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Abstract 

Bac kgr ound: Sequencing of sev er e acute r espirator y syndr ome cor onavirus 2 (SARS-CoV-2) RNA fr om w astew ater samples has 
emerged as a v alua b le tool for detecting the presence and r elati v e a bundances of SARS-CoV-2 v ariants in a comm unity. By anal yzing 
the viral genetic material present in w astew ater, r esear c hers and public health authorities can gain early insights into the spread of 
virus lineages and emerging m utations. Constructing r efer ence datasets from known SARS-CoV-2 lineages and their mutation profiles 
has become state-of-the-art for assigning viral lineages and their relative abundances from wastewater sequencing data. However, 
selecting r efer ence sequences or m utations dir ectl y affects the pr edicti v e power. 

Results: Here , w e show the impact of a mutation- and sequence-based r efer ence r econstruction for SARS-CoV-2 a bundance estimation. 
We benchmark 3 datasets: (i) synthetic “spike-in”’ mixtures; (ii) German wastewater samples from early 2021, mainly comprising Al- 
pha; and (iii) samples obtained from wastewater at an international airport in Germany from the end of 2021, including first signals 
of Omicron. The 2 approaches differ in sublineage detection, with the marker mutation-based method, in particular, being challenged 

by the increasing number of mutations and lineages. However, the estimations of both approaches depend on selecting representa- 
ti v e r efer ences and optimized par ameter settings. By performing par ameter escalation experiments, w e demonstr ate the effects of 
r efer ence size and alternati v e allele fr equency cutoffs for a bundance estimation. We sho w ho w different parameter settings can lead 

to different results for our test datasets and illustrate the effects of virus lineage composition of wastewater samples and references. 

Conclusions: Our study highlights current computational challenges, focusing on the general r efer ence design, which dir ectl y impacts 
abundance allocations. We illustrate adv anta ges and disadv anta ges that may be r elev ant for further developments in the w astew ater 
community and in the context of defining robust quality metrics. 

Ke yw ords: SARS-CoV-2, w astew ater, sew a ge, a bundance estimation, next-generation sequencing, benchmark 
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Bac kgr ound 

Coronavirus disease 2019 (COVID-19), the highly contagious viral 
illness caused by se v er e acute r espir atory syndr ome cor onavirus 2 
(SARS-CoV-2), is the most consequential global health crisis since 
the era of the influenza pandemic of 1918. Since its discovery,
SARS-CoV-2 has caused > 775 million confirmed cases of COVID- 
19 [ 1 ], and curr entl y > 4,200 SARS-CoV-2 lineages have been de- 
fined by the Pango network [ 2–4 ]. Genome sequencing has played 

a central role during the COVID-19 pandemic and beyond in sup- 
porting public health agencies, monitoring emerging mutations 
in the SARS-CoV-2 genome, and adv ancing pr ecision v accinology 
and optimizing molecular tests [ 5–7 ]. Massive sequencing of clini- 
cal samples has made monitoring of emerging virus variants pos- 
sible while emphasizing temporal and spatial variation. With on- 
going tr ansmission, further m utations occur in the genome that 
are part of the viral evolutionary process and result in unique fin- 
gerprints . T hese fingerprints , along with other metrics such as the 
number of samples with the same m utation pr ofile and their ge- 
ogr a phic occurr ence, ar e used to label SARS-CoV-2 v ariants, suc h 

as through the nomenclature system proposed and maintained by 
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Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited 
he Pangolin network and tool [ 2 , 3 ]. These definitions of virus vari-
nts and lineages and the associated mutation profiles can then
e used to search for and estimate the proportion of SARS-CoV-2
ineages in mixed samples (e.g., w astew ater). 

Sequencing capacity, ho w ever, is limited, cannot be sustained
ver the long term for so many clinical samples, and only allows
xtr a polation based on a r elativ el y small fr action of all infections
ccurring during the pandemic. In addition, with decreasing inci- 
ence numbers, sampling and sequencing efforts are decreasing,
aising the need for re presentati ve , medium-scale , and sustain-
ble surveillance systems [ 7 ] or other approaches. From 1 January
020 until 19 April 2023, 931,260 genome sequences of COVID-19–
ositive clinical samples from Germany have been uploaded to 
he international GISAID platform [ 8 ], r epr esenting a proportion
f 2.426% out of a total of 38,388,247 reported SARS-CoV-2 cases
n Germany [ 9 ]. In Germany and other countries, complete detec-
ion and sequencing of all positive cases were impossible due to
he high infection numbers. Ho w e v er, waste water-based epidemi-
logy (WBE) has shown the potential to get a m uc h br oader sna p-
hot of the SARS-CoV-2 variant circulation at a community level
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 10–15 ]. Integrating genome sequencing with WBE can provide in-
ormation on circulating SARS-CoV-2 variants in a region [ 16 , 17 ].
he sequencing methods commonly used in WBE are similar to
he ones used for clinical samples, using a general strategy that
mploys the sequencing of the whole genome via amplification
f small, specific regions of the SARS-CoV-2 genome (i.e., targeted
equencing of amplicons via predefined primer sequences) [ 11 , 14 ,
8–20 ]. Targeted sequencing can achieve a high degree of coverage
f informativ e r egions of the genome and, most important, r e v eal
o some extent which polymorphisms are linked, making it pos-
ible to tr ac k SARS-CoV-2 v ariants of concern (VOCs) and other
irus variants. 

A particular challenge in performing sequencing and analysis
f SARS-CoV-2 fr om waste water samples concerns the viral RNA
r esent in man y individual fr a gments r ather than complete viral
enomes. In addition, these fr a gments come fr om the excr etions
f many infected individuals, making it challenging, if not impos-
ible, to reconstruct individual genomes using bioinformatic ap-
r oac hes like the ones de v eloped for clinical samples of individual
atients . T hus , the degradation and fragmentation of SARS-CoV-
 RNA, combined with the presence of multiple virus variants in
 astew ater samples, make it challenging to reconstruct reliable,

omplete consensus genomes, often resulting in sequences that
 epr esent either a mixture of lineages or predominantly the most
bundant variant. In need of computational approaches to ana-
 yze mixed waste water samples, se v er al gr oups de v eloped similar
ools for quality control, sequencing data analysis, and SARS-CoV-
 lineage abundance estimation instead of reconstructing a single
onsensus genome [ 10 , 16 , 18 , 21–31 ]; see Table 1 . 

Most a ppr oac hes focus on detecting pr edefined c har acteristic
arker mutations in the sequenced reads and utilize this infor-
ation for abundance estimation. Common to all these tools is

hat they r equir e a r efer ence set of either signatur e marker m u-
ations (hereafter called mutation based ) or complete genome se-
uences (hereafter called sequence based ) from which characteris-
ic mutation profiles or k -mers (short subsequences of length k )
r e deriv ed. 

Kayikcioglu et al. [ 31 ] compared the performance of 5 se-
ected a ppr oac hes for SARS-CoV-2 linea ge abundance estimation
n simulated and publicly available mixed population samples.
hey found that Kallisto [ 32 ], as first suggested by Baaijens et al.
 29 ], follo w ed b y F r eyja [ 21 ], ac hie v ed most accur ate estimations.
utcliffe et al. [ 33 ] compared 9 computational tools using simu-
ated genomic data in another recent study. Among other things,
hey tested how the bac kgr ound noise of a pr e viousl y unknown
ineage affects quantification, finding a weak but significant ef-
ect on the estimate of the frequency of known lineages that are
art of the r efer ence. 

In a mutation-based a ppr oac h, to estimate the proportion of spe-
ific SARS-CoV-2 variants present in a mixed sample, mutations
r combinations of mutations characteristic or unique for these
ariants based on clinical samples can be compared with the mu-
ations detectable in the sample. In principle, and as implemented
n a pr e viousl y used a ppr oac h [ 20 ] (whic h we r efer to her e as MA-

USS, Table 1 ), the occurrence of mutations can be represented by
he value of the r elativ e abundance of a VOC or other viral vari-
nt. First, the frequency of occurrence of each mutation is cal-
ulated from the multiplication of the reads and the allele fre-
uency. The r elativ e abundance describes the percenta ge r atio of
he sum of the read abundance of the c har acteristic m utations of
 SARS-CoV-2 virus variant and the sum of the read abundance
f all mutations found in a sample. Accordingl y, onl y the pr e vi-
usly selected virus variants and signature mutations that form
he r efer ence set ar e e v aluated, and others that may occur in the
ample ar e ignor ed. Another pr ominent mutation-based a ppr oac h
s implemented in the tool Freyja [ 21 ]. Fr eyja solv es the demix-
ng problem to recover relative lineage abundances from mixed
ARS-CoV-2 samples using lineage-determining mutational “bar-
odes” deriv ed fr om the UShER global phylogenetic tree [ 34 ]. Us-
ng mutation abundances and sequencing depth measurements
t each position in the genome, Freyja estimates the abundance
f lineages in the sample. 

As a different methodological a ppr oac h to reconstruct a refer-
nce, the full genome sequence information can be used to auto-
atically select appropriate features (e.g., signature mutations,

 -mers) and to use them to e v aluate the proportions of SARS-
oV-2 variants in w astew ater samples instead of a preselected set
f marker mutations ( sequence based ) [ 27–29 ] (Table 1 ). Again, in-
ormation derived from sequencing of clinical samples and their
inea ge annotation ar e used to gener ate a r epr esentativ e r efer-
nce dataset that can be then searched via established (pseudo)-
lignment methods such as Kallisto [ 32 ], as suggested by Baaijens
t al. in their VQL tool [ 29 ]. 

In this study, we specificall y inv estigated the effects of r efer-
nce design and composition on the assignment of r elativ e abun-
ances of SARS-CoV-2 linea ges fr om waste water sequencing data.
s mentioned, various tools have been developed during the pan-
emic (Table 1 ), and they all have different facets in calculating
 elativ e abundances [ 17 , 31 , 33 ]. Here, we tested MAMUSS as a
utation-based r efer ence r epr esentativ e and VLQ-nf as a sequence-

ased r efer ence r epr esentativ e on 3 datasets: (i) a synthetic sce-
ario of “spike-in” mixture samples; (ii) samples fr om German y
r om a Eur opean waste water study fr om earl y 2021, mainl y com-
rising the VOC Alpha [ 12 ]; and (iii) a sample obtained from
 astew ater sequencing at the international airport in Frankfurt
m Main, German y, fr om the end of 2021, including first signals of
he VOC Omicron [ 20 ]. The 2 approaches for lineage abundance es-
imation ( mutation based / sequence based ) are mainly distinguished
y the input dataset used for the r efer ence set design and sub-
equent lineage assignment (Fig. 1 ). Here, we compare exemplary
mplementations of both gener al a ppr oac hes. MAMUSS, as pr e vi-
usl y a pplied in [ 20 ], implements a r epr esentativ e basic w orkflo w
or the mutation-based a ppr oac h focusing on unique marker muta-
ions. For the sequence-based a ppr oac h, we use pseudo-alignments
ia Kallisto [ 32 ] as proposed initially by [ 29 ] and their VLQ tool.
ased on their idea and scripts, we implemented a slightly modi-
ed version of VLQ in a Nextflow [ 35 ] pipeline that we call VLQ-nf
 36 ]. We chose VLQ for our sequence-based method because it re-
ies on Kallisto as an established tool for quantifying transcripts
 32 ]. A major benefit of implementing the r epr esentativ e meth-
ds was the complete control o ver code , parameters , and inputs ,
hich allo w ed us to understand better, compar e, and inter pr et the

esults of our benchmark study and the effects on the reference
esign. For all 3 datasets, we deliber atel y selected data from 1 se-
uencing tec hnology, Ion Torr ent, to demonstr ate r efer ence de-
ign and mutation / sequence-based effects in a specific, controlled
ontext with which we have much experience [ 12 , 20 , 37 ]. How-
 v er, it m ust be noted as a limitation of our study that we ar e onl y
nvestigating 1 sequencing technology. 

We show that both the mutation-based and sequence-based ap-
r oac h can r eflect the pr oportions of SARS-CoV-2 lineages in
he different samples but also comprise differences in resolution
nd the detection of similar sublineages depending on the refer-
nce set. Both a ppr oac hes also show adv anta ges and disadv an-
ages in selecting signature marker mutations and genome se-
uences, r espectiv el y. For the mutation-based a ppr oac h as imple-
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Table 1: Collection of tools available for sequencing data analysis in WBE and SARS-CoV-2 lineage proportion estimation. We distinguish 

the tools r oughl y based on their a ppr oac h to define a r efer ence set into those using predefined marker mutations and those relying on 

full genome sequences or both. The 2 implementations we selected for r efer ence construction and our comparison are indicated in bold. 
Please note that C-WAP [ 31 ] wr a ps m ultiple a ppr oac hes while also including a ne w mutation-based tool, LINDEC. 

Mutation based 

Tool Citation Code 

MAMUSS [ 20 ] github.com/ lifehashopes/ MAMUSS 
Freyja [ 21 ] github.com/ andersen-lab/ Freyja 
Lineagespot [ 22 ] github.com/nik opec h/linea gespot 
LCS [ 23 ] github.com/ rvalieris/ LCS 
Alcov [ 24 ] github.com/ Ellmen/ alcov 
VaQuERo [ 16 ] github.com/ fabou-uobaf/ VaQuERo 
MMMVI [ 25 ] github.com/ dorbarker/ voc-identify 
PiGx [ 26 ] github.com/BIMSBbioinfo/ 

pigx _ sars- cov- 2 
SAMRefiner [ 18 ] github.com/ degregory/ SAM _ Refiner
COJ A C [ 10 ] github.com/ cbg-ethz/ cojac 

w astew aterSPAdes 
[ 30 ] —

gromstole — github.com/ PoonLab/ gromstole 
CovMix — github.com/ chrisquince/ covmix 

Sequence Based 
Tool Citation Code 

VLQ-nf this study https:// github.com/ rki-mf1/ VLQ-nf
VLQ [ 29 ] github.com/baymlab/ 

w astew ater _ analysis 
VirPool [ 27 ] github.com/ fmfi-compbio/ virpool 
V-pipe SC2 [ 28 ] cbg- ethz.github.io/V- pipe/sars- 

cov-2 

Mutation Based And Sequence Based 
Tool Citation Code 

C-WAP [ 31 ] github.com/ CFSAN-Biostatistics/ C- 
WAP 
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mented in MAMUSS, it became more and mor e c hallenging to se- 
lect (sub)lineage-defining marker mutations that provide robust 
assignments in the context of the incr easing div ersity and con- 
v er gent e volution of SARS-CoV-2 linea ges. 

Data Description 

We selected 3 w astew ater datasets for our comparison to cover (i) 
a synthetic scenario of “spike-in” mixture samples ( Standards ; n = 

16 samples); (ii) actual w astew ater samples from early 2021 from a 
lar ge Eur opean study and collected in German y [ 12 ], mainl y com- 
prising the VOC Alpha ( Pan-EU-GER ; n = 7 samples); and (iii) 1 
sample from the end of 2021, including first signals of the VOC 

Omicron obtained from w astew ater at the international airport 
in Frankfurt am Main, Germany ( FFM-Airport ; n = 1 sample) [ 20 ].
The Standards comprise RNA from 10 SARS-CoV-2 variants (includ- 
ing the original Wuhan-Hu-1 A.1 linea ge), whic h wer e mixed in 

differ ent pr oportions to gener ate 16 samples for libr ary pr epar a- 
tion and sequencing via Ion Torrent (Table 2 ). The sequencing data 
for the Standards benchmark are available under the NCBI BioPro- 
ject number PRJNA912560. Please note that no real wastewater 
was used to construct the Standards (see Methods). The Pan-EU 

WBE study produced high-quality sequencing data for SARS-CoV- 
2 w astew ater samples acr oss 20 Eur opean countries, including 54 
municipalities , and is a vailable under the NCBI BioProject num- 
er PRJNA736964 [ 12 ]. We selected the 7 German samples from
his study (SRX11122519 and SRX11122521–SRX11122526; Pan-EU- 
ER ) for our benc hmark, whic h wer e sampled in Marc h 2021 and
ainl y cov er the rise of the VOC Alpha during that time. Lastly,
e obtained 1 sample (SRR17258654; NCBI BioProject number PR- 

N A789814) from w astew ater sampling in November 2021 at the
nternational airport in Frankfurt am Main ( FFM-Airport ), where
e found first signals and low proportions of the VOC Omicron
rriving during that time in Germany [ 20 ]. Note that we deliber-
tely selected Ion Torrent as sequencing technology to harmonize 
etween the selected datasets and to focus on the r efer ence de-
ign and mutation / sequence-based effects in a specific, controlled
ontext with which we have much experience [ 12 , 20 , 37 ] (see also
Potential implications” section). 

nalyses 

oth the mutation-based and sequence-based 

pproaches yield similar SARS-CoV-2 lineage 

roportions for mixed Standard samples but 
iffer on sublineage level 
e analyzed our Standards dataset (Table 2 ) using the sequence-

ased a ppr oac h implemented in VLQ-nf and an implementation
f a mutation-based a ppr oac h, MAMUSS (Table 1 ). Giv en gr ound-
ruth kno wledge, w e assessed the qualitative and quantitative

https://journals.asm.org/doi/10.1128/MRA.01229-21
https://github.com/lifehashopes/MAMUSS
https://www.nature.com/articles/s41586-022-05049-6#Sec6
https://github.com/andersen-lab/Freyja
https://www.medrxiv.org/content/10.1101/2021.03.17.21252673v2
https://github.com/nikopech/lineagespot\protect \LY1\textbraceright \protect \LY1\textbraceleft github.com/nikopech/lineagespot
https://pubmed.ncbi.nlm.nih.gov/35104309
https://github.com/rvalieris/LCS
https://www.medrxiv.org/content/10.1101/2021.06.03.21258306v1.full.pdf
https://github.com/Ellmen/alcov
https://www.nature.com/articles/s41587-022-01387-y
https://github.com/fabou-uobaf/VaQuERo
https://www.biorxiv.org/content/10.1101/2021.06.14.448421v2.full
https://github.com/dorbarker/voc-identify/
https://www.medrxiv.org/content/10.1101/2021.11.30.21266952v3.full-text
https://github.com/BIMSBbioinfo/pigx_sars-cov-2
https://www.mdpi.com/1999-4915/13/8/1647/html
https://github.com/degregory/SAM_Refiner
https://www.nature.com/articles/s41564-022-01185-x
https://github.com/cbg-ethz/cojac/
https://doi.org/10.1101/2022.12.08.519672
https://github.com/PoonLab/gromstole
https://github.com/chrisquince/covmix
https://github.com/rki-mf1/VLQ-nf
https://doi.org/10.1186/s13059-022-02805-9
https://github.com/baymlab/wastewater_analysis
https://doi.org/10.1186/s12859-022-05100-3
https://github.com/fmfi-compbio/virpool
https://academic.oup.com/bioinformatics/article/37/12/1673/6104816?login=true
https://cbg-ethz.github.io/V-pipe/sars-cov-2/
https://doi.org/10.7717/peerj.14596
https://github.com/CFSAN-Biostatistics/C-WAP
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Figure 1: Schematic ov ervie w of r efer ence design and lineage abundance estimation from SARS-CoV-2 w astew ater sequencing data. (A) Wastewater 
samples are collected from sewer influent, for example. RNA is extracted and, in the context of SARS-CoV-2, usually amplified as cDNA using 
established primer schemes and then sequenced to obtain short snippets of vir al RNA ( reads ). (B) Curr ent methods (Table 1 for lineage assignment and 
abundance estimation) need a r efer ence dataset, usuall y constructed fr om genomes and m utations deriv ed fr om clinical sequencing and patient 
samples . Here , we distinguish 2 general approaches to design the reference, where either marker mutations are preselected ( mutation based ) or 
full-genome sequences are selected ( sequence based ). (C) The data analysis part may differ considerably depending on the implementation. Ho w ever, all 
tools attempt to assign known lineages and estimate their frequency in the mixed sample based on mutations that can be detected in the reads. Our 
study uses MAMUSS as an exemplary mutation-based a ppr oac h based on a 2-indicator classification and preselected marker mutations characteristic 
for certain lineages [ 20 ]. For the sequence-based a ppr oac h, we use a Nextflow implementation (VLQ-nf) of the slightly adjusted VLQ pipeline as proposed 
by Baaijens et al. [ 29 ] and is based on the tool Kallisto. AAF: alternative allele frequency, used as a cutoff to define a mutation as a feature. 
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erformance of both methods, yielding controlled insights into
he strengths and limitations of each approach. When comparing
he results with the actual sample composition in the following
ections, we define a false-positive hit as a lineage that was esti-
ated with a frequency above zero without being included in the

ample mixtur e. Analogousl y, we define a false-negativ e hit as a
ineage that was not detected by a tool e v en though it is included
n the sample mixture by design. 

VLQ-nf detected all correct spike-in lineages across all samples.
he output for e v ery sample sho w ed, ho w e v er, a certain amount
f false-positive predictions comprising lineages that are part of
ur r efer ence set but not used as spike-ins (Fig. 2 ). We observed the
ost consistent false-positive estimations for Gamma (P.1), with
p to 1.61% abundance across all samples. In contrast, MAMUSS
id not detect all spike-in lineages but sho w ed mor e r obust r esults

n quantifying fewer false positives in the samples (Fig. 2 ). 
When comparing false detection and over- or underestimation

or both a ppr oac hes, we partl y observ ed similar patterns among
pecific groups of lineages: the mutation-based approach sho w ed
 bias in samples comprising A.1 to w ar d not being able to detect
.1. In sample Mix_06, the mutation-based a ppr oac h could not de-

ect Iota (B.1.526) and falsely detected BA.1. The sequence-based ap-
r oac h consider abl y under estimated B.1.526 in Mix_06, wher eas it
alsely detected B.1.526 in Mix_01 and Mix_02. 

Furthermor e, both a ppr oac hes sho w ed distinct patterns of
alse estimation among B.1.617.2 (Delta) and its sublineages AY.1
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Table 2: Composition of synthetic mixture “spike-in” Standards . 
Here we show the proportions of which different SARS-CoV-2 lin- 
ea ges wer e mixed to gener ate a collection of artificial samples 
for our benchmark. For example, the sample Mix_01 comprises 
25% original Wuhan-Hu-1 A.1 and 75% Alpha B.1.1.7 ( 0 . 25 org −
0 . 75 alpha ). All samples were sequenced with Ion Torrent and raw 

data are available under BioProject number PRJNA912560 in the 
NCBI Sequence Read Arc hiv e. Please note that no r eal waste wa- 
ter was used to construct these synthetic mixtures because we 
wanted to reduce any side effects for our gold standard in the con- 
text of this study. 

Sample ID Composition 

Mix_01 0 . 25 org − 0 . 75 alpha 

Mix_02 0 . 25 org − 0 . 25 beta − 0 . 5 alpha 

Mix_03 0 . 25 alpha − 0 . 25 beta − 0 . 25 gamma − 0 . 25 org 

Mix_04 0 . 5 org − 0 . 5 iota 
Mix_05 0 . 25 org − 0 . 25 iota − 0 . 5 omiBA 2 . 5 

Mix_06 0 . 25 alpha − 0 . 25 iota − 0 . 25 omiBA 2 . 5 − 0 . 25 omiBA 2 

Mix_07 0 . 5 omiBA 2 . 5 − 0 . 5 omiBA 2 

Mix_08 0 . 25 org − 0 . 25 alpha − 0 . 25 omiBA 2 . 5 − 0 . 25 omiBA 2 

Mix_09 0 . 5 del t aAY1 − 0 . 5 del t aAY2 

Mix_10 0 . 25 del t aAY1 − 0 . 25 del t aAY2 − 0 . 5 del t a 

Mix_11 0 . 25 del t aAY1 − 0 . 25 del t aAY2 − 0 . 5 omiBA 1 

Mix_12 0 . 25 del t aAY1 − 0 . 25 del t aAY2 − 0 . 25 omiBA 1 −
0 . 25 omiBA 2 . 5 

Mix_13 0 . 25 del t aAY1 − 0 . 25 del t aAY2 − 0 . 25 omiBA 1 −
0 . 25 omiBA 2 

Mix_14 0 . 5 del t a − 0 . 25 omiBA 1 − 0 . 25 omiBA 2 

Mix_15 0 . 25 del t aAY1 − 0 . 25 del t aAY2 − 0 . 25 omiBA 1 −
0 . 25 omiBA 2 . 5 

Mix_16 0 . 25 alpha − 0 . 25 del t a − 0 . 25 omiBA 1 − 0 . 25 omiBA 2 

org – Wuhan-Hu-1 A.1; alpha – Alpha B.1.1.7; beta – Beta B.1.351; gamma – Gamma P.1; 
iota – Iota B.1.526; del t a – Delta B.1.617.2; del t aAY1 – Delta AY.1; del t aAY2 – Delta AY.2; 
omiBA 1 – Omicron BA.1; omiBA 2 – Omicron BA.2; omiBA 2 . 5 – Omicron BA.2.5 
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and AY.2. In samples containing no Delta and only Delta sublin- 
ea ges, both a ppr oac hes falsel y detected Delta while under esti- 
mating AY.1 or AY.2. In samples containing only Delta and no Delta 
sublinea ges, MAMUSS falsel y detected AY.1 and AY.2, while un- 
derestimating Delta. In samples containing Delta and Delta sub- 
lineages , VLQ-nf o verestimated Delta and underestimated AY.1,
while MAMUSS ov er estimated Delta sublinea ges and under esti- 
mated Delta. 

Both a ppr oac hes estimated B A.1 and B A.2 without distinct con- 
flicts among each other. We observed slight over- or underestima- 
tion in the abundance of Omicron lineages to co-occur with un- 
derestimation of Delta sublineages in samples Mix_10–16. 

Finally, we found both approaches to match the ground-truth 

proportions of the Standards samples well on the parent lineage 
le v el. On the sublinea ge le v el, we found the false-negative detec- 
tion of B.1.526 in sample Mix_06 and the quantification conflicts 
among Delta (sub)lineages to be the most prominent differences 
between both a ppr oac hes. For the mutation-based a ppr oac h, we 
found the false-negative detection of A.1 to be the second most 
prominent shortcoming observed in this experiment. 

VLQ-nf detects Alpha sublineages while 

MAMUSS finds distinctly larger abundances for 
rising lineages Beta, Gamma, and Delta in the 

P an-EU-GER da ta 

We analyzed German samples from the Pan-EU study [ 12 ] using 
both a ppr oac hes to assess their performance on w astew ater se- 
quencing data. In the lack of ground-truth kno wledge, w e eval- 
uated both a ppr oac hes by r elating the linea ge pr edictions and 
uantification to the pandemic bac kgr ound in German y based on
ata from clinical sampling str ategies. Mor eov er, we performed
xperiments on w astew ater sequencing data to e v aluate the po-
ential benefits of w astew ater-based surv eillance compar ed to
linically based data. 

According to global surveillance projects based on clinical ge- 
omic sequence data [ 38–41 ], the pandemic situation in Europe

rom February until April 2021 was mainly dominated by the
ARS-CoV-2 lineages Alpha, Beta, cases of B.1.177 and sublineages,
.1.258 and sublineages, and B.1.160 ( Supplementary Fig. S1 ). The
andemic situation in Germany at that time was mainly dom-

nated by VOCs Alpha and Beta as well as lineages B.1.177.86,
 .1.177.81, B .1.258, B .1.177, and B .1.160. According to GISAID sub-
issions during that time [ 7 ], a ppr oximatel y the same lineages

nd multiple other low-abundant global and European sublin- 
a ges wer e r eported fr om clinical sampling str ategies. Her e we
ocused the comparison on the lineages Alpha (B.1.1.7), Beta 
B.1.351), Gamma (P.1), Delta (B.1.617.2), and the r espectiv e sub-
ineages, as those were or became the dominant lineages around
he time of w astew ater sampling in Germany in the context of the
 an-EU pr oject [ 12 ]. 

W ith VLQ-nf , we quantified the linea ge and sublinea ge le v el.
n comparison, MAMUSS predicted lineage abundances only 
t the par ent le v el (Fig. 3 ). Both a ppr oac hes pr edicted Alpha
sub)lineages to be the most abundant lineages in the dataset.
pecifically, the sequence-based approach found Alpha sublineages 
.1 and Q.7 to be the most abundant. Yet, those Alpha sublineages
er e not r eported among the most fr equent cases based on clini-

al sampling strategies (see Supplementary Fig. S1 ). Ho w e v er, this
s not necessarily the case, as the SARS-CoV-2 lineages can circu-
ate in different proportions in w astew ater and clinical environ-

ents. We also need to take into account the dynamic nomen-
lature system. The discrepancy could also be due to the retro-
pective definition and late classification of Alpha sublineages 
nd again emphasizes the potential influence of r efer ence bias.
e also detected Beta, Gamma, and Delta (sub)lineages at abun-

ances below 1%, which are not visible at the scale of Fig. 3 . In
ontrast, we found distinctly larger abundances of Beta, Gamma,
nd Delta in the samples using MAMUSS. 

utation - and sequence-based approaches recover 
 similar Omicron proportion from an early 

irport w astew ater sample 

e used both a ppr oac hes to analyze a real w astew ater sequenc-
ng sample (SRR17258654, FFM-Airport ) [ 20 ]. We compared lineage
redictions and quantification against the pandemic bac kgr ound 

n Europe and South Africa at the time of w astew ater sampling.
e e v aluated both a ppr oac hes in terms of their ability to de-

ect (sub)lineages at low abundances, specifically to detect low- 
bundant signals of Omicron BA.1, which was the dominant Omi-
r on sublinea ge cir culating during that time (B A.2 w as not y et de-
ected in clinical or w astew ater sequencing data). 

The pandemic situation in Europe and South Africa from Oc-
ober to December 2021 was dominated by Delta sublineages 
nd increasing incidences of Omicron and its sublineages [ 38–
1 ] ( Supplementary Fig. S2 ). According to GISAID submissions,
ostly Delta sublineages and a few cases of Omicron and other
inor global sublineages were reported based on clinical sam- 

ling strategies. 
W ith VLQ-nf , we detected man y Delta sublinea ges at abun-

ances r anging fr om less than 1% to around 8% that in sum con-
ribute over 93% abundance in the w astew ater sample (Fig. 4 ).

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
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Figure 2: Comparison of the occurrence of predefined mixtures of SARS-CoV-2 variants ( Standards ) (A) at Pangolin parent lineage level and (B) at 
P angolin sublinea ge r esolution based on the sequence-based (VLQ-nf) and mutation-based (MAMUSS) a ppr oac h. 
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oughly half of the detected Delta sublineages were estimated
ith abundances of less than 1%. In terms of Omicron, VLQ-nf
etected BA.1 with 1.44%. Finally, we observed lineages and sub-

inea ges fr om other families with abundances of less than 1%
“Other”). 

We observed a similar lineage abundance profile with MA-
USS. We found that most abundance consists of 2 a ppr oximatel y

qually abundant Delta sublineages. We detected a small pro-
ortion close to 1% of Omicr on. Compar ed to VLQ-nf, we did not
nd any low-abundant quantification for other (sub)lineages, ex-
lained by the smaller r efer ence dataset only composed of a par-
icular collection of marker mutations. 

We found that the estimated abundance profiles of lineages
r om both a ppr oac hes matc hed well with the pandemic back-
round in Europe and South Africa at the time of w astew ater sam-
ling. Ho w e v er, when considering abundance estimations of the
equence-based a ppr oac h at the sublinea ge le v el, we discov er ed dif-
er ences r egarding the most abundantl y pr edicted Delta sublin-
a ges compar ed to the mor e pr ominent Delta sublinea ges deriv ed
rom clinical sampling strategies in European and South African
ISAID submissions (compare Fig. 4 and Supplementary Fig. S2 ).
he sequence-based a ppr oac h pr edicted A Y.25.1, A Y.125.1, A Y.122.4,
 Y.121, and A Y.43.1 to be most abundant in the analyzed sam-
le. In contrast, GISAID submissions sho w ed A Y.4, A Y.43, A Y.122,
 Y.4.2, A Y.126, A Y.4.2.2, and A Y.98 as the most frequent Delta sub-
ineages in Europe during that time. Additionally, we found AY.45,
 Y.32, A Y.91, A Y.116, A Y.122, A Y.6, and A Y.46 to be the highest re-
orted Delta sublineages in South Africa. While our predictions
o not match the clinically reported frequencies, some of our pre-
ictions belong to the same lineage family as the most fr equentl y
 eported linea ges fr om clinical sampling (e.g., AY.43.1 is a sublin-
age of A Y.43, A Y.122.4 is a sublineage of AY.122, and AY.125.1 is
 sublineage of AY.125, which we found among the 20 most fre-
uentl y r eported linea ges in Eur ope using VLQ-nf). 

lternati v e allele frequency and size of reference 

atabase impact the sequence-based method, but 
he effects also depend on lineage composition 

n the sample 

o better understand the impact of specific parameters on the per-
ormance of the sequence-based method, we performed parame-
er escalation experiments (see Methods) on the Standards bench-

ark set as well as the Pan-EU-GER and FFM-Airport datasets. Due
o the similar findings for all 3 datasets, here we only present
he results based on the Standards and refer to the results of the
an-EU-GER and FFM-Airport datasets in the supplementary ma-
erial (subsection “Alternative allele frequency and size of ref-
rence database impact the sequence-based method but the ef-
ects are dependent on sample composition”). We investigated
he impact of r efer ence construction par ameters on linea ge pr o-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
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Figure 3: Comparison of the results for the Pan-EU-GER analysis using VLQ-nf ( sequence based , left) versus MAMUSS ( mutation based , right). Abundance 
pr edictions ar e plotted abov e a cutoff of 1% abundance and labeled at a thr eshold of 3% abundance. VLQ-nf detected abundances for B.1.617.2, P.1, 
and B.1.351 sublineages below 1%, which are not visible at the scale of this figure . T he x-axis shows the percentage of predicted lineage abundances for 
the Pan-EU-GER analysis. 
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Figure 4: Sank e y plot comparing the detected linea ge pr oportions for the sequence-based a ppr oac h (VQL-nf, left) and the mutation-based a ppr oac h 
(MAMUSS, right) for 1 airport w astew ater sample (SRR17258654) [ 20 ]. Both approaches detect a similar amount of Delta and Omicron (BA.1) in the 
sample. At the same time, VQL-nf can ac hie v e a higher sublineage resolution (AY lineages) based on the full genome information in the reconstructed 
r efer ence index and utilizing pseudo-alignments. MAMUSS can, as configured for this analysis and based on the limited reference set, distinguish 
between 2 slightly different B.1.617.2 clades as defined by Nextstrain. For the sequence-based approach, only lineages with a proportion of at least 1% 

are shown, and all other AY sublineages are pooled in AY ∗ and all other lineages in “Others.”
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ortion estimation and aimed at uncovering the potential bias of
he pseudo-alignment implemented in the sequence-based method.
pecifically, we focused on the alternative allele frequency (AAF)
hreshold and the maximum number of sequences per lineage.
he AAF threshold defines the minimum alternative allele fre-
uency for a mutation to be considered characteristic of a lineage.
irst, genome sequences are added as lineage references so that
ac h m utation that exceeds the AAF thr eshold is detected at least
nce by as few sequences as possible. Next, additional genomes
re added until the maximum number of sequences per lineage
s r eac hed. T hus , the AAF threshold controls the level of genomic
 ariation ca ptur ed for eac h linea ge, and the maxim um number of
equences per lineage controls the reference size. 

tandards 
cross most Standards samples and experiments, VLQ-nf detected
ll spike-in lineages and predicted reasonable estimates (Fig. 5 ).
o w e v er, we consistentl y observ ed low-abundant false-positiv e
its in all of our mixed samples, comprising lineages that are part
f the r efer ence index but not used as spike-ins. We found the
ost pr ominent false-positiv e detection to be Gamma. We ob-

erved similar patterns of false-positive detection and false es-
imation among specific groups of lineages across all parameter
ettings: for the first 8 samples Mix_01 to Mix_08, most cases of
alse estimation of spike-in lineage abundances occurred along-
ide false positives or negatives of B.1.526 and false positives of
A.1. For the samples Mix_09 to Mix_16, we observed most detec-
ion conflicts to involve ambiguities among Delta and its sublin-
ages AY.1 and AY.2. 

We found that the detection and quantification performance
f the sequence-based method via VLQ-nf changed with varying
hresholds for the alternative allele frequency and maximum
umber of genomes per r efer ence linea ge. Specificall y, we found
hose changes to vary across samples and observed them not to
ehav e identicall y with consistent par ameter c hanges. For exam-
le, at the minimum reference size ( Supplementary Table S1 ), we
bserv ed abundance pr edictions for samples Mix_09 and Mix_11–
6 to first impr ov e with an increasing AAF threshold. Ho w ever,
ith a further incr easing AAF thr eshold, we observ ed mor e false

stimations of Delta sublinea ges. Furthermor e, although Mix_10
hares most of its spike-in lineages with Mix_09, the performance
f abundance estimations for sample Mix_10 first decreased and
hen impr ov ed a gain when incr easing the AAF thr eshold. 

We made a similar observation for the maximum number of
equences per lineage. With an AAF threshold of 0.5, the abun-
ance estimates for Mix_01 impr ov ed with increasing number of
 efer ence genomes per lineage, while we found them to deterio-
ate for Mix_09, which includes a distinctly different sample com-
osition. Ov er all, we found lineage abundance estimations to be-
ome slightl y mor e r obust acr oss v arying AAF thr esholds with in-
r easing r efer ence size . T his is best reflected in the abundance
rofiles for samples Mix_09 to Mix_15 when looking at the propor-
ional c hanges acr oss incr easing AAF settings for the minimum
 efer ence size throughout the reference with 10 sequences per
ineage. 

Finally, we found that the AAF threshold and the reference size
ffect the performance of the sequence-based method. Although we
id not observe a clear and consistent pattern of impact, we found
hat the effects of varying parameter settings may depend on the
ample composition. Specifically, we observed the strongest im-
act of parameter changes for samples containing lineages with
 higher degree of shared genomic similarity. Also, we found the
AF threshold to affect estimates slightly more than the refer-
nce size. We detected similar results for the Pan-EU-GER and FFM-
irport datasets. We provide details for these 2 datasets in the sup-
lementary material (see Supplementary Figs. S3 and S4 ). 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
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Figure 5: Results for the parameter escalation experiments on the Standards samples using the sequence-based method (VLQ-nf). We analyzed the 
Standards with different parameterizations for reference construction (x-axis: increasing AAF threshold, y-axis: increasing maximum number of 
sequences per lineage). VLQ-nf, using pseudo-alignments, detected all linea ges and estimated abundance pr ofiles well acr oss most samples and 
parameter settings. Ho w ever, w e also observed prominent detection ambiguities among Delta and its sublineages and found consistently 
low-abundant false positives for specific groups of lineages. Continuously increasing or decreasing parameter settings caused heterogeneous changes 
in the estimated abundance proportions across samples . T he sequence-based method sho w ed to perform better when using a reference set larger than 
the minimum reference size. Still, we found noise levels to increase distinctly when using the maximum reference size among the considered 
settings. 
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Final choice of parameters for benc hmar k reference construc- 
tion 

Within the scope of the parameter escalation experiments de- 
scribed here, w e w anted to determine parameters with a good pre- 
diction performance without manipulating the benchmark in fa- 
vor of the sequence-based a ppr oac h (VQL-nf). Finall y, based on our 
parameter testing and the 3 different datasets, we chose an AAF 
threshold of 0.25 and a reference size of at most 5 sequences per 
lineage . T his threshold allo w ed us to limit the size of the reference 
ataset and still allows reasonable detection and quantification 

 esults acr oss all 3 benc hmark datasets while k ee ping computa-
ional resources moderate. 

iscussion 

t is a ppar ent that the composition of the r efer ence used must
ave a large impact on the determination of relative SARS-CoV- 
 abundances in w astew ater sequence data. Especially given the
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ynamic and constantly updated SARS-CoV-2 lineage definitions
 3 ], the r efer ence genome sequences and the signatur e m utations
eriv ed fr om them also c hange fr equentl y. Of course, the v arious
ools (Table 1 ) and their parameters developed for estimating the
 elativ e abundance of lineages from w astew ater sequencing data
lso have an impact. Here, ho w ever, w e have specifically focused
n the effects of the r efer ence design. 

We selected 2 general approaches to design reference datasets
nd estimate SARS-CoV-2 linea ge pr oportions fr om waste water
equencing samples (Fig. 1 ). On the one hand, selected marker
utations that are characteristic for certain SARS-CoV-2 lineages

an be used for annotation and lineage proportion estimation ( mu-
ation based , MAMUSS). Here, the r ead sequences deriv ed fr om a
 astew ater sample are mapped against a reference genome from
hic h differ ences (m utations) ar e detected and compar ed a gainst

he selected marker mutations. On the other hand, full SARS-CoV-
 genome sequences can be used to create a r efer ence index with-
ut prior collection of specific mutations ( sequence based , VLQ-nf).
er e, the pr oblem of selecting a ppr opriate marker m utations is

hifted to selecting r epr esentativ e linea ges fr om whic h featur es
or the classification task ar e deriv ed. An exemplary implemen-
ation of this a ppr oac h based on the pseudo-aligner Kallisto [ 32 ]
as r ecentl y pr oposed by Baaijens et al. [ 29 ]. Based on their work,
e de v eloped a Nextflow pipeline for higher automation and re-
roducibility and detecting SARS-CoV-2 lineage proportions from
 astew ater data using pseudo-alignments (VLQ-nf). In this ap-
r oac h, a selection of whole-genome SARS-CoV-2 sequences (tar-
et r efer ence set) and the r eads (query) ar e composed into k -
ers, whic h ar e then efficiently compared to quantify lineage

bundances, similar to quantifying gene expression in an RNA se-
uencing study. 

To benc hmark r efer ence designs fr om both methods ( mutation
ased via MAMUSS, sequence based via VLQ-nf), we selected 3 test
cenarios: (i) a spike-in experiment with different SARS-CoV-2 lin-
age mixes, (ii) samples obtained for Germany from a Pan-EU
 astew ater study, and (iii) a w astew ater sample from a German
irport during the time when Omicron emerged. 

In general, both approaches detected SARS-CoV-2 lineage
bundances from our test cases . T he most remarkable difference
as in the number of detected sublinea ges, whic h also dir ectl y

orrelates with the reference design. VLQ-nf generally detected a
ar ger div ersity of sublinea ges in comparison to MAMUSS, which
an be explained by the underlying reference indices. It became
ncr easingl y difficult to select a r epr esentativ e set of marker mu-
ations for the mutation-based a ppr oac h and the implementation
e used as more and more (sub)lineages were defined and there
as ov erla p in m utations (conv er gent e volution). In contr ast, the

equence-based a ppr oac h as suggested by Baaijens et al. [ 29 ] can
uild a r efer ence index on a lar ge collection of SARS-CoV-2 full
enome sequences derived from clinical samples and thus, po-
entiall y, better r eflect div ersity on sublinea ge le v els. Ho w e v er, we
lso observed a certain amount of noise in the pseudo-alignment
 esults, causing potential false-positiv e hits in our test datasets.
ther a ppr oac hes, like Fr eyja [ 21 ], partl y tac kle this pr oblem by
eriving signature mutation profiles automatically, for example,
sing the whole phylogenetic diversity of current SARS-CoV-2 se-
uences reflected in an UShER tree [ 34 ]. Ho w ever, here w e have
lso observed that the inclusion of a large diversity in the ref-
rence can lead to distributed abundance assignments between
losel y r elated (sub)linea ges, r educing the true r elativ e abundance
f a lineage ( Supplementary Figs. S5 and S6 ). Of course, the impact
an be reduced by limiting linea ge cov er a ge to a specific time pe-
iod, but this, in turn, can also affect frequency assignments. 
In more detail, both approaches performed similarly in detect-
ng and estimating spike-in lineage abundances for the Standards
ataset (Fig. 2 ). The predictions are more similar on the parent-

inea ge le v el compar ed to the sublinea ge le v el. If their estimations
iffer, this can be mostly attributed to differences in the muta-
ions/lineages included in the respective reference data: for both
 ppr oac hes, the final pr edictions heavil y depend on the construc-
ion of the r efer ence dataset. In addition, both a ppr oac hes had
ifficulties differentiating closely related sublineages correctly. 

For the Pan-EU-GER dataset, both a ppr oac hes r eflect well the
andemic bac kgr ound in German y during the time of sampling,
ut we detected some limitations and potential sources for bias:
he choice of marker mutations and reference lineages impacts
he le v el of detection (i.e. lineage- vs. sublinea ge-le v el estima-
ions) but also the amount of low-abundance detection. Poten-
iall y, e v erything that is defined in the r efer ence dataset can also
e detected, which might lead to an increased number of false-
ositiv e pr edictions . T he whole-genome sequences or mutations
sed to create the reference index impact the degree of am-
iguity and, thus, (low-abundant) false-positive detection. This
ay explain why both a ppr oac hes pr edicted distinctl y differ ent

bundances on the par ent-linea ge le v el compar ed to the other 2
enchmark experiments . T herefore , we think that especially the
equence-based a ppr oac h r equir es the definition of a false-positive
hreshold to differentiate between low-abundant false-positive
its and low-abundant true positives. 

Both a ppr oac hes also detected low-fr equency linea ges for the
FM-Airport dataset. Again, the sequence-based a ppr oac h detects a
istinctly higher amount of low-abundant lineages, also reflecting
he higher diversity of the reference index. 

We performed an additional parameter benchmark to identify
mportant k e y parameters impacting the sequence-based pseudo-
lignment a ppr oac h using VLQ-nf. One par ameter that str ongl y
ffects the results is the AAF cutoff. In connection with the ref-
rence size (the number of genomes), we observed different ef-
ects of changing the AAF. Our experiments also sho w ed that
he effect of the same parameter changes (increasing or decreas-
ng AAF) does not yield consistent results among the different
atasets . T he degree of lineage ambiguity depends on the con-
idered composition of lineages and sublineages . T he effect of in-
luded/excluded mutations due to adjusted AAF parameter set-
ings is variable, as different mutations have different effects in
iffer entiating linea ges . T he effect of those parameter changes is
ost notable among more similar lineages. We also observed that
ith a lar ger r efer ence size, the effect of the AAF parameter be-

omes smaller and ov er all abundance estimations impr ov e. One
xplanation might be that by adding further r efer ence genomes
or a linea ge, low-fr equency m utations ar e implicitl y intr oduced
nd increase the genomic variation that is represented by the ref-
rence dataset. These additional lo w-frequenc y mutations might
upport the differentiation of certain (sub)lineages better and
hus slightly improve abundance estimations. 

otential Implications 

n this study, we focus exclusiv el y on Ion Torrent sequencing
ata to specifically investigate the influence of reference database
omposition and analysis parameters on lineage abundance es-
imates in w astew ater sequencing. While ackno wledging that in-
or por ating data from additional platforms like P acBio, Nanopor e,
nd Illumina could broaden the analysis of variability and robust-
ess, we chose Ion Torrent due to its established efficacy in achiev-

ng high horizontal genome cov er a ge in our sequencing runs [ 12 ,

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
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20 , 37 ], critical for assessing the impact of r efer ence bias . T his fo- 
cused a ppr oac h allows us to explore the considerable effects that 
r efer ence selection and analytical settings have on lineage abun- 
dance results, a crucial area for accurate viral surveillance. Fu- 
ture studies might explore a comparative analysis across different 
platforms to enhance understanding of lineage composition and 

abundance estimation in w astew ater samples. Ho w ever , our cur - 
rent study is intentionally limited to specific research objectives 
related to reference bias in a mutation-based and sequence-based set- 
ting and in the context of declining clinical sequencing and the 
dilution of available reference sequences. 

Further, we only selected 2 exemplary implementations of the 
mutation- and sequence-based a ppr oac hes MAMUSS and VLQ-nf,
r espectiv el y, out of an increasing number of scripts , tools , and 

pipelines becoming available for computational SARS-CoV-2 lin- 
eage estimation from w astew ater sequencing (Table 1 ) [ 10 , 16 , 18 ,
21–31 ]. T hus , our benc hmark r esults also r eflect and ar e limited by 
the individual c har acteristics of these 2 implementations. How- 
e v er, we focused on these 2 a ppr oac hes to investigate the impact 
of r efer ence design using implementations where we could easily 
contr ol par ameters and input—similar to the decision for the Ion 

Torr ent tec hnology. Curr entl y, a compr ehensiv e benc hmark com- 
parison for the existing SARS-CoV-2 w astew ater analysis tools is 
lac king. The de v elopers of Fr eyja compar ed a selection of tools on 

a spike-in mixed sample [ 21 ] where they found that Freyja out- 
performed VLQ [ 29 ] in accuracy at higher expected proportions 
and observ ed noticeabl y longer computation times for both VLQ 

and LCS [ 23 ]. To counteract the effect on lineage abundance de- 
tection, some methods filter the mutations considered for lineage 
assignment based on sequencing depth [ 16 ] or adjust their mathe- 
matical model for differences in depth and cov er a ge and expected 

err or r ates [ 21 , 27 ]. Similarl y, the PiGx tool addr esses the limita- 
tions of estimating lineages at low abundances b y w eighting spe- 
cific signature mutations for lineages that are expected to occur 
at low frequencies [ 26 ]. Another recent study compared 9 com- 
putational tools but only used simulated genomic data [ 33 ]. As a 
next step, a br oader e v aluation of all available tools for analyz- 
ing SARS-CoV-2 w astew ater sequencing data is ur gentl y needed 

to guide usage and further development [ 42 ]. 

Conclusion 

Academic r esearc hers hav e pioneer ed waste water monitoring of 
SARS-CoV-2 and overcome several technical and methodologi- 
cal challenges [ 15 ]. Thanks to these efforts, w astew ater-based 

pathogen surveillance has rapidly become a valuable public 
health tool for detecting SARS-CoV-2 that can excellently comple- 
ment syndr omic surv eillance or other monitoring tools. Ho w e v er,
public health authorities are now faced with the task of integrat- 
ing these ac hie v ements into robust and continuous public health 

surveillance systems that can be operated and expanded over the 
long term. Performance parameters must be defined and commu- 
nicated to the public health authorities to include w astew ater- 
based pathogen surveillance data. In this context, continuous 
updating of r efer ence datasets, in the context of r etr ospectiv e 
analyses or time series, is essential to ensure comparability be- 
tween time points. For example, genomic sequences of ne wl y de- 
fined lineages might already be present in w astew ater samples 
fr om pr e vious w eeks. Ho w e v er, bioinformatic anal ysis of pr e vi-
ous samples could not detect the novel lineage because it was 
not included in the r efer ence dataset at that time point. Continu- 
ously updated reference datasets can support comparing and in- 
ter pr eting waste water sequencing time-series data. Yet, harmo- 
izing the r efer ence used would r equir e r ecalculating older abun-
ance estimates , which ma y conflict with the standard reporting
 equir ements of public health authorities. Ho w e v er, this pr oblem
s not specific to w astew ater -based SARS-CoV -2 sequencing data
ut also applies to genomics sequencing of patient samples. One
olution might be to not only focus on lineages but also report mu-
ations that are not affected by any nomenclature scheme and are
ot subject to delayed definitions. On the other hand, it is undeni-
ble that lineages played a crucial role in communication during
he COVID-19 pandemic. Recentl y, McBr oome et al. [ 43 ] proposed a
ov el fr ame work for a more automated and scalable designation
f viral pathogen lineages from (clinical) genomic data. 

Wastewater sequencing data also offer the potential to uncover 
ryptic (novel, undescribed) lineages, although resolving the full 
enomic profile of those solely from w astew ater data still poses
e v er al c hallenges [ 11 , 21 ]. In this context, a ppr oac hes utilizing ar-
ificial intelligence might present a promising next step for the im-
r ov ed detection of cryptic SARS-CoV-2 lineages from w astew ater
equencing data and incr easing tr ends, although, right now, not
 uc h in use [ 44 ]. Ho w e v er, first studies a ppear that use mac hine

earning for the early detection of new signals from w astew ater
ata and the description of potential new SARS-CoV-2 lineages 
 45 , 46 ]. Finally, the lessons learned from the sequencing efforts
nd implementations for SARS-CoV-2 detection from w astew ater 
equencing data can and should be adapted to other pathogens
o further advance w astew ater genomic surveillance efforts. 

ethods 

enchmark dataset 1: Standards 
e pr ocur ed synthetic SARS-CoV-2 RNA samples (Twist Bio-

ciences), whic h wer e used to pr epar e 16 differ ent mixtur es (Ta-
le 2 ) containing different SARS-CoV-2 variants. From the pooled
N A, cDN A w as synthesized using SuperScript VILO Master Mix

Thermofisher Scientific), follo w ed b y libr ary pr epar ation using
he Ion AmpliSeq SARS-CoV-2 Research Panel (Thermofisher Sci- 
ntific) according to the manufacturer’s instructions . T his panel
onsists of 237 primer pairs, resulting in an amplicon length range
f 125–275 bp, which cover the near-full genome of SARS-CoV-2.
e performed 2 sequencing runs to ac hie v e at least 1 million
a pped r eads per sample. For eac h sequencing run, 8 libr aries
er e m ultiplexed and sequenced using an Ion Torr ent 530 c hip
n an Ion S5 sequencer (Thermofisher Scientific) according to 
he manufacturer’s instructions . T he ra w sequence data were up-
oaded to the NCBI Sequence Read Arc hiv e under BioPr oject num-
er PRJNA912560. 

ata processing: mutation-based reference design 

nd lineage proportion estimation via MAMUSS 

e used the SARS-CoV-2 Research Plug-in Package, which we 
nstalled in our Ion Torrent Suite software (v5.12.2) of Ion S5
equence. We used the SARS_CoV_2_cov er a geAnal ysis (v5.16)
lugin [ 47 ], which maps the generated reads to a SARS-CoV-2
 efer ence genome (Wuhan-Hu-1-NC_045512/MN908947.3), using 
MAP software included in the Torrent Suite . T he summary of
a pping of eac h sample mentioned in Table 2 is provided in

upplementary Table S2 . For mutation calls, additional Ion Tor-
ent plugins were used as described previously [ 37 ] and detailed
elow. First, all single nucleotide v ariants wer e called using Vari-
nt Caller (v5.12.0.4) with “Generic - S5/S5XL (510/520/530) - So- 
atic - Low Stringency” default parameters . T hen, for annota-

ion and determination of the base substitution effect, we used

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae051#supplementary-data
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Table 3: For each lineage in the Standards dataset, we selected the 
time frame where infection numbers peaked globally [ 38 ]. Based 

on the listed time frames, we sampled genome sequences from 

GISAID for r efer ence r econstruction. We downloaded the GISAID 

records on 2 March 2022. 

Lineage Time frame 

A.1 2020-03-01:2020-03-14 
B.1.1.7 2021-05-01:2021-05-14 
B.1.351 2021-01-20:2021-02-02 
P.1 2021-04-20:2021-05-03 
B.1.526 2021-03-20:2021-04-02 
BA.2 2022-02-01:2022-02-14 
BA.1 2021-12-01:2021-12-14 
B.1.617.2 2021-06-25:2021-07-08 
AY.1 2021-08-01:2021-08-14 
AY.2 2021-06-25:2021-07-08 
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OVID19AnnotateSnpEff (v1.3.0.2), a plugin de v eloped explicitl y
or SARS-CoV-2 and based on the original SnpEff [ 48 ]. To construct
 efer ence marker m utation sets for MAMUSS, we used data from
ISAID [ 8 ]. For each SARS-CoV-2 variant, we downloaded the vari-
nt surveillance database and selected complete clinical genome
equences, follo w ed b y counting the pr e v alence of its associated
utations . T he 50 most prevalent mutations associated with each
 ariant wer e used as a r efer ence marker m utation set. The lin-
age abundance estimation is based on the read depth and allele
r equency of eac h m utation detected in a waste water sample fol-
o w ed b y a 2-indicator classification and comparison to the pres-
lected marker mutations characteristic for certain lineages. For
urther details, see the MAMUSS GitHub repository [ 49 ]. 

ata processing: sequence-based reference design 

nd lineage proportion estimation via VLQ-nf 
nstead of r el ying onl y on manuall y or algorithmicall y selected

arker mutations, another computational approach utilizes, in
 first step, full genome information. For example, Baaijens et
l. [ 29 ] presented a method to estimate the abundance of vari-
nts in w astew ater samples based on well-established computa-
ional techniques initially used for RNA sequencing quantifica-
ion. Here, the main idea is that quantifying different transcripts
eriv ed fr om the same gene is computationally similar to the
bundance estimation of different SARS-CoV-2 lineages derived
rom the same parental genome. Via Kallisto [ 32 ], they perform
seudo-alignments of the raw reads against an index of prese-

ected and downsampled full genome SARS-CoV-2 sequences with
 espectiv e linea ge information. Ther efor e, their a ppr oac h may be
ess influenced by the preselection of mutations based on clin-
cal r ele v ance, fr equency, or other par ameters that mostl y driv e
utation-based tools and thus may be better suited for sublineage
iscrimination. The a ppr oac h comprises 2 steps: (i) selecting r ef-
rence genome sequences for index construction and (ii) pseudo-
lignment of the reads and lineage abundance estimation. First, a
 efer ence dataset of SARS-CoV-2 genome sequences must be se-
ected. For that, we use data from GISAID [ 8 ] and filter for human–
ost sequences, N-count information, pangolin annotation [ 2 , 3 ],
rigin (country, continent), and sampling date . T hese metadata
re used to preselect sequences based on geographic origin (con-
inent, country), a sampling time frame, and the number of N
ases. Next, the pipeline performs a variant calling against a refer-
nce sequence (per default index Wuhan-Hu-1, NC_045512.2) and
ubsequently samples sequences to select characteristic muta-
ion profiles for each input lineage. Within a lineage, sequences
re sampled based on an alternative allele frequency cutoff (e.g.,
AF > 0.5) so that each mutation is represented at least once un-

il an upper limit of sequences per lineage is reached. From this
ownsampled and r epr esentativ e set of full genome sequences, a
allisto index is constructed. Now, the r aw r eads fr om a FASTQ file
re pseudo-aligned against this index and lineage abundances are
uantified. This is done by estimating for each read the probabil-

ty of originating fr om eac h genome sequence in the r efer ence us-
ng expectation maximization and finally aggregating the result-
ng probabilities across the lineage labels associated with every
 efer ence genome. 

For our compar ativ e study, we used the initial idea and code
ase from Baaijens et al. [ 29 , 50 ] and implemented a Nextflow
ipeline [ 35 , 36 ] with the purpose of automating the steps and
aking our analyses fully reproducible. In this context, we discov-

red some issues in the pipeline version 61dd29df ∗ of Baaijens et
l. and implemented minor adjustments . T his includes updating
ata-processing scripts according to the most recent GISAID data
ormat and allowing the sequence selection based on alternate
llele frequencies to consider multiallelic sites . Meanwhile , the
uthors hav e addr essed those issues with similar code changes
n their current pipeline version. In pipeline version 61dd29df ∗,
equences are selected for the reference index if they carry an
AF filter passing mutation that is not yet cov er ed until the refer-
nce set for the r espectiv e linea ge meets the maxim um allo w ed
umber of sequences. We wanted to provide the possibility for
sing a minimum reference setup to reduce data storage require-
ents and allow exploring the impact of differ ent AAF thr esholds

n abundance estimation. Subsequently, we adjusted the AAF fil-
er to first sample a minimum set of genome sequences so that
ll passing mutations are included at least once, before increas-
ng the r efer ence set to the number of maximum sequences per
inea ge. We r an our pipeline version v1.0.0 for all analyses in this
enchmark study. 

econstruction of indices for the sequence-based 

pproach 

he sequence-based (VLQ-nf) a ppr oac h highl y depends on the selec-
ion and reconstruction of the r efer ence dataset for the Kallisto
ndex. T hus , we r econstructed differ ent indices for our 3 bench-

ark datasets to mimic the pandemic situation during the time
f sampling. We used GISAID data for all indices and extracted
ubsets based on metadata filters. 

For the benchmark of the 16 mixed Standards , we constructed a
 efer ence dataset comprising the included SARS-CoV-2 lineages.

e selected a time frame of 2 weeks around the peak of global
ncidences[ 38 , 39 ] for each lineage included in the mix (Table 3 ).

e only k e pt records with at least 29,500 nonambiguous bases.
ecause we also included the original Wuhan-Hu-1 r efer ence se-
uence in mixed samples Mix_01 to Mix_05 and Mix_08, we first
xcluded all A.1 sequences from the preselected set. Then, we se-
ected r efer ence sequences with c har acteristic m utation pr ofiles
or all lineages except A.1 as described before, allowing a max-
mum number of 5 sequences per lineage . T hen, we added the
ampled A.1 sequences again to the final r efer ence set, as other-
ise the A.1 sequences would have been excluded by the pipeline
ecause they do not show any AAF in comparison to the Wuhan-
u-1 r efer ence . On a v er a ge, we selected 5 sequences for a lin-
age to capture every mutation against the wild-type with an AAF
 0.25 (within-lineage variation) and a maximum of 5 allo w ed se-
uences per lineage. 
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For the Pan-EU-GER samples (collected between 10 and 30 
Mar ch 2021), w e r econstructed the r efer ence fr om clinical GISAID 

recor ds w e do wnloaded on 27 J anuary 2022. We selected only Eu- 
ropean sequences sampled between 1 February 2021 and 30 April 
2021, with at least 29,500 nonambiguous bases. To reflect the in- 
flux of variants from other European countries, we have not only 
selected sequences from Germany. On a verage , we then selected 3 
sequences per lineage to ca ptur e e v ery m utation a gainst the wild- 
type with an AAF > 0.25 (within-lineage variation) and allowing at 
most 5 r efer ence sequences per lineage. 

For the FFM-Airport dataset, we reconstructed the reference 
fr om GISAID r ecor ds w e do wnloaded on 11 February 2022. We se- 
lected genome sequences from European and South African clin- 
ical records sampled between 1 October 2021 and 31 December 
2021, again with at least 29,500 nonambiguous bases. On av er a ge,
4 sequences were selected for a lineage to capture every muta- 
tion against the wild-type with an AAF > 0.25 (within-lineage vari- 
ation). Again, w e allo w ed at most 5 sequences to be included per 
lineage. 

Lineage abundance estimation with the 

sequence-based approach 

After r econstructing differ ent r efer ence indices for our bench- 
mark datasets, we used specific Kallisto commands implemented 

in a Nextflow pipeline to pr epar e Kallisto ma pping indices, com- 
pute pseudo-alignments of each benchmark dataset against its 
r efer ence index, and estimate lineage abundances following the 
original idea and code of Baaijens et al. [ 29 ]. 

First, we built a Kallisto index from the r efer ence database (de- 
fault k -mer = 31). Next, for each sample in a benchmark dataset,
we pseudo-aligned all reads against the corresponding Kallisto 
index and estimated the abundance of eac h r efer ence sequence 
in the sample. We quantified our benchmark datasets in single- 
read mode with an average fragment length of 200 nt with a stan- 
dard deviation of 20 nt. Finally, a customized script grouped the 
estimated abundances by the lineage annotation of the respec- 
tive sequences and summed them up into a final lineage abun- 
dance estimation for the analyzed sample. For the Pan-EU-GER and 

FFM-Airport datasets, we further summarized the estimated abun- 
dances by the country information of the analyzed samples to 
compare the pseudo-alignment and mutation-based approach on 

the country le v el. 

Assessing parameter impact and potential bias 

with the pseudo-alignment approach 

We performed parameter escalation experiments with our 3 
benchmark datasets using the sequence-based method (VLQ-nf) to 
assess the impact of the AAF threshold and the cutoff for a maxi- 
mum number of sequences per lineage on lineage abundance es- 
timation. Mor e importantl y, we used the r esulting observ ations to 
inform our choice of parameters used for the final benchmark- 
ing against the mutation-based method (MAMUSS). In this context,
we aimed to determine a setting with a good prediction perfor- 
mance and reasonable computational effort without manipulat- 
ing the benchmark in favor of the sequence-based method. For ev- 
ery benchmark dataset, we constructed reference indices over a 
range of 12 possible parameter combinations. For the AAF thresh- 
old, we iterated over [0.25, 0.5, 0.85] to cover lo w er, medium, and 

high threshold values to define the characteristic mutation pro- 
files. For the maximum number of sequences per lineage, we built 
the r efer ence index using the minimal sequence sets possible, 5,
10, and 20 sequences per lineage. After lineage abundance esti- 
ation with each reference index on the Standards dataset, we
 v aluated pr ediction performance based on the ground-truth lin-
age abundances. For the FFM-Airport and Pan-EU-GER data, we 
ssessed prediction performance by comparing estimated lineage 
bundances with the pandemic bac kgr ound at the r espectiv e time
nd location. 

eproducibility of the pseudo-alignment 
pproach 

ur Nextflow pipeline of the pseudo-alignment a ppr oac h [ 36 ] gen-
r ates the r efer ence database in the format of a CSV file con-
aining the metadata information of the final Kallisto index and
 FASTA file containing the corresponding sequence data. In the
urr ent v ersion v1.0.0, the r efer ence CSV and FASTA can be ex-
ctl y r eplicated using the same input data r esource and index r e-
onstruction par ameters, whic h leads to slightl y differ ent r esults
t e v ery anal ysis run. The r efer ence CSV is not r epr oducible due
o misplaced random sampling seeds and a missing record sort-
ng strategy in the AAF-based sequence filtering step during ref-
r ence r econstruction. Ho w e v er, linea ge detection and quantifica-
ion are deterministic given VLQ-nf takes fixed reference datasets 
s input (final CSV and FASTA r efer ence or already built Kallisto
ndex). 

vailability of Source Code and 

equirements 

er e, we pr ovide the specifications of our Nextflow implementa-
ion (VLQ-nf) of the sequence-based a ppr oac h originall y pr esented
y Baaijens et al. [ 29 ] and the code for the mutation-based a ppr oac h,
AMUSS. 

� Project name: VLQ-nf 
� Pr oject homepa ge: https:// github.com/ rki-mf1/ VLQ-nf
� Operating system(s): Linux, Mac, Windows via Linux subshell 
� Pr ogr amming langua ge: Nextflow 

� Other r equir ements: Conda 
� License: GPL-3.0 

� Project name: MAMUSS 
� Pr oject homepa ge: https:// github.com/ lifehashopes/ 

MAMUSS 
� Operating system(s): Linux, Mac 
� Pr ogr amming langua ge: R 

� Other r equir ements: R pac ka ges ar e listed in the r epository 
� License: CC0 1.0 Universal 

dditional Files 

upplementary Fig. S1. Top: The pandemic bac kgr ound acr oss
urope between 1 February and 30 April 2021 was built with
extstr ain.or g . Bottom: The outbr eak.or g v ariant r eport for Ger-
any displaying the SARS-CoV-2 lineage prevalence from Febru- 

ry to March 2021 based on GISAID sequence data. The most dom-
nant lineages in the plot from bottom to top: light blue = B.1.1.7,
ight green = B.1, purple = B.1.177.86, light gray = other, blue =
.1.258, dark gray = B.1.221, y ello w = B.1.177, orange = B.1.160,
ight brown = B.1.177.81. 
upplementary Fig. S2. Top: The pandemic bac kgr ound acr oss
urope between 1 October and 31 December 2021 was built with
extstr ain.or g . Bottom: The outbr eak.or g v ariant r eport for South
frica displaying the SARS-CoV-2 lineage prevalence from Octo- 
er to December 2021 based on GISAID sequence data. The most

https://github.com/rki-mf1/VLQ-nf
https://github.com/lifehashopes/MAMUSS
https://nextstrain.org/ncov/gisaid/global/6m
https://outbreak.info
https://nextstrain.org/ncov/gisaid/global/6m
https://outbreak.info
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ominant lineages comprise sublineages of Delta and Omicron
ut also B.1.351 (light green) and C.2 (light orange). 
upplementary Fig. S3. Results for the parameter escalation ex-
eriments on the Pan-EU-GER samples using the sequence-based
ethod using pseudo-alignment implementation. We analyzed

he dataset with different parameterization for reference con-
truction (x-axis: increasing AAF threshold, y-axis: increasing
aximum number of sequences per lineage). Abundance predic-

ions are displayed at a minimum threshold of 1% and labeled at a
hreshold of 3%. When comparing with the pandemic background
t the time of w astew ater sampling, w e observ ed the AAF thr esh-
ld and the maximum number of sequences per lineage to im-
act the abundance proportions among Alpha and Q.1 the most.
ith more sequences per lineage in the reference, we found the

mpact of the AAF filter on the observed ambiguities to decrease.
e found more low-abundant sublineages predicted in the real
 astew ater data compared to the Standards dataset and found

hose low-abundant predictions to mostly not change distinctly
cr oss v arying par ameterization. 
upplementary Fig. S4. Results for the parameter escalation ex-
eriments on the FFM-Airport dataset using the sequence-based
ethod. We analyzed the dataset with different parameterization

or r efer ence construction (x-axis: incr easing AAF thr eshold, y-
xis: incr easing maxim um number of sequences per lineage). Top:
bundance pr edictions ar e displayed at a minim um thr eshold of
% abundance and labeled at a threshold of 3% abundance. When
omparing with the pandemic bac kgr ound at the time of wastew-
ter sampling, we observed the following: ov er all, we found more
ublinea ges pr edicted with abundance below 1% compared with
he Standards dataset and the Pan-EU-GER set. The sequence-based

ethod detected more low-abundant sublineages with increas-
ng r efer ence size and slightl y less low-abundant sublinea ges with
ncr easing AAF thr eshold. Both the AAF thr eshold and the r efer-
nce size sho w ed an impact on lineage ambiguities among Delta
ublinea ges. Bottom: All abundance pr edictions ar e displayed as
rouped by their parent lineage. We did not find the abundance
r edictions for par ent linea ges to c hange distinctl y acr oss exper-

ments. 
upplementary Fig. S5. SARS-CoV-2 lineage abundance assign-
ents via Freyja [ 21 ] (v1.3.12) for the Standards . We used the full

 efer ence UShER set as provided as a default by the tool. In this
ase, m ultiple sublinea ges wer e pr edicted and fr equencies wer e
istributed among them, resulting in a r educed fr equency es-
imate for the true (par ental) linea ge and an increase in low-
requency detections. For example, in Mix_07, the sublineages
A.2.16 and BA.2.4 wer e pr edicted with almost 50%, r espectiv el y,
hile the included lineage BA.2 was not assigned (compare Sup-
lementary Fig. S6). 
upplementary Fig. S6. SARS-CoV-2 lineage abundance assign-
ents via Freyja [ 21 ] (v1.3.12) for the Standards . We reduced the

 efer ence UShER set to the lineages part of our artificial mixtures,
nstead of using the full UShER barcode dataset as shown in Sup-
lementary Fig. S5. 
upplementary Table S1. The minimum reference sizes across
he different AAF thresholds considered in the parameter esca-
ation experiments across our 3 benchmark datasets . Here , we
ist the minimum number of genome sequences r equir ed per
ineage to capture every mutation with an AAF above the con-
ider ed AAF thr eshold at least once based on the implemented
ampling strategy during reference construction. The Standards
 efer ence database r equir ed the lar gest number of sequences
o ca ptur e the pr edefined genomic v ariation. Ov er all, we ob-
erved that with an increasing AAF threshold, the minimum
 efer ence sizes per lineage decreased across all 3 benchmark
atasets. 
upplementary Table S2. The mapping of each Standards
ample. 
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