic situation in Germany at that time was mainly dom-
inated by VOCs Alpha and Beta as well as lineages B.1.177.86,
B.1.177.81,B.1.258, B.1.177, and B.1.160. According to GISAID sub-
missions during that time [7], approximately the same lineages
and multiple other low-abundant global and European sublin-
eages were reported from clinical sampling strategies. Here we
focused the comparison on the lineages Alpha (B.1.1.7), Beta
(B.1.351), Gamma (P.1), Delta (B.1.617.2), and the respective sub-
lineages, as those were or became the dominant lineages around
the time of wastewater sampling in Germany in the context of the
Pan-EU project [12].

With VLQ-nf, we quantified the lineage and sublineage level.
In comparison, MAMUSS predicted lineage abundances only
at the parent level (Fig. 3). Both approaches predicted Alpha
(sub)lineages to be the most abundant lineages in the dataset.
Specifically, the sequence-based approach found Alpha sublineages
Q.1and Q.7 to be the most abundant. Yet, those Alpha sublineages
were not reported among the most frequent cases based on clini-
cal sampling strategies (see Supplementary Fig. S1). However, this
is not necessarily the case, as the SARS-CoV-2 lineages can circu-
late in different proportions in wastewater and clinical environ-
ments. We also need to take into account the dynamic nomen-
clature system. The discrepancy could also be due to the retro-
spective definition and late classification of Alpha sublineages
and again emphasizes the potential influence of reference bias.
We also detected Beta, Gamma, and Delta (sub)lineages at abun-
dances below 1%, which are not visible at the scale of Fig. 3. In
contrast, we found distinctly larger abundances of Beta, Gamma,
and Delta in the samples using MAMUSS.

Mutation- and sequence-based approaches recover
a similar Omicron proportion from an early
airport wastewater sample

We used both approaches to analyze a real wastewater sequenc-
ing sample (SRR17258654, FFM-Airport) [20]. We compared lineage
predictions and quantification against the pandemic background
in Europe and South Africa at the time of wastewater sampling.
We evaluated both approaches in terms of their ability to de-
tect (sub)lineages at low abundances, specifically to detect low-
abundant signals of Omicron BA.1, which was the dominant Omi-
cron sublineage circulating during that time (BA.2 was not yet de-
tected in clinical or wastewater sequencing data).

The pandemic situation in Europe and South Africa from Oc-
tober to December 2021 was dominated by Delta sublineages
and increasing incidences of Omicron and its sublineages [38-
41] (Supplementary Fig. S2). According to GISAID submissions,
mostly Delta sublineages and a few cases of Omicron and other
minor global sublineages were reported based on clinical sam-
pling strategies.

With VLQ-nf, we detected many Delta sublineages at abun-
dances ranging from less than 1% to around 8% that in sum con-
tribute over 93% abundance in the wastewater sample (Fig. 4).


https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
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Figure 2: Comparison of the occurrence of predefined mixtures of SARS-CoV-2 variants (Standards) (A) at Pangolin parent lineage level and (B) at
Pangolin sublineage resolution based on the sequence-based (VLQ-nf) and mutation-based (MAMUSS) approach.

Roughly half of the detected Delta sublineages were estimated
with abundances of less than 1%. In terms of Omicron, VLQ-nf
detected BA.1 with 1.44%. Finally, we observed lineages and sub-
lineages from other families with abundances of less than 1%
(“Other”).

We observed a similar lineage abundance profile with MA-
MUSS. We found that most abundance consists of 2 approximately
equally abundant Delta sublineages. We detected a small pro-
portion close to 1% of Omicron. Compared to VLQ-nf, we did not
find any low-abundant quantification for other (sub)lineages, ex-
plained by the smaller reference dataset only composed of a par-
ticular collection of marker mutations.

We found that the estimated abundance profiles of lineages
from both approaches matched well with the pandemic back-
ground in Europe and South Africa at the time of wastewater sam-
pling. However, when considering abundance estimations of the
sequence-based approach at the sublineage level, we discovered dif-
ferences regarding the most abundantly predicted Delta sublin-
eages compared to the more prominent Delta sublineages derived
from clinical sampling strategies in European and South African
GISAID submissions (compare Fig. 4 and Supplementary Fig. S2).
The sequence-based approach predicted AY.25.1, AY.125.1, AY.122.4,
AY.121, and AY.43.1 to be most abundant in the analyzed sam-
ple. In contrast, GISAID submissions showed AY.4, AY.43, AY.122,
AY.4.2, AY.126, AY.4.2.2, and AY.98 as the most frequent Delta sub-

lineages in Europe during that time. Additionally, we found AY.45,
AY.32, AY.91, AY.116, AY.122, AY.6, and AY.46 to be the highest re-
ported Delta sublineages in South Africa. While our predictions
do not match the clinically reported frequencies, some of our pre-
dictions belong to the same lineage family as the most frequently
reported lineages from clinical sampling (e.g., AY.43.1 is a sublin-
eage of AY.43, AY.122.4 is a sublineage of AY.122, and AY.125.1 is
a sublineage of AY.125, which we found among the 20 most fre-
quently reported lineages in Europe using VLQ-nf).

Alternative allele frequency and size of reference
database impact the sequence-based method, but
the effects also depend on lineage composition
in the sample

To better understand the impact of specific parameters on the per-
formance of the sequence-based method, we performed parame-
ter escalation experiments (see Methods) on the Standards bench-
mark set as well as the Pan-EU-GER and FFM-Airport datasets. Due
to the similar findings for all 3 datasets, here we only present
the results based on the Standards and refer to the results of the
Pan-EU-GER and FFM-Airport datasets in the supplementary ma-
terial (subsection “Alternative allele frequency and size of ref-
erence database impact the sequence-based method but the ef-
fects are dependent on sample composition”). We investigated
the impact of reference construction parameters on lineage pro-
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portion estimation and aimed at uncovering the potential bias of
the pseudo-alignmentimplemented in the sequence-based method.
Specifically, we focused on the alternative allele frequency (AAF)
threshold and the maximum number of sequences per lineage.
The AAF threshold defines the minimum alternative allele fre-
quency for a mutation to be considered characteristic of a lineage.
First, genome sequences are added as lineage references so that
each mutation that exceeds the AAF threshold is detected at least
once by as few sequences as possible. Next, additional genomes
are added until the maximum number of sequences per lineage
is reached. Thus, the AAF threshold controls the level of genomic
variation captured for each lineage, and the maximum number of
sequences per lineage controls the reference size.

Standards

Across most Standards samples and experiments, VLQ-nf detected
all spike-in lineages and predicted reasonable estimates (Fig. 5).
However, we consistently observed low-abundant false-positive
hits in all of our mixed samples, comprising lineages that are part
of the reference index but not used as spike-ins. We found the
most prominent false-positive detection to be Gamma. We ob-
served similar patterns of false-positive detection and false es-
timation among specific groups of lineages across all parameter
settings: for the first 8 samples Mix_01 to Mix_08, most cases of
false estimation of spike-in lineage abundances occurred along-
side false positives or negatives of B.1.526 and false positives of
BA.1. For the samples Mix_09 to Mix_16, we observed most detec-
tion conflicts to involve ambiguities among Delta and its sublin-
eages AY.1 and AY.2.

We found that the detection and quantification performance
of the sequence-based method via VLQ-nf changed with varying
thresholds for the alternative allele frequency and maximum
number of genomes per reference lineage. Specifically, we found

those changes to vary across samples and observed them not to
behave identically with consistent parameter changes. For exam-
ple, at the minimum reference size (Supplementary Table S1), we
observed abundance predictions for samples Mix_09 and Mix_11-
16 to first improve with an increasing AAF threshold. However,
with a further increasing AAF threshold, we observed more false
estimations of Delta sublineages. Furthermore, although Mix_10
shares most of its spike-in lineages with Mix_09, the performance
of abundance estimations for sample Mix_10 first decreased and
then improved again when increasing the AAF threshold.

We made a similar observation for the maximum number of
sequences per lineage. With an AAF threshold of 0.5, the abun-
dance estimates for Mix_01 improved with increasing number of
reference genomes per lineage, while we found them to deterio-
rate for Mix_09, which includes a distinctly different sample com-
position. Overall, we found lineage abundance estimations to be-
come slightly more robust across varying AAF thresholds with in-
creasing reference size. This is best reflected in the abundance
profiles for samples Mix_09 to Mix_15 when looking at the propor-
tional changes across increasing AAF settings for the minimum
reference size throughout the reference with 10 sequences per
lineage.

Finally, we found that the AAF threshold and the reference size
affect the performance of the sequence-based method. Although we
did not observe a clear and consistent pattern of impact, we found
that the effects of varying parameter settings may depend on the
sample composition. Specifically, we observed the strongest im-
pact of parameter changes for samples containing lineages with
a higher degree of shared genomic similarity. Also, we found the
AAF threshold to affect estimates slightly more than the refer-
ence size. We detected similar results for the Pan-EU-GER and FFM-
Alrport datasets. We provide details for these 2 datasets in the sup-
plementary material (see Supplementary Figs. S3 and S4).
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parameter settings. However, we also observed prominent detection ambiguities among Delta and its sublineages and found consistently

9

low-abundant false positives for specific groups of lineages. Continuously increasing or decreasing parameter settings caused heterogeneous changes
in the estimated abundance proportions across samples. The sequence-based method showed to perform better when using a reference set larger than
the minimum reference size. Still, we found noise levels to increase distinctly when using the maximum reference size among the considered

settings.

Final choice of parameters for benchmark reference construc-

tion

Within the scope of the parameter escalation experiments de-

dataset and still allows reasonable detection and quantification

results across all 3 benchmark datasets while keeping computa-

scribed here, we wanted to determine parameters with a good pre-

diction performance without manipulating the benchmark in fa-
vor of the sequence-based approach (VQL-nf). Finally, based on our
parameter testing and the 3 different datasets, we chose an AAF
threshold of 0.25 and a reference size of at most 5 sequences per
lineage. This threshold allowed us to limit the size of the reference

tional resources moderate.

Discussion

It is apparent that the composition of the reference used must
have a large impact on the determination of relative SARS-CoV-
2 abundances in wastewater sequence data. Especially given the
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dynamic and constantly updated SARS-CoV-2 lineage definitions
[3], the reference genome sequences and the signature mutations
derived from them also change frequently. Of course, the various
tools (Table 1) and their parameters developed for estimating the
relative abundance of lineages from wastewater sequencing data
also have an impact. Here, however, we have specifically focused
on the effects of the reference design.

We selected 2 general approaches to design reference datasets
and estimate SARS-CoV-2 lineage proportions from wastewater
sequencing samples (Fig. 1). On the one hand, selected marker
mutations that are characteristic for certain SARS-CoV-2 lineages
can be used for annotation and lineage proportion estimation (mu-
tation based, MAMUSS). Here, the read sequences derived from a
wastewater sample are mapped against a reference genome from
which differences (mutations) are detected and compared against
the selected marker mutations. On the other hand, full SARS-CoV-
2 genome sequences can be used to create a reference index with-
out prior collection of specific mutations (sequence based, VLQ-nf).
Here, the problem of selecting appropriate marker mutations is
shifted to selecting representative lineages from which features
for the classification task are derived. An exemplary implemen-
tation of this approach based on the pseudo-aligner Kallisto [32]
was recently proposed by Baaijens et al. [29]. Based on their work,
we developed a Nextflow pipeline for higher automation and re-
producibility and detecting SARS-CoV-2 lineage proportions from
wastewater data using pseudo-alignments (VLQ-nf). In this ap-
proach, a selection of whole-genome SARS-CoV-2 sequences (tar-
get reference set) and the reads (query) are composed into k-
mers, which are then efficiently compared to quantify lineage
abundances, similar to quantifying gene expression in an RNA se-
quencing study.

To benchmark reference designs from both methods (mutation
based via MAMUSS, sequence based via VLQ-nf), we selected 3 test
scenarios: (i) a spike-in experiment with different SARS-CoV-2 lin-
eage mixes, (i) samples obtained for Germany from a Pan-EU
wastewater study, and (iil) a wastewater sample from a German
airport during the time when Omicron emerged.

In general, both approaches detected SARS-CoV-2 lineage
abundances from our test cases. The most remarkable difference
was in the number of detected sublineages, which also directly
correlates with the reference design. VLQ-nf generally detected a
larger diversity of sublineages in comparison to MAMUSS, which
can be explained by the underlying reference indices. It became
increasingly difficult to select a representative set of marker mu-
tations for the mutation-based approach and the implementation
we used as more and more (sub)lineages were defined and there
was overlap in mutations (convergent evolution). In contrast, the
sequence-based approach as suggested by Baaijens et al. [29] can
build a reference index on a large collection of SARS-CoV-2 full
genome sequences derived from clinical samples and thus, po-
tentially, better reflect diversity on sublineage levels. However, we
also observed a certain amount of noise in the pseudo-alignment
results, causing potential false-positive hits in our test datasets.
Other approaches, like Freyja [21], partly tackle this problem by
deriving signature mutation profiles automatically, for example,
using the whole phylogenetic diversity of current SARS-CoV-2 se-
quences reflected in an UShER tree [34]. However, here we have
also observed that the inclusion of a large diversity in the ref-
erence can lead to distributed abundance assignments between
closely related (sub)lineages, reducing the true relative abundance
of a lineage (Supplementary Figs. S5 and S6). Of course, the impact
can be reduced by limiting lineage coverage to a specific time pe-
riod, but this, in turn, can also affect frequency assignments.

In more detail, both approaches performed similarly in detect-
ing and estimating spike-in lineage abundances for the Standards
dataset (Fig. 2). The predictions are more similar on the parent-
lineage level compared to the sublineage level. If their estimations
differ, this can be mostly attributed to differences in the muta-
tions/lineages included in the respective reference data: for both
approaches, the final predictions heavily depend on the construc-
tion of the reference dataset. In addition, both approaches had
difficulties differentiating closely related sublineages correctly.

For the Pan-EU-GER dataset, both approaches reflect well the
pandemic background in Germany during the time of sampling,
but we detected some limitations and potential sources for bias:
the choice of marker mutations and reference lineages impacts
the level of detection (i.e. lineage- vs. sublineage-level estima-
tions) but also the amount of low-abundance detection. Poten-
tially, everything that is defined in the reference dataset can also
be detected, which might lead to an increased number of false-
positive predictions. The whole-genome sequences or mutations
used to create the reference index impact the degree of am-
biguity and, thus, (low-abundant) false-positive detection. This
may explain why both approaches predicted distinctly different
abundances on the parent-lineage level compared to the other 2
benchmark experiments. Therefore, we think that especially the
sequence-based approach requires the definition of a false-positive
threshold to differentiate between low-abundant false-positive
hits and low-abundant true positives.

Both approaches also detected low-frequency lineages for the
FFM-Airport dataset. Again, the sequence-based approach detects a
distinctly higher amount of low-abundant lineages, also reflecting
the higher diversity of the reference index.

We performed an additional parameter benchmark to identify
important key parameters impacting the sequence-based pseudo-
alignment approach using VLQ-nf. One parameter that strongly
affects the results is the AAF cutoff. In connection with the ref-
erence size (the number of genomes), we observed different ef-
fects of changing the AAF. Our experiments also showed that
the effect of the same parameter changes (increasing or decreas-
ing AAF) does not yield consistent results among the different
datasets. The degree of lineage ambiguity depends on the con-
sidered composition of lineages and sublineages. The effect of in-
cluded/excluded mutations due to adjusted AAF parameter set-
tings is variable, as different mutations have different effects in
differentiating lineages. The effect of those parameter changes is
most notable among more similar lineages. We also observed that
with a larger reference size, the effect of the AAF parameter be-
comes smaller and overall abundance estimations improve. One
explanation might be that by adding further reference genomes
for a lineage, low-frequency mutations are implicitly introduced
and increase the genomic variation that is represented by the ref-
erence dataset. These additional low-frequency mutations might
support the differentiation of certain (sub)lineages better and
thus slightly improve abundance estimations.

Potential Implications

In this study, we focus exclusively on Ion Torrent sequencing
data to specifically investigate the influence of reference database
composition and analysis parameters on lineage abundance es-
timates in wastewater sequencing. While acknowledging that in-
corporating data from additional platforms like PacBio, Nanopore,
and I[llumina could broaden the analysis of variability and robust-
ness, we chose Ion Torrent due to its established efficacy in achiev-
ing high horizontal genome coverage in our sequencing runs [12,
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20, 37], critical for assessing the impact of reference bias. This fo-
cused approach allows us to explore the considerable effects that
reference selection and analytical settings have on lineage abun-
dance results, a crucial area for accurate viral surveillance. Fu-
ture studies might explore a comparative analysis across different
platforms to enhance understanding of lineage composition and
abundance estimation in wastewater samples. However, our cur-
rent study is intentionally limited to specific research objectives
related to reference bias in a mutation-based and sequence-based set-
ting and in the context of declining clinical sequencing and the
dilution of available reference sequences.

Further, we only selected 2 exemplary implementations of the
mutation- and sequence-based approaches MAMUSS and VLQ-nf,
respectively, out of an increasing number of scripts, tools, and
pipelines becoming available for computational SARS-CoV-2 lin-
eage estimation from wastewater sequencing (Table 1) [10, 16, 18,
21-31]. Thus, our benchmark results also reflect and are limited by
the individual characteristics of these 2 implementations. How-
ever, we focused on these 2 approaches to investigate the impact
of reference design using implementations where we could easily
control parameters and input—similar to the decision for the Ion
Torrent technology. Currently, a comprehensive benchmark com-
parison for the existing SARS-CoV-2 wastewater analysis tools is
lacking. The developers of Freyja compared a selection of tools on
a spike-in mixed sample [21] where they found that Freyja out-
performed VLQ [29] in accuracy at higher expected proportions
and observed noticeably longer computation times for both VLQ
and LCS [23]. To counteract the effect on lineage abundance de-
tection, some methods filter the mutations considered for lineage
assignment based on sequencing depth [16] or adjust their mathe-
matical model for differences in depth and coverage and expected
error rates [21, 27]. Similarly, the PiGx tool addresses the limita-
tions of estimating lineages at low abundances by weighting spe-
cific signature mutations for lineages that are expected to occur
at low frequencies [26]. Another recent study compared 9 com-
putational tools but only used simulated genomic data [33]. As a
next step, a broader evaluation of all available tools for analyz-
ing SARS-CoV-2 wastewater sequencing data is urgently needed
to guide usage and further development [42].

Conclusion

Academic researchers have pioneered wastewater monitoring of
SARS-CoV-2 and overcome several technical and methodologi-
cal challenges [15]. Thanks to these efforts, wastewater-based
pathogen surveillance has rapidly become a valuable public
health tool for detecting SARS-CoV-2 that can excellently comple-
ment syndromic surveillance or other monitoring tools. However,
public health authorities are now faced with the task of integrat-
ing these achievements into robust and continuous public health
surveillance systems that can be operated and expanded over the
long term. Performance parameters must be defined and commu-
nicated to the public health authorities to include wastewater-
based pathogen surveillance data. In this context, continuous
updating of reference datasets, in the context of retrospective
analyses or time series, is essential to ensure comparability be-
tween time points. For example, genomic sequences of newly de-
fined lineages might already be present in wastewater samples
from previous weeks. However, bioinformatic analysis of previ-
ous samples could not detect the novel lineage because it was
not included in the reference dataset at that time point. Continu-
ously updated reference datasets can support comparing and in-
terpreting wastewater sequencing time-series data. Yet, harmo-
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nizing the reference used would require recalculating older abun-
dance estimates, which may conflict with the standard reporting
requirements of public health authorities. However, this problem
is not specific to wastewater-based SARS-CoV-2 sequencing data
but also applies to genomics sequencing of patient samples. One
solution might be to not only focus on lineages but also report mu-
tations that are not affected by any nomenclature scheme and are
not subject to delayed definitions. On the other hand, it is undeni-
able that lineages played a crucial role in communication during
the COVID-19 pandemic. Recently, McBroome et al. [43] proposed a
novel framework for a more automated and scalable designation
of viral pathogen lineages from (clinical) genomic data.

Wastewater sequencing data also offer the potential to uncover
cryptic (novel, undescribed) lineages, although resolving the full
genomic profile of those solely from wastewater data still poses
several challenges [11, 21]. In this context, approaches utilizing ar-
tificial intelligence might present a promising next step for the im-
proved detection of cryptic SARS-CoV-2 lineages from wastewater
sequencing data and increasing trends, although, right now, not
much in use [44]. However, first studies appear that use machine
learning for the early detection of new signals from wastewater
data and the description of potential new SARS-CoV-2 lineages
[45, 46]. Finally, the lessons learned from the sequencing efforts
and implementations for SARS-CoV-2 detection from wastewater
sequencing data can and should be adapted to other pathogens
to further advance wastewater genomic surveillance efforts.

Methods

Benchmark dataset 1: Standards

We procured synthetic SARS-CoV-2 RNA samples (Twist Bio-
sciences), which were used to prepare 16 different mixtures (Ta-
ble 2) containing different SARS-CoV-2 variants. From the pooled
RNA, cDNA was synthesized using SuperScript VILO Master Mix
(Thermofisher Scientific), followed by library preparation using
the Ion AmpliSeq SARS-CoV-2 Research Panel (Thermofisher Sci-
entific) according to the manufacturer’s instructions. This panel
consists of 237 primer pairs, resulting in an amplicon length range
of 125-275bp, which cover the near-full genome of SARS-CoV-2.
We performed 2 sequencing runs to achieve at least 1 million
mapped reads per sample. For each sequencing run, 8 libraries
were multiplexed and sequenced using an Ion Torrent 530 chip
on an Ion S5 sequencer (Thermofisher Scientific) according to
the manufacturer’s instructions. The raw sequence data were up-
loaded to the NCBI Sequence Read Archive under BioProject num-
ber PRINA912560.

Data processing: mutation-based reference design
and lineage proportion estimation via MAMUSS

We used the SARS-CoV-2 Research Plug-in Package, which we
installed in our Ion Torrent Suite software (v5.12.2) of Ion S5
sequence. We used the SARS_CoV_2_coverageAnalysis (v5.16)
plugin [47], which maps the generated reads to a SARS-CoV-2
reference genome (Wuhan-Hu-1-NC_045512/MN908947.3), using
TMAP software included in the Torrent Suite. The summary of
mapping of each sample mentioned in Table 2 is provided in
Supplementary Table S2. For mutation calls, additional Ion Tor-
rent plugins were used as described previously [37] and detailed
below. First, all single nucleotide variants were called using Vari-
ant Caller (v5.12.0.4) with “Generic - S5/S5XL (510/520/530) - So-
matic - Low Stringency” default parameters. Then, for annota-
tion and determination of the base substitution effect, we used
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COVID19AnnotateSnpEff (v1.3.0.2), a plugin developed explicitly
for SARS-CoV-2 and based on the original SnpEff [48]. To construct
reference marker mutation sets for MAMUSS, we used data from
GISAID [8]. For each SARS-CoV-2 variant, we downloaded the vari-
ant surveillance database and selected complete clinical genome
sequences, followed by counting the prevalence of its associated
mutations. The 50 most prevalent mutations associated with each
variant were used as a reference marker mutation set. The lin-
eage abundance estimation is based on the read depth and allele
frequency of each mutation detected in a wastewater sample fol-
lowed by a 2-indicator classification and comparison to the pres-
elected marker mutations characteristic for certain lineages. For
further details, see the MAMUSS GitHub repository [49].

Data processing: sequence-based reference design
and lineage proportion estimation via VLQ-nf

Instead of relying only on manually or algorithmically selected
marker mutations, another computational approach utilizes, in
a first step, full genome information. For example, Baaijens et
al. [29] presented a method to estimate the abundance of vari-
ants in wastewater samples based on well-established computa-
tional techniques initially used for RNA sequencing quantifica-
tion. Here, the main idea is that quantifying different transcripts
derived from the same gene is computationally similar to the
abundance estimation of different SARS-CoV-2 lineages derived
from the same parental genome. Via Kallisto [32], they perform
pseudo-alignments of the raw reads against an index of prese-
lected and downsampled full genome SARS-CoV-2 sequences with
respective lineage information. Therefore, their approach may be
less influenced by the preselection of mutations based on clin-
ical relevance, frequency, or other parameters that mostly drive
mutation-based tools and thus may be better suited for sublineage
discrimination. The approach comprises 2 steps: (i) selecting ref-
erence genome sequences for index construction and (ii) pseudo-
alignment of the reads and lineage abundance estimation. First, a
reference dataset of SARS-CoV-2 genome sequences must be se-
lected. For that, we use data from GISAID [8] and filter for human-
host sequences, N-count information, pangolin annotation [2, 3],
origin (country, continent), and sampling date. These metadata
are used to preselect sequences based on geographic origin (con-
tinent, country), a sampling time frame, and the number of N
bases. Next, the pipeline performs a variant calling against a refer-
ence sequence (per default index Wuhan-Hu-1, NC_045512.2) and
subsequently samples sequences to select characteristic muta-
tion profiles for each input lineage. Within a lineage, sequences
are sampled based on an alternative allele frequency cutoff (e.g.,
AAF >0.5) so that each mutation is represented at least once un-
til an upper limit of sequences per lineage is reached. From this
downsampled and representative set of full genome sequences, a
Kallisto index is constructed. Now, the raw reads from a FASTQ file
are pseudo-aligned against this index and lineage abundances are
quantified. This is done by estimating for each read the probabil-
ity of originating from each genome sequence in the reference us-
ing expectation maximization and finally aggregating the result-
ing probabilities across the lineage labels associated with every
reference genome.

For our comparative study, we used the initial idea and code
base from Baaijens et al. [29, 50] and implemented a Nextflow
pipeline [35, 36] with the purpose of automating the steps and
making our analyses fully reproducible. In this context, we discov-
ered some issues in the pipeline version 61dd29df« of Baaijens et
al. and implemented minor adjustments. This includes updating

Table 3: For each lineage in the Standards dataset, we selected the
time frame where infection numbers peaked globally [38]. Based
on the listed time frames, we sampled genome sequences from
GISAID for reference reconstruction. We downloaded the GISAID
records on 2 March 2022.

Lineage Time frame

Al 2020-03-01:2020-03-14
B.1.1.7 2021-05-01:2021-05-14
B.1.351 2021-01-20:2021-02-02
P1 2021-04-20:2021-05-03
B.1.526 2021-03-20:2021-04-02
BA.2 2022-02-01:2022-02-14
BA.1 2021-12-01:2021-12-14
B.1.617.2 2021-06-25:2021-07-08
AY.1 2021-08-01:2021-08-14
AY.2 2021-06-25:2021-07-08

data-processing scripts according to the most recent GISAID data
format and allowing the sequence selection based on alternate
allele frequencies to consider multiallelic sites. Meanwhile, the
authors have addressed those issues with similar code changes
in their current pipeline version. In pipeline version 61dd29dfx,
sequences are selected for the reference index if they carry an
AAF filter passing mutation that is not yet covered until the refer-
ence set for the respective lineage meets the maximum allowed
number of sequences. We wanted to provide the possibility for
using a minimum reference setup to reduce data storage require-
ments and allow exploring the impact of different AAF thresholds
on abundance estimation. Subsequently, we adjusted the AAF fil-
ter to first sample a minimum set of genome sequences so that
all passing mutations are included at least once, before increas-
ing the reference set to the number of maximum sequences per
lineage. We ran our pipeline version v1.0.0 for all analyses in this
benchmark study.

Reconstruction of indices for the sequence-based
approach

The sequence-based (VLQ-nf) approach highly depends on the selec-
tion and reconstruction of the reference dataset for the Kallisto
index. Thus, we reconstructed different indices for our 3 bench-
mark datasets to mimic the pandemic situation during the time
of sampling. We used GISAID data for all indices and extracted
subsets based on metadata filters.

For the benchmark of the 16 mixed Standards, we constructed a
reference dataset comprising the included SARS-CoV-2 lineages.
We selected a time frame of 2 weeks around the peak of global
incidences[38, 39] for each lineage included in the mix (Table 3).
We only kept records with at least 29,500 nonambiguous bases.
Because we also included the original Wuhan-Hu-1 reference se-
quence in mixed samples Mix_01 to Mix_05 and Mix_08, we first
excluded all A.1 sequences from the preselected set. Then, we se-
lected reference sequences with characteristic mutation profiles
for all lineages except A.1 as described before, allowing a max-
imum number of 5 sequences per lineage. Then, we added the
sampled A.1 sequences again to the final reference set, as other-
wise the A.1 sequences would have been excluded by the pipeline
because they do not show any AAF in comparison to the Wuhan-
Hu-1 reference. On average, we selected 5 sequences for a lin-
eage to capture every mutation against the wild-type with an AAF
>0.25 (within-lineage variation) and a maximum of 5 allowed se-
quences per lineage.
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For the Pan-EU-GER samples (collected between 10 and 30
March 2021), we reconstructed the reference from clinical GISAID
records we downloaded on 27 January 2022. We selected only Eu-
ropean sequences sampled between 1 February 2021 and 30 April
2021, with at least 29,500 nonambiguous bases. To reflect the in-
flux of variants from other European countries, we have not only
selected sequences from Germany. On average, we then selected 3
sequences per lineage to capture every mutation against the wild-
type with an AAF >0.25 (within-lineage variation) and allowing at
most 5 reference sequences per lineage.

For the FFM-Airport dataset, we reconstructed the reference
from GISAID records we downloaded on 11 February 2022. We se-
lected genome sequences from European and South African clin-
ical records sampled between 1 October 2021 and 31 December
2021, again with at least 29,500 nonambiguous bases. On average,
4 sequences were selected for a lineage to capture every muta-
tion against the wild-type with an AAF >0.25 (within-lineage vari-
ation). Again, we allowed at most 5 sequences to be included per
lineage.

Lineage abundance estimation with the
sequence-based approach

After reconstructing different reference indices for our bench-
mark datasets, we used specific Kallisto commands implemented
in a Nextflow pipeline to prepare Kallisto mapping indices, com-
pute pseudo-alignments of each benchmark dataset against its
reference index, and estimate lineage abundances following the
original idea and code of Baaijens et al. [29].

First, we built a Kallisto index from the reference database (de-
fault k-mer = 31). Next, for each sample in a benchmark dataset,
we pseudo-aligned all reads against the corresponding Kallisto
index and estimated the abundance of each reference sequence
in the sample. We quantified our benchmark datasets in single-
read mode with an average fragment length of 200 nt with a stan-
dard deviation of 20nt. Finally, a customized script grouped the
estimated abundances by the lineage annotation of the respec-
tive sequences and summed them up into a final lineage abun-
dance estimation for the analyzed sample. For the Pan-EU-GER and
FFM-Airport datasets, we further summarized the estimated abun-
dances by the country information of the analyzed samples to
compare the pseudo-alignment and mutation-based approach on
the country level.

Assessing parameter impact and potential bias
with the pseudo-alignment approach

We performed parameter escalation experiments with our 3
benchmark datasets using the sequence-based method (VLQ-nf) to
assess the impact of the AAF threshold and the cutoff for a maxi-
mum number of sequences per lineage on lineage abundance es-
timation. More importantly, we used the resulting observations to
inform our choice of parameters used for the final benchmark-
ing against the mutation-based method (MAMUSS). In this context,
we aimed to determine a setting with a good prediction perfor-
mance and reasonable computational effort without manipulat-
ing the benchmark in favor of the sequence-based method. For ev-
ery benchmark dataset, we constructed reference indices over a
range of 12 possible parameter combinations. For the AAF thresh-
old, we iterated over [0.25, 0.5, 0.85] to cover lower, medium, and
high threshold values to define the characteristic mutation pro-
files. For the maximum number of sequences per lineage, we built
the reference index using the minimal sequence sets possible, 5,
10, and 20 sequences per lineage. After lineage abundance esti-

mation with each reference index on the Standards dataset, we
evaluated prediction performance based on the ground-truth lin-
eage abundances. For the FFM-Airport and Pan-EU-GER data, we
assessed prediction performance by comparing estimated lineage
abundances with the pandemic background at the respective time
and location.

Reproducibility of the pseudo-alignment
approach

Our Nextflow pipeline of the pseudo-alignment approach [36] gen-
erates the reference database in the format of a CSV file con-
taining the metadata information of the final Kallisto index and
a FASTA file containing the corresponding sequence data. In the
current version v1.0.0, the reference CSV and FASTA can be ex-
actly replicated using the same input data resource and index re-
construction parameters, which leads to slightly different results
at every analysis run. The reference CSV is not reproducible due
to misplaced random sampling seeds and a missing record sort-
ing strategy in the AAF-based sequence filtering step during ref-
erence reconstruction. However, lineage detection and quantifica-
tion are deterministic given VLQ-nf takes fixed reference datasets
as input (final CSV and FASTA reference or already built Kallisto
index).

Availability of Source Code and
Requirements

Here, we provide the specifications of our Nextflow implementa-
tion (VLQ-nf) of the sequence-based approach originally presented
by Baaijens et al. [29] and the code for the mutation-based approach,
MAMUSS.

® Project name: VLQ-nf

® Project homepage: https://github.com/rki-mf1/VLQ-nf

® Operating system(s): Linux, Mac, Windows via Linux subshell
® Programming language: Nextflow

® Other requirements: Conda

® License: GPL-3.0

® Project name: MAMUSS

® Project homepage:
MAMUSS

® Operating system(s): Linux, Mac

® Programming language: R

® Other requirements: R packages are listed in the repository

® License: CCO 1.0 Universal

https://github.com/lifehashopes/

Additional Files

Supplementary Fig. S1. Top: The pandemic background across
Europe between 1 February and 30 April 2021 was built with
Nextstrain.org. Bottom: The outbreak.org variant report for Ger-
many displaying the SARS-CoV-2 lineage prevalence from Febru-
ary to March 2021 based on GISAID sequence data. The most dom-
inant lineages in the plot from bottom to top: light blue =B.1.1.7,
light green = B.1, purple = B.1.177.86, light gray = other, blue =
B.1.258, dark gray = B.1.221, yellow = B.1.177, orange = B.1.160,
light brown = B.1.177.81.

Supplementary Fig. S2. Top: The pandemic background across
Europe between 1 October and 31 December 2021 was built with
Nextstrain.org. Bottom: The outbreak.org variant report for South
Africa displaying the SARS-CoV-2 lineage prevalence from Octo-
ber to December 2021 based on GISAID sequence data. The most
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dominant lineages comprise sublineages of Delta and Omicron
but also B.1.351 (light green) and C.2 (light orange).
Supplementary Fig. S3. Results for the parameter escalation ex-
periments on the Pan-EU-GER samples using the sequence-based
method using pseudo-alignment implementation. We analyzed
the dataset with different parameterization for reference con-
struction (x-axis: increasing AAF threshold, y-axis: increasing
maximum number of sequences per lineage). Abundance predic-
tions are displayed at a minimum threshold of 1% and labeled at a
threshold of 3%. When comparing with the pandemic background
at the time of wastewater sampling, we observed the AAF thresh-
old and the maximum number of sequences per lineage to im-
pact the abundance proportions among Alpha and Q.1 the most.
With more sequences per lineage in the reference, we found the
impact of the AAF filter on the observed ambiguities to decrease.
We found more low-abundant sublineages predicted in the real
wastewater data compared to the Standards dataset and found
those low-abundant predictions to mostly not change distinctly
across varying parameterization.

Supplementary Fig. S4. Results for the parameter escalation ex-
periments on the FFM-Airport dataset using the sequence-based
method. We analyzed the dataset with different parameterization
for reference construction (x-axis: increasing AAF threshold, y-
axis: increasing maximum number of sequences per lineage). Top:
Abundance predictions are displayed at a minimum threshold of
1% abundance and labeled at a threshold of 3% abundance. When
comparing with the pandemic background at the time of wastew-
ater sampling, we observed the following: overall, we found more
sublineages predicted with abundance below 1% compared with
the Standards dataset and the Pan-EU-GER set. The sequence-based
method detected more low-abundant sublineages with increas-
ing reference size and slightly less low-abundant sublineages with
increasing AAF threshold. Both the AAF threshold and the refer-
ence size showed an impact on lineage ambiguities among Delta
sublineages. Bottom: All abundance predictions are displayed as
grouped by their parent lineage. We did not find the abundance
predictions for parent lineages to change distinctly across exper-
iments.

Supplementary Fig. S5. SARS-CoV-2 lineage abundance assign-
ments via Freyja [21] (v1.3.12) for the Standards. We used the full
reference UShER set as provided as a default by the tool. In this
case, multiple sublineages were predicted and frequencies were
distributed among them, resulting in a reduced frequency es-
timate for the true (parental) lineage and an increase in low-
frequency detections. For example, in Mix_07, the sublineages
BA.2.16 and BA.2.4 were predicted with almost 50%, respectively,
while the included lineage BA.2 was not assigned (compare Sup-
plementary Fig. S6).

Supplementary Fig. S6. SARS-CoV-2 lineage abundance assign-
ments via Freyja [21] (v1.3.12) for the Standards. We reduced the
reference UShER set to the lineages part of our artificial mixtures,
instead of using the full UShER barcode dataset as shown in Sup-
plementary Fig. S5.

Supplementary Table S1. The minimum reference sizes across
the different AAF thresholds considered in the parameter esca-
lation experiments across our 3 benchmark datasets. Here, we
list the minimum number of genome sequences required per
lineage to capture every mutation with an AAF above the con-
sidered AAF threshold at least once based on the implemented
sampling strategy during reference construction. The Standards
reference database required the largest number of sequences
to capture the predefined genomic variation. Overall, we ob-
served that with an increasing AAF threshold, the minimum

reference sizes per lineage decreased across all 3 benchmark
datasets.
Supplementary Table S2. The mapping of each Standards
sample.
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