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ABSTRACT: Indicators of male fertility are in decline globally, but the underlying causes, including
the role of environmental exposures, are unclear. This study aimed to examine organic chemical
pollutants in seminal plasma, including both known priority environmental chemicals and less studied
chemicals, to identify uncharacterized male reproductive environmental toxicants. Semen samples were
collected from 100 individuals and assessed for sperm concentration, percent motility, and total motile
sperm. Targeted and nontargeted organic pollutant exposures were measured from seminal plasma
using gas chromatography, which showed widespread detection of organic pollutants in seminal plasma
across all exposure classes. We used principal component pursuit (PCP) on our targeted panel and
derived one component (driven by etriadizole) associated with total motile sperm (p < 0.001) and
concentration (p = 0.03). This was confirmed by the exposome-wide association models using
individual chemicals, where etriadizole was negatively associated with total motile sperm (FDR q =
0.01) and concentration (q = 0.07). Using PCP on 814 nontargeted spectral peaks identified a
component that was associated with total motile sperm (p = 0.001). Bayesian kernel machine
regression identified one principal driver of this association, which was analytically confirmed to be N-nitrosodiethylamine. These
findings are promising and consistent with experimental evidence showing that etridiazole and N-nitrosodiethylamine may be
reproductive toxicants.
KEYWORDS: exposome, seminal plasma, fertility, etridiazole, NDEA, nitrosamine, sperm, pesticides

■ INTRODUCTION
Infertility, defined as the inability to achieve a pregnancy after
≥12 months of trying, is a global public health concern that
affects 15% of all reproductive age couples in the world.1,2

Infertility has significant negative physical, emotional, and social
impacts on the affected individuals; addressing infertility will
help realize the fundamental right for individuals and couples to
have children and to improve the health of the affected
individuals. Male infertility contributes to 40−50% of overall
cases.3 While changes in gross rates of infertility have not been
observed,2 many alarming trends have been observed in male
fertility, including notable declines in testosterone and sperm
count, with concurrent rises in male genital anomalies and
testicular cancer.4 Recent data show that sperm count declined
by 51.6% between 1973 and 2018 and this decline has
accelerated since 2000.5 Thus, if this trend persists, a greater
proportion of the male population could drop below the
threshold6,7 where lower sperm count could lead to a rise in male
infertility, reflecting not only difficulty in conceiving but also a
signal of poorer general health.
The cause of this decline is likely multifactorial, including

both prenatal and adult factors,8−10 with environmental factors
playing a major role.4 However, our current knowledge of the
determinants of male fertility does not sufficiently explain this

constant and global decline. Over the past decades, several
environmental pollutants have been found to be male
reproductive toxicants, such as airborne pollutants, certain
types of persistent organic pollutants, and chemicals commonly
found in plastics. However, these known environmental
reproductive toxicants might not be the primary drivers of this
alarming trend because the overall trends of these specific
pollutants are declining across the same time frame as the
observed decline in sperm count and many observed effect sizes
are relatively small. Thus, it is likely that there are other
unidentified reproductive toxicants or uncharacterized inter-
actions between chemicals that may impact male fertility.
The emerging field of exposomics offers a comprehensive

approach for environmental health research. The concept of the
“exposome” was first introduced byC.P.Wild in 2005 as a way to
represent the totality of environmental (i.e., nongenetic) drivers
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of health and disease.11 The exposome is a function of external
forces and internal biological processes.12 In practice, exposome
studies attempt to capture a large set of environmental exposures
simultaneously and have the potential to address limitations of
existing studies by investigating the impact of “real-life”
exposures and their combinations and interactions between
exposures.
Historically, there have been several major challenges to

identifying previously unknown reproductive toxicants. First,
populations around the world are exposed to thousands of
chemicals and other environmental exposures with large
temporal and geospatial variations where most chemicals are
introduced without rigorous reproductive toxicity data. This
presents an obvious biomonitoring challenge as it is difficult to
assess thousands of toxicant exposures and their metabolites
simultaneously, particularly chemicals without reproductive
toxicity data or those that have never been profiled in humans.
Second, not every environmental pollutant has accessible assays,
creating additional barriers to investigators and biomonitoring
efforts. For pollutants that can be measured, the analytical
platforms used are usually highly specific and lack the ability for
high-throughput simultaneous assessment of many exposures
from a reasonable amount of biospecimen. This restricts
investigators to only a small subset of putative or known
toxicants with accessible assays, impeding efforts for non-
targeted discovery. This is compounded by a third challenge;
human exposures are typically measured using available and
minimally invasive biospecimen such as urine, blood, and hair.
This can create exposure misclassification and spurious findings
as male reproductive organs and processes are protected by the
blood-testis-barrier, which can lead to different exposure profiles
between systemic circulation and the male reproductive
system.13,14 Fourth, the standard environment-wide (i.e.,
exposome) association studies (ExWAS) approach can be
limited by multiple testing penalties, leading to high sample size
requirements.15 While ExWAS remains useful, additional
strategies are necessary to analyze high-dimensional exposure
data. Together, these constraints collectively hinder investi-
gators from more efficiently and comprehensively identifying
environmental pollutant influences onmale reproductive health.
The objectives of this study were to (1) profile a large set of

