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CONSPECTUS: Metal—organic frameworks (MOFs) are promising for various applications
through the creation of innovative materials and assemblies. This potential stems from their
modular nature, as diverse metal ions and organic linkers can be combined to produce MOFs

with unique chemical properties and lattice structures. Following extensive research on the 99 vi
design and postsynthetic chemical modification of MOF lattices at the molecular level, n! ™ .-

increasing attention is now focused on the next hierarchical level: controlling the morpholo Interfacial
g g P gy

Confinement

of MOF crystals and their subsequent assembly and positioning to create functional
composites.

Beyond well-established methods to regulate crystal size and shape through nucleation and 3 efielq Magnetic
coordination modulation, physicochemical techniques leveraging wetting effects, interparticle =
interactions, and magnetic or electric fields offer attractive avenues for the hierarchical
structuring and assembly of MOFs. These techniques facilitate crystal alignment and yield
unique superstructures. While our research group primarily focuses on directing MOF crystal
orientation and positioning using external stimuli such as magnetic and electric fields, we also explore hierarchical MOF synthesis
and structuring using liquid interfaces and depletion force-assisted packing.

This account highlights our journey and progress in developing methods to regulate the morphology, assembly, orientation, and
positioning of MOF crystals, placed in the context of work by other groups. First, we examine commonly utilized structuring
methods for MOF crystals that employ liquid—liquid and air—liquid interfaces to spatially confine reactions, allowing us to access
unique morphologies such as mushroom-like crystals and Janus particles. We also discuss strategies for concentrating and packing
MOF crystals into superstructures, utilizing fluid interfaces for spatial confinement of crystals, depletion forces, entropic effects, and
crystal sedimentation.

A particularly compelling challenge in expanding the applicability of MOF materials is how to manipulate free-standing MOF
crystals. This issue is especially important because MOFs are typically produced as loose powders, and industrial material processing
is generally more efficient when the material is fluidized. While extensive research has been conducted regarding MOF growth on
substrates with both positional and orientational control, there is a clear need for similar precision with free-standing MOFs
dispersed in a fluid matrix. Our group has thus focused on the relatively new, yet powerful approach of using electric and magnetic
fields to manipulate MOF crystals, which offers unprecedented control over the orientation and positioning of dispersed MOF
crystals, complementing the more well-established methods of MOF growth on substrates. In this Account, we provide foundational
background and discussions on the interactions between these external fields and MOF crystals, including critical considerations for
effective MOF manipulation using such techniques. We also discuss their unique advantages and applications, and briefly examine
potential application areas, such as photonics, smart materials like soft robotics and absorbents, and sensing. This Account highlights
the promising potential of well-organized and aligned MOF crystals over randomly oriented ones in various applications, owing to
enhanced selectivity and performance. It underscores the importance of specialized assembly methods to advance materials science
and engineering, encouraging the reader to explore such approaches.
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Figure 1. a) Schematic illustration (I) and SEM image (II) of mushroom-like NH,-MIL-53(Al) MOF synthesis through interfacial epitaxial growth.
Adapted with permission from ref 4. Copyright 2013, American Chemical Society. b) Schematic illustration of Janus MOF crystals preparation, where
ZIF-8 crystals are partially embedded in PMMA (blue). Subsequent modification of the exposed portion and polymer removal affords Janus particles.
Reprinted with permission from ref 18. Copyright 2014, Royal Society of Chemistry. c¢) Schematic illustration of the fluid interface-assisted assembly
approach via surface tension changes in the solvent (I), and MOF superstructures obtained through the well-known LB method (II). d) Scanning-
electron microscopy (SEM) image of the UiO-66 crystal superstructure on a silicon substrate (I), and the cross-sectional SEM image taken after 1—3
repetitions of the procedure (II). Adapted with permission from ref 22. Copyright 2013, John Wiley and Sons.

crystal assembly. J. Colloid Interface Sci. 2022, 610, 1027—
1034." This work shows the assembly of MOF crystals
into nematic superstructures through electrical-field
assisted sedimentation.

Cheng, F.; Young, A. ].; Bouillard, J.-S. G.; Kemp, N. T;
Guillet-Nicolas, R.; Hall, C. H.; Roberts, D.; Jaafar, A. H,;
Adawi, A. M,; Kleitz, F.; Imhof, A.; Reithofer, M. R.; Chin,
J. M. ]J. Dynamic electric field alignment of metal—organic
framework microrods. J. Am. Chem. Soc. 2019, 141 (33),
12989—12993.> This study demonstrates that solvent-
suspended NU-1000 microrod crystals can align very
rapidly upon exposure to electric fields and thus have the
potential to be integrated into a variety of electronic and
optical systems.

Cheng, F.; Marshall, E. S.; Young, A. J.; Robinson, P. J;
Bouillard, J. S. G.; Adawi, A. M.; Vermeulen N. A.; Farha,
O. K;; Reithofer, M. R.; Chin, J. M. Magnetic control of
MOF crystal orientation and alignment. Chem. Eur. J.
2017, 23 (62), 15578—15582.” This study sheds light on
the magnetic orientation of MOFs such as NH,-MIL-
53(Al) and NU-1000 whose surfaces are enriched with
magnetic nanoparticles.

Tan, T. T.; Reithofer, M. R.; Chen, E. Y.; Menon, A. G,;
Hor, T. A,; Xu, J; Chin, J. M. Tuning Omniphobicity via
Morphological Control of Metal—Organic Framework
Functionalized Surfaces. J. Am. Chem. Soc. 2013, 135
(44), 16272—16275." This work demonstrates the use of
the liquid—air interface to localize epitaxial MOF growth
and generate unique MOF micromushroom structures
which impart omniphobicity to the surface.

1. INTRODUCTION

Extensive research into metal—organic frameworks (MOFs) has
led to a diverse array of such materials, boasting distinct pore
sizes, morphologies, and porosities that find utility across a
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broad spectrum of disciplines such as sensing,” catalysis,’ and
separations.””® Following on from the chemistry of MOFs at the
molecular level, there is a growing interest in advancing to the
next hierarchical stage of MOF control: managing the
morphology and assembly of MOF crystals. Specifically, utilizing
physicochemical methods that harness wetting effects, inter-
particle interactions, and magnetic and electric fields offers
promising pathways for structuring and assembling MOFs
hierarchically.

In this Account, we highlight some examples from our group
and that of others regarding the use of fluid interfaces for the
generation of unique MOF structures such as Janus particles and
“mushroom-like” structures, as well as the formation of MOF
crystal assemblies via packing at fluid interfaces, through
entropic interactions as well as with external field assistance,
simplifying the key concepts behind such methods for the
general reader and examine some potential applications for
which the resulting MOF materials can be employed.

2. GENERAL STRUCTURING AND ASSEMBLY
METHODS FOR MOF CRYSTALS

Control over MOF crystals and their assembly into ordered
superstructures requires physical forces in one form or another
to direct their crystal orientation, packing, and positioning. In
general, the current approaches for the self-assembly of MOF
crystals can classified into several major categories, namely, (i)
the use of confinement such as within droplets or to fluid
interfaces to direct the formation of crystal assemblies;” (ii)
entropy-directed or depletion force-assisted methods;'® and
(iii) external-field directed assembly utilizing electric-"""
magnetic-fields.'”~'* We highlight a few examples from each
category below, focusing especially on the use of liquid interfaces
for MOF structuring, as well as external-field assisted assembly,
which are of particular interest to our group.

or

https://doi.org/10.1021/acs.accounts.4c00250
Acc. Chem. Res. 2024, 57, 2105-2116


https://pubs.acs.org/doi/10.1021/acs.accounts.4c00250?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.4c00250?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.4c00250?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.4c00250?fig=fig1&ref=pdf
pubs.acs.org/accounts?ref=pdf
https://doi.org/10.1021/acs.accounts.4c00250?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Accounts of Chemical Research

pubs.acs.org/accounts

a b
(%) Q @ ° . .
g B
@ 4 e U a ‘ A &3
» e e
® o o | |
Osmotic — —
Pressure @ ® ‘ o

Overlap Volume

RD ZIF-8

¢ TRD ZIF-8 ‘

Uio-66

3D ZIF-8
Superstructure

Figure 2. a) Schematic illustration of depletion force. b) Schematic illustration of the preparation of MOF assemblies through the utilization of the
depletion force-assisted strategy. c) MOF superstructures based on different particle morphologies. Scale bars: 1 ym. Adapted with permission from ref

26. Copyright 2018, Nature Springer.

2.1. Fluid Interface-Assisted Structuring and Assembly

Air—liquid and liquid—liquid interfaces have been widely
utilized for the preparation of MOF materials with unique
structures, as confinement of reactions and materials to the
interface offers control over crystallizations, deposition, and
growth."® Our group exploited the use of the water—air interface
to generate MOF mushroom-like structures, whereby the special
mushroom-like morphology of the MOF crystals afforded the
crystals “re-entrant topography”'® which rendered them with
unique oleophobicity’ (Figure 1a). We initially prepared
densely grown NH,-MIL-53(Al) microneedles on an anodic
aluminum oxide membrane substrate, whereby evolutionary
selection led to their (001) preferred orientation perpendicular
to the substrate. Chemical functionalization of the microneedle
arrays with perfluorooctanoyl chloride rendered the samples
superhydrophobic, but not oleophobic, as demonstrated by their
complete wetting by hexadecane. To obtain oleophobicity, it
was necessary to general special “re-entrant textures” by
manipulating the surface morphology. The microneedle arrays
were inverted and placed on the surface of an aqueous MOF
precursor solution, whereby the superhydrophobicity of the
material limited liquid wetting and therefore subsequent
epitaxial growth of NH,-MIL-S3(Al) “caps” at the microneedle
tips. This resulted in the formation of mushroom-like structures
that demonstrated oleophobic behavior with nonpolar solvents
such as diiodomethane and hexadecane after further fluorination
while further growth led to fusion of the “caps” into a NH,-MIL-
53(Al) film on the microneedles. Besides air—liquid interfaces,
liquid—liquid interfaces allow the confinement of MOF growth
and the selective positioning of preformed MOF crystals at the
interface. Confinement of particles at an oil—water interface and
subsequent solidification of one of the liquid phases to partially
mask the particles is a common technique to generate Janus
colloids."” In the first example of Janus MOF micromotors,'® we
suspended ZIF-8 particles at the interface between a solution of
poly(methyl methacrylate) (PMMA) in ethyl acetate and water
(Figure 1b). Upon evaporation of the ethyl acetate, PMMA films
bearing partially exposed ZIF-8 crystals were obtained.
Subsequent heteroepitaxial growth of isoreticular ZIF-67 onto
the exposed faces of the ZIF-8 crystals in the presence of
poly(vinylpyrrolidone) (PVP) modulator and the removal of
PMMA via dissolution afforded Janus ZIF-8/ZIF-67 crystals. As
the C02+—bearing ZIF-67 is redox-active, but the Zn-based ZIF-8
is redox inactive, placement of the ZIF-8/ZIF-67 particles in an
H, 0, solution led to the catalytic decomposition of H,O, on the
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ZIF-67 side, and the bubble-ejection based propulsion of the
microparticles through the suspending liquid.

Besides the structuring of MOF crystals, fluid interfaces (air—
liquid and liquid—liquid interfaces) offer one of the most well-
known and straightforward methods for achieving MOF
assemblies.'”~>' By exploiting the surface energies of the
crystals relative to the fluids, crystals can be reliably confined to
the interface, restricting their freedom of motion. In the case of
highly uniform crystals, their specific arrangements can be
achieved through entropy-driven ordered packing. In brief,
changes in the interfacial tension of the solvent(s) are utilized to
encourage crystals present in a specific solvent to come together
near the interface in an organized manner (Figure 1c). In a well-
known study, Lu et al. (2013) synthesized UiO-66 crystals with
varying sizes and utilized interfacial tension to align these
crystals in a two-dimensional arrangement.”” To achieve this,
they initially coated UiO-66 crystals with PVP, thereby
enhancing the stability of the crystals within the dispersant
and preventing their aggregation. Following this, the addition of
sodium dodecyl sulfate (SDS) to the dispersant altered the
surface tension of the liquid phase, facilitating the (111)-
oriented arrangement of crystals into monolayers (Figure 1d).
Moreover, when the monolayers were transferred to a solid
platform, and the process repeated multiple times, substrate-
supported UiO-66 layers of varying thicknesses could also be
obtained.

Another common approach used to obtain MOF super-
structures at the liquid interface is the Langmuir—Blodgett (LB)
method, which does not require changes in the surface tension of
the solvent.”® Here, MOF crystals placed on the liquid surface
are forcibly brought together using movable lateral barriers and
transferred onto a solid substrate (Figure 1c), enabling precise
control over the MOF film thickness and the crystal arrange-
ment.

2.2. Controlled Drying and Depletion Force-Assisted
Assembly

An alternative to spatial confinement at fluid interfaces is the use
of controlled drying processes, which may also be accompanied
by the utilization of depletants (Figure 2a). Depletants refer to
noninteracting solutes such as nonadsorbing polymers (repre-
sented by purple spheres) which are physically excluded from
the immediate vicinity of larger colloidal particles such as MOFs
(represented by orange polyhedrons). If such solutes are
approximated as small spheres, the centers of the spheres
cannot approach the MOF crystals closer than the exclusion
zone, depicted as a turquoise shell area around the orange MOF

https://doi.org/10.1021/acs.accounts.4c00250
Acc. Chem. Res. 2024, 57, 2105-2116


https://pubs.acs.org/doi/10.1021/acs.accounts.4c00250?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.4c00250?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.4c00250?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.4c00250?fig=fig2&ref=pdf
pubs.acs.org/accounts?ref=pdf
https://doi.org/10.1021/acs.accounts.4c00250?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Accounts of Chemical Research

pubs.acs.org/accounts

a E-Field Off

E-Field On

ACOn

—_— r—
10°um 10pm

AC Off

Figure 3. a) Schematic illustration of alignment of anisotropic MOF crystals on a conductive glass substrate under an electric field. b) confocal laser
scanning microscopy (CLSM) image of NU-1000 MOF crystals without E-field, and c) with E-field. Adapted with permission from ref 1 under a
Creative Commons CC-BY license. d) The crystals with anisotropic morphology, such as NU-1000, can easily and rapidly alter their alignment within a

solution in the presence and absence of an E-field.

polyhedral cores. The drive to minimize the system free energy
and increase the remaining free volume for depletant occupation
favors the overlapping of depletion layers, observed as a
directional osmotic pressure exerted by the depletants upon
the MOF crystals. (Figure 2a) This results in an apparent
attraction between the MOF crystals, encouraging their
assembly into diverse superstructures.'”>**®

Based on their morphology, MOF crystals can be aligned in
specific directions, or organized into 3D or 2D arrays upon
drying. For instance, Avci et al. (2018) systematically
synthesized submicrometer-size UiO-66 and truncated rhombic
dodecahedral ZIF-8 crystals and subsequently generated
oriented 3D assemblies of these MOFs, facilitated by the
presence of cetyltrimethylammonium bromide (CTAB) (Figure
2¢).”° The three-dimensional MOF superstructures were
achieved by drying aqueous colloid MOF solutions of different
sizes and types of crystals on glass slides at varying temperatures
sufficiently low to allow gradual solvent evaporation, leading to a
more uniform and homogeneous ordering of the super-
structures. The authors subsequently demonstrated the
photonic properties of these assemblies, which showed angle-
dependent coloration as the lattice periodicity is comparable to
the wavelengths of visible light. Although the authors do not
explicitly refer to the use of depletion forces, the necessary
presence of CTAB for ordered assembly suggests that depletion
interactions also play a role. Further, in a recent study, Wang and
co-workers (2022) assembled MOF microcrystals with diverse
morphologies and compositions, such as ZIF-8, UiO-66, MIL-
88A, and MIL-96 into both 3D and also 2D assemblies by
employing cetyltrimethylammonium chloride (CTAC) and
sodium dodecyl sulfate (SDS) as depletants.”” The selective
formation of low-dimensional versus 3D assemblies is
determined by particle morphology and preferential particle
attachment to a smooth substrate which limits the possibilities
for facet-to-facet particle attachment, favoring the formation of

1D particle chains which can attach to each other lengthwise to
generate staggered 2D assemblies.

Overall, the depletion force-assisted assembly enables highly
regular MOF crystal packing on substrates but is constrained by
the need for a precise selection of depletant molecules together
with meticulous adjustment of their concentrations, as well as
the requirement of high MOF crystal uniformity.

2.3. External Field-Assisted Assembly

Assembly techniques leveraging external stimuli, notably
magnetic and electric fields, offer compelling avenues for the
hierarchical assembly of MOFs. Our research group primarily
focuses on directing the orientation and positioning of MOF
crystals utilizing these external influences (Figure 3), as these are
robust, easily reproducible, and generally applicable methods for
manipulating MOF and other colloidal materials.

2.3.1. Electric Field-Assisted Assembly. In an early
example, Granick et al. (2013) synthesized monodispersed
rhombic dodecahedral particles of ZIF-8, and dispersed the
crystals in ethylene glycol.”® Confocal microscopy of the dye-
functionalized ZIF-8 demonstrated that applying an external E-
field to ZIF-8 microcrystals led to ZIF-8 particle chaining into 1-
D superstructures. The formation of particle chains in an E-field
arises as the E-field induces dipoles in the particles. The
polarized particles then interact via dipole—dipole attraction,
facilitating chain formation when the dipolar attractions are
strong enough to overcome interparticle electrostatic repulsions
and randomizing flows due to E-field induced ion migration or
heating effects. The dipolar attraction between adjacent particles
can be described as follows:

al

Eg = —Cre, r’a’E* (2.1)

Here, C is a coeflicient with a dependence on the distance
between particles, E is the strength of the E-field, &, refers to the
permittivity of the medium, r refers to the radius of the crystal
(which is approximated as a sphere), and « refers to effective

https://doi.org/10.1021/acs.accounts.4c00250
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Figure 4. a) Illustration and SEM images of anisotropic MOFs, NU-1000. b) (I) Cross-sectional view of rectangular capillary used in electro-optical
measurements; (II) top and bottom, respectively: bright polarized optical microscopy (POM) image and illustration of NU-1000 suspension showing
light transmission when E-field is off; (III) top and bottom, respectively: dark POM image and illustration of the same suspension showing decreased
light transmission due to NU-1000 E-field alignment. (c) Electrooptical response of the suspension-light transmission under alternating E-field
(White: light transmission, cyan: E-field on). Adapted from ref 2. Copyright 2019, American Chemical Society.

polarizability of the particle, represented by the real part of the
Clausius—Mossotti function.”” ™" It follows that particle
chaining can be easily tuned by controlling the strength of the
applied E-field, which in turn can be managed by changing the
interelectrode distances or the magnitude of the applied
potential. In the above-mentioned example, besides dipolar
interactions arising due to the external field, van der Waals forces
between the flat particle facets of adjacent particles induced
particle rotation to maximize interparticle facet-to-facet contact,
leading to (110) orientation of rhombic dodecahedral ZIF-8 and
(100) orientation of truncated cubic ZIF-8 along the E-field.
Like for liquid-interface and depletant-assisted assembly,
selective crystal orientation necessitates the use of mono-
dispersed and highly crystalline particles with flat facets of
sufficient areas, limiting the applicability of this method as the
preparation of highly uniform MOF crystals is difficult to achieve
across a wide spectrum of MOFs.

Alternatively, external fields can affect orientational control of
anisotropically shaped crystals such as rod-shaped MOF crystals
where the ratio of their length versus width, or aspect ratio (AR),
is higher than 1. Orientational control over these crystals occurs
through the development of dipoles along specific crystallo-
graphic axes, whereby the strongest induced dipoles within the
crystals align with the applied external field direction as a
consequence of minimizing the potential energy. To ensure
selective crystal orientation, overcome the rotational inertia
arising from the solvent viscosity, and resist thermal random-
ization, the energy of dipole alignment in the crystals must be
sufficient to overcome these opposing forces. Consequently, the
energy differentiation induced by external fields between the
desired field-aligned and the unaligned states of the crystals can
be leveraged to achieve orientational control of MOF crystals.”

For instance, in the first example of orientation via E-field-
induced dipoles in MOFs, we demonstrated that MOF crystals
with anisotropic morphology, such as trimethoxy(octadecyl)-
silane (OTS)-functionalized NU-1000 (NU-1000g;), rapidly
align along an alternating external E-field.” The silanization of
NU-1000 was carried out to enhance MOF dispersibility in
nonpolar solvents to allow their colloidal manipulation. An
advantage of NU-1000g; arises from its intrinsic fluorescence,
endowed by its pyrene-derived ligands, allowing their visual-
ization via confocal microscopy without the need for dye-
functionalization. NU-1000g; microrod crystals, suspended in
bromobenzene, showed strong interparticle electrostatic
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repulsion owing to the poor screening capability of the nonpolar
solvent. Therefore, applying an external alternating electric field
led to rapid alignment of the MOF particles along the E-field, but
not to particle chaining. The uniaxially birefringent NU-1000
crystals allow light transmission through crossed polarizers on an
optical microscope, whereby particle orientation changes their
overall light transmission, which was measured via a photo-
detector to follow the electroresponse of the particle. When the
E-field was turned on, particle alignment along the light
transmission pathway led to rapid minimization of detected
light. Worth noting is that this response was reversible and
showed no diminishing after repeated on—off cycles. This
capability suggests their potential utility in various sensor or
electro-optical applications (Figure 4).

The mechanism behind the crystal alignment relies on the
interactions between the E-field, the ions in the system, and the
induced dipole moments in the dielectric particles. An E-field
generated by alternating current can induce an alternating dipole
moment in the particles via microscale charge separation,
depending on the effective polarizability, o of the particles, as
approximated by the real part of the Clausius—Mosotti equation,
represented below:

E, — &
Relal = ———
g, +2¢,
3(en0, — €,0,)
2
&+ 2, 2 of €+ 26,
0P+2(7 (UP + 26‘“) (1 to (op+2(f ) ]
p+ 20, o+ 20, (22)

where ¢ is the relative permittivity, ¢ is the conductivity of the
particles (p) or the medium (m) respectively and @ is the
angular frequency of the applied field. When the induced dipole
is large enough to inflict sufficient torque on the particle to
overcome viscous inertia and thermal randomization (given by
kgT, where kg is the Boltzmann constant and T the temper-
ature), the particle rotates to align along the field direction.
The induced dipole alignment energy is given by’

1
U= —=AaE’ cos” 6
2 (2.3)
where Aa is the difference in electric polarizability of the particle
along and perpendicular to the particle’s main axis and @ is the
angle of the rod to the E-field direction. Control over the
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Figure S. a) Schematic illustration of isotropic and nematic phases of MIL-68(In) dispersion (AR = 6.8) in capillary before and after E-field-assisted
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magnitude of the E-field is an effective method to encourage
particle alignment, as seen by the second-order dependence of
the alignment energy on it. The polarization of the crystals is also
significantly influenced by the alternating current (AC)
frequency of the applied field, as seen from eq 2.2.°” At low
AC voltages, the crystal orientation is primarily dictated by field-
induced ion migrations within and around the MOF crystals.
These oscillations generate sufficient force to overcome the
rotational inertia of the suspended crystals. However, at higher
frequencies, the ionic migration can no longer keep up with the
field frequency, leading to a shift in the mechanism from ionic
flows to other dielectric polarization of the particles.

As mentioned earlier, the formation of highly ordered MOF
crystal superstructures relies on packing interactions, requiring
high crystal size and shape uniformity, thereby presenting a
significant synthetic hurdle for scientists. A notable effect
observed in rod-shaped, anisotropic colloids with high AR is
their ability to pack into liquid crystalline nematic phases with
directional order, as proposed by Onsager,”’ even when
polydispersed. Like depletant-assisted assembly, this effect is
driven by free volume and entropy maximization. For the
transition from the isotropic, randomly oriented phase to the
nematic, directionally ordered phase, the volume fraction of the
particles must be considered—at low particle volume fractions,
the orientational entropy of the particles favors the disordered
phase whereas at high volume fractions, free volume entropy
favors nematic phase formation. Consequently, the isotropic—
nematic phase transition occurs when the particle volume
fraction changes.”® Typically, sedimentation is utilized to
increase the volume fraction of the particles in the suspension
to encourage their packing. Careful control over the
sedimentation speed is typically necessary to avoid the gelation
of disordered phases, with some examples allowed to slowly
sediment over the course of a year to ensure ordering.”> Another
consideration is the particle aspect ratio—theoretical calcu-
lations by Bolhuis and Frenkel suggest that rod-shaped particles
of aspect ratios exceeding 4.1 and 4.7 are required for nematic
and smectic ordering—a requirement unmet by most reported
MOF crystals.® Nevertheless, in a study carried out by our
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group,l rod-shaped MOF crystals of NH,-MIL-53(Al), MIL-
68(In) and NU-1000 with ARs ranging from 10 to 1.2 were
prepared. It was demonstrated by applying an E-field during the
sedimentation process, even MOF crystals with a low AR of
approximately 1.2 showed nematic packing (Figure $),
demonstrating the wide applicability of this method. Notably,
polydispersed NH,-MIL-53(Al) crystals could also form
oriented assemblies, as directional ordering is not reliant upon
particle packing interactions which can be easily disrupted by
size and shape mismatching of particles. The E-field assisted
approach also allows avoidance of the need for slow, controlled
sedimentation as oriented millimeter-scale assemblies can be
formed in 20 min (Figure Sc).

Manipulating MOF crystals under the influence of an E-field,
and the hierarchical structures arising therefrom, offer
advantages in terms of ease of approach, speed, and dynamism
and can serve as a postsynthetic method to rapidly and reversibly
orient MOF crystals. This technique is robust enough that minor
perturbations do not significantly affect crystal alignment,
enhancing reproducibility. Furthermore, it can be efficiently
downscaled by employing microfabricated electrodes, as seen in
the case of interdigitated electrodes used for sensing
applications.®”

2.3.2. Magnetic Field-Assisted Assembly. The manipu-
lation of particles under magnetic influence and the subsequent
efforts to achieve controlled orientation and assembly represent
an alternative to E-field-assisted assembly.”® However, only a
small fraction of MOFs possess intrinsic magnetic properties. To
overcome this, a simple approach to generating interaction
between a nonmagnetic MOF crystal and a magnetic field is by
attaching superparamagnetic or ferromagnetic particles via
electrostatic attraction to the MOF crystals.” By varying the
pH of the particle suspension, the zeta potentials of the particles
and hence the interparticle electrostatic attractions can be
systematically tuned. We first prepared poly(acrylate)-stabilized
magnetic Fe;O, nanoparticles which bear a negative zeta
potential above pH 2.8, and NH,-MIL-53(Al) as well as NU-
1000 as representative MOF systems. Below pH 10.5,
protonation of the amino groups of NH,-MIL-53(Al) endows
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Figure 7. a) FESEM images of rhombic dodecahedron (RD), truncated rhombic dodecahedron (TRD), and cubic (C) ZIF-8 crystals, and octahedron
(O) Ui0-66 crystals (I), FESEM images of corresponding supraparticles (II), Monte Carlo simulations with polyhedra in spherical confinement (III);
b) angle-dependent reflectance spectra of MOF supraparticles with corresponding photographs showing the observable coloration. Adapted with

permission from ref 42. Copyright 2022, John Wiley and Sons.

the crystals with positive charges. By dispersing NH,-MIL-
S3(Al) with the Fe;O, nanoparticles in a buffered solution of pH
3.5, the negatively charged Fe;O, rapidly attached to the
oppositely charged NH,-MIL-53(Al), effectively generating a
magnetic field responsive shell around the MOF crystals.

The adsorption of superparamagnetic particles onto the
external facets of MOF crystals affords them a much stronger
magnetic behavior, whereby the exposure of such microrods to a
magnetic field exerts a torque upon the particles to minimize
their magnetic energy. Similar to E-field alignment, magnetic
alignment of the MOF crystals requires that the difference in
magnetic energy of aligned and unaligned particles is larger than
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thermal randomization energy. For rods with AR of >10, the
magnetic energy can be approximated by

N AT
3 (ptp+ﬂo)

2
sin”

(2.5)

Where U is the magnetization energy, B is the strength of the
magnetic field, AV is the volume of the magnetic envelope, 1,
and 41, are the magnetic permeabilities of the rod particle and
that of free space, and W is the angle between the applied
magnetic field and the major axis of the rod.” It can be seen that
the magnetic energy is minimized when the rods are aligned
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along the magnetic field (¥ = 0) and the energy shows a second-
order dependence on the strength of the applied field and a first-
order dependence on the volume of the magnetic envelope
arising from the adsorbed magnetic particles.

Optical microscopy observations showed that magnetized
NH,-MIL-53(Al) crystals could rapidly align when a magnetic
field was applied, even when dispersed in viscous photocurable
resins to fix them in their oriented state. Similarly, Fe;O4-coated
NU-1000 could also be prepared and oriented in the (001)
direction, generating aligned NU-1000/polymer composites
showing a strong anisotropic response to linearly polarized light
(Figure 6).

Besides crystal orientation, magnetic fields can be utilized to
control the positioning of MOFs. Falcaro et al. (2011) prepared
MOF-S crystals embedded with Co nanoparticles. The resulting
MOF-S crystals could be dynamically positioned using an
external magnet, and utilized to seed further MOF growth.40 In
another study, Van Essen et al. (2020) synthesized magnetized
m-ZIF-8 with embedded Fe;O, nanoparticles for CO, gas
filtration.*" In their study, m-ZIF-8/Matrimid mixture in DMF
was exposed to a magnetic field to generate films with ZIF-8
crystals distributed along the magnetic field lines and the
Matrimid membranes with aligned composites showed
enhanced CO, diffusion compared to those without alignment.

3. POTENTIAL APPLICATIONS

Undoubtedly, the control over MOF crystal morphology and
their assembly can open up new avenues for their utilization,
such as in photonic applications, whereby the assembly of
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uniform MOF crystals can generate periodic structures that can
interact with light.26 Besides flat substrates, liquid droplets can
also be utilized to template photonic MOF superstructures. In
one of these studies, Wang et al. (2022) functionalized MOFs
with different morphologies (truncated- and rhombic dodeca-
hedral ZIF-8, cubic-ZIF-8, and octahedral-UiO-66) using
alcohol ethoxylate and PVP, followed by emulsifying these
MOFs in perfluorinated oil, thus hierarchically arranging MOF
crystals around oil droplets** (Figure 7a). Consequently, these
structures served as “Bragg reflectors”, inducing interference
effects resulting in structural coloration.

The porous structures and photonic properties of MOF
superstructures render them particularly valuable for sensing
applications since various stimuli such as temperature, pH or
guest molecules can trigger expansion or contraction along
predetermined crystallographic axes in MOFs. This capability
not only qualifies them as sensors but also makes them valuable
for use in smart materials such as soft robotics or absorbents. For
instance, when exposed to water, MIL-88A exhibits a decrease in
the lattice parameter ¢ from 15.31 to 12.66 A and a simultaneous
increase in the lattice parameter a from 9.26 to 13.87 A.*>** This
property is particularly ideal for the development of moisture-
sensitive MOF-based sensors and actuators, as demonstrated by
several groups.””~*" However, the strong anisotropic lattice
changes mean that the expansion and contraction effects of
unaligned particles would partially cancel each other out during
the directional swelling of films. In the study carried out by our
research group (2023), MIL-88A crystals were E-field-aligned
within poly(ethylene glycol) diacrylate (PEGDA), and the
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Figure 9. a) Illustration of drop-cast MIL-101(Cr)PEDOT on IDE without and with E-field application (top) and optical microscope images of the
corresponding samples showing selective positioning of MIL-101(Cr)pgpor between the electrodes, appearing as dark stripes when an E-field is
applied (bottom). b) Comparison of average conductivity of unaligned and aligned MIL-101(Cr)PEDOT assemblies.

resulting films exhibited different bending angles at various
humidity levels and could revert back to their original state in dry
air.”” Films with aligned MIL-88A crystals showed faster and
more pronounced responses to changes in humidity (Figure 8)
during alternating exposure to dry and humid air.

Besides MOF alignment, recently, our group showed that
poly(3,4-ethylenedioxythiophene) (PEDOT)-functionalized
MIL-101(Cr) can be manipulated by an applied E-field to
precisely position the MOF crystals in the interelectrode region
on interdigitated electrode substrates during a straightforward
drop-casting method, thereby significantly enhancing the degree
of control and reliability of the drop-casting process. The MIL-
101(Cr)pgpor crystals rapidly formed chains spanning the
interelectrode gaps upon E-field application, in contrast to the
randomly deposited crystals when no E-field was applied during
drop-casting (Figure 9). The E-field aligned samples showed
conductivities more than 500 times higher than the unaligned
samples, and enhanced sensitivity for humidity sensing.

Well-organized and aligned MOF crystals also fre% ently find
utility in adsorption and separation applications,4 5! a5 the
orientations of MOF crystals can engender significant
disparities, particularly in gas separation applications as oriented
MOF crystal membranes can exhibit higher gas selectivity
compared to membranes with randomly oriented MOF crystals,
due to optimized orientation of the gas-sieving pores.

It can be seen that methods to control the crystalline
orientation and MOFs, and their spatial positioning whether in
films or 3D composites are fundamental to improving their
performances in many instances. The exploitation of interfacial
confinement and external fields for MOF manipulation offers a
practical approach to achieve this.

4. CONCLUSION AND PERSPECTIVE

The increasing recognition that control of MOF morphology,
orientation, and assembly is fundamental to the performance of
MOFs has led to an array of techniques to structure MOF
materials. Effects arising from wettability control determine the
positioning of materials at fluid interfaces, which allows
localization of MOF crystal growth to achieve unique
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morphologies or generation of Janus MOF crystals. Assembly
of MOF crystal superstructures can be directed via spatial
confinement at fluid interfaces, depletion forces, or gravitational
sedimentation, allowing a means to achieve the ordering and
orientation of MOFs.

Electric field-assisted assembly offers a dynamic approach for
rapid and reversible alignment of MOF crystals, with potential
applications in electronic devices and reconfigurable systems.
Although much insight can be gleaned from the work of others
on E-field colloidal manipulation, open questions remain
regarding how to enhance MOF polarizability and maximize
their E-field response under a range of environmental
conditions. While classical colloidal assembly has focused on
nonporous colloids such as polystyrene or silica particles, which
may have distinct responses from porous MOF crystals,
common methods to tune colloidal assembly through the
selection of appropriate solvents and the use of different E-field
frequencies can be easily adapted for MOFs. However, the
molecular designability and porosity unique to MOFs open up
new avenues for investigation, for example, through the
incorporation of conductive guests to enhance MOF polar-
izability and E-field response. Through the integration of
superparamagnetic particles, magnetic field-assisted assembly
can also be applied to a wide variety of MOFs regardless of
whether they possess intrinsic magnetic properties, thereby
enabling controllable orientation and positioning.

However, it should be noted that in many cases of MOF
colloidal assembly, coating of the MOFs with polymer”” or
surfactants***” is necessary to avoid particle aggregation, and to
enhance the stability of their dispersions as well as to generate
ordered assemblies, but presents the potential drawback of MOF
pore blockage which can hinder their applicability. To avoid
disordered MOF crystal aggregation, future work may benefit
from relying upon the use of interparticle electrostatic repulsion
rather than pore-blocking steric stabilizers in applications such
as sensing or catalysis, whereby MOF porosity retention is
crucial. This would allow for the use of less sterically hindered
surfactants, or even their avoidance by simply tuning particle
zeta potential through the pH of the solvent. Similar
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considerations apply for the incorporation of additives or guest
molecules like Fe;O, nanoparticles or PEDOT to enhance MOF
responsivity to external magnetic and E-fields, whereby care
must be taken that the requisite MOF performance is still
present, such as in the case of PEDOT-loaded MIL-101(Cr) for
humidity sensing.”

The potential applications of these tailored MOF assemblies
encompass various flelds, including photonics, sensors, gas
separation, and smart materials. Particularly, the precise control
over MOF crystal orientation and alignment achieved through
these assembly methods significantly enhances their perform-
ance in the aforementioned applications. Further exploration of
these structuring techniques and their applications is warranted
to unlock the full potential of MOFs in addressing diverse
challenges across multiple disciplines. Therefore, future research
efforts of our research group are directed toward deepening our
understanding of the external field control of MOFs, refining
these assembly methods for improving MOF performances, and
exploring novel applications for these exciting materials.
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