organic pollutants relevant to male reproductive tissues using a
targeted approach and a discovery-driven nontargeted analysis
(NTA) and (2) assess associations between the detected
pollutants and percent motility, concentration, and total motile
sperm to discover previously uncharacterized male reproductive
environmental toxicants. We leveraged state-of-the-art analytical
advances in high-resolution mass spectrometry16 to simulta-
neously profile thousands of potential environmental chemicals
in seminal plasma, which is more proximal and relevant for male
reproductive health compared to measures of chemicals in
systemic circulation.17,18 We then combined a novel machine
learning pattern recognition approach, principal component
pursuit (PCP),19,20 with modern statistical mixtures analyses21

to efficiently detect associations of environmental chemicals
with male reproductive health. Typical studies model one
feature (e.g., genetic polymorphism or environmental exposure)
at a time,22 repeated through all features, which incurs severe
multiple testing penalties on statistical power. In addition,
environmental exposures do not occur in isolation as
represented in these models. In real life, individuals are
subjected to complex sets of environmental exposures that
jointly act to induce endogenous responses. Our novel approach

helps address both limitations of traditional statistical
approaches by removing noise, reducing the number of
statistical comparisons, and allowing for discovery of inter-
actions and exposure patterns.

■ METHODS
Cohort Recruitment and Clinical Data Collection. From

2020 to 2021, 158 couples undergoing a fresh IVF cycle at Sheba
Medical Center, a tertiary medical center in Tel HaShomer,
Israel, were approached, of which 100 consented. Couples were
enrolled during ovarian stimulation and those with severe
oligoasthenoteratozoospermia were excluded at the time of
enrollment. Demographic, lifestyle, anthropometric, and med-
ical history data were collected by trained clinic personnel.
Standard semen parameters, including volume, percent motility,
and total sperm count data were collected as part of routine IVF
protocol following WHO protocol on semen sample treatment
and semen parameter assessment.23 A composite semen index
was derived using principal component analysis (PCA).
Semen samples were collected in a sterile plastic specimen cup

after a recommended 2−7 day abstinence period, per standard
IVF protocol. Following liquefaction, sperm concentration and
motility were evaluated by Makler counting cell (Sefi-Makler).
The liquefied semen was gently added to the density gradient
medium (80%/40% PureCeption, Quinn’s, SAGE) and
centrifuged at 600g for 20 min to separate the seminal plasma.
Samples were stored at −80 °C, defrosted in a 4 °C refrigerator,
and then brought to room temperature prior to extraction for
NTA.

High Resolution Non-Targeted Exposome Measure-
ment. Extensive details of the targeted and nontargeted high
resolution platform are provided in the Supporting Information,
and are based on previously described methods.16 In brief,
seminal plasma was extracted using a modified QuEChERS
extraction. A 500 μL volume of seminal plasma was mixed with
500 μL hexane/acetone:dichloromethane, vortexed for 30 s, and
transferred to a QuEChERS tube (150 mg MgSO4 + 50 mg
C18). The tubes were centrifuged and the supernatant was
transferred to a glass vial for collection. This was repeated two
more times with 250 μL hexane/acetone/dichloromethane. The
final extract was reduced to 150 μL under nitrogen, transferred
to an amber autosampler vial, spiked with 10 μL of an internal
standard solution containing 62.5 μg/L of phenanthrene D-10
and chrysene D-12 (AccuStandard) and with 10 μL of diluted
retention time marker (AccuStandard DRH-TX-003-CNM),
and sealed with a cap.
The extracts were analyzed using a using a high-resolution

Thermo Q Exactive Orbitrap MS equipped with a Thermo
Trace 1300 GC and a TriPlus RSH Autosampler. Limits of
detection were determined by injecting a calibration standard
seven times, and calculated as [s × t (df, 1− α = 0.99)]/mwhere
s is the standard deviation, t is the student’s t-value, df is the
degrees freedom, α is the significance level (n = 7, α = 0.01, t =
3.14), and m is the slope of the calibration curve. Full details of
the analytical methods, including the QC, analytical sequence,
chromatography and mass spectrometry settings, and data
processing, are provided in the Supporting Methods. Table S1
shows the recovery spikes of the contaminant mixture in fetal
bovine serum. Table S2 shows the extraction recovery of the
contaminants from NIST SRM.
For all statistical analyses, we restricted the analysis of targeted

measurements to chemicals with ≥40% detection rate, resulting
in 43 chemicals. Any measurements below the limit of detection
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were replaced with half the value of limit of quantitation or the
minimum detected, whichever was smaller. The nontargeted
chemical data analysis was restricted to peaks that were detected
in all samples, with a minimum abundance >50,000 in order to
ensure peak quality, resulting in 814 features for analysis. An
overview of the statistical approach is shown in Figure S1.

Chemical Identification and Categorization. Chemicals
measured via the targeted approach were categorized based on
entries for each chemical on the EPA CompTox Chemicals
Dashboard.24 They were broadly categorized as PCB (n = 46),
PAH (n = 11), pesticides were subclassified as chlorobenzene (n
= 7), organochlorine (n = 18), triazine and triazole (n = 4),
organophosphate (n = 6), and other pesticides (n = 8), and all
other chemicals were categorized as “other” (n = 18). Further,
we examined the correlation between detection and phys-
icochemical properties obtained from the CompTox Dash-
board, namely ExpoCast predicted median exposure, predicted
octanol−water partition coefficient, predicted bioconcentration
factor, and predicted biodegradation half-life. To characterize
the nontargeted data, we used chemoinformatic tools to
generate simplified molecular-input line-entry system notation
by querying the chemical identifier resolver using chemical
names, annotated by compound discoverer, using the webChem
R package25 (version 1.1.3). We determined the elemental
composition and functional groups present using the rcdk
package.26

For the NTA, features were detected with 10 ppm mass
tolerance, 10,000 total ion chromatogram threshold, signal-to-
noise ratio of 3, and 99% allowable ion overlap. Each
chromatogram was retention time-aligned using the carbon
distribution marker (contains 9 alkanes; only compounds
containing greater than 8 carbons were used since the
compounds smaller than this eluted during the solvent delay)
spiked into each sample and retention indices (RIs) were
calculated for each peak detected.
For suspect screening analysis, the RI of each peak was used to

limit suspects during identification; the allowed maximum RI
difference was 300. Compounds were identified by searching
their mass spectra in the NIST Mass Spectra Library (NIST/
EPA/NIH EI and NIST TandemMass Spectral Library Version
2.3) and a high-resolution library developed in-house using
certified standards containing 354 unique compounds. A
minimum match factor and reverse match factor score of 500
was used for assigning library matches. Peaks with scores <500
were not assigned an identification. Chemicals that matched to
our in-house library were assigned level 1 annotation if they were
also detected in our standard mixture, based on previously
described scoring scheme.27

Covariate Selection. For all models, we decided to include
age, body mass index (BMI), smoking and cannabis use, and
infertility diagnoses (male, female, unexplained) as covariates.
These were selected due to their known association with male
fertility. Education and whether someone lived or worked near
agriculture were not included in the model as it was not
associated with any semen parameter outcomes in our
population.

Individual Exposure Models. For the targeted organic
pollutants, we applied an Exposome Wide Association Study
(ExWAS) approach where we tested each chemical individually
with the semen parameters as outcomes, analogous to GWAS
studies.28 Using linear regression models, chemicals with 40−
70% detection rate were modeled as binary exposures (above
and below detection) and those with >70% detection rate were

modeled as continuous variables. This was done to balance the
statistical power gained by modeling variables as continuous
when possible and the overall model fit as variables with high
nondetects may be less appropriate for linear regression. Models
were adjusted for age, BMI, smoking and cannabis use, and
infertility diagnoses (male, female, unexplained). The model
estimates were corrected for false discovery rate.29 As a
sensitivity analysis, we excluded 13 individuals who were
diagnosed with male factor infertility and/or had total sperm
count <39 million, which corresponds to fifth percentile of men
whose partners became pregnant within 12 months.23 Varying
this cutoff made no material difference to our model estimates.
For the 814 highly abundant nontargeted features, we used

linear regression as a verification of our PCP−PCA-BKMR
results (see below) because potential bias introduced by
coexposure adjustment may lead to spurious findings in
statistical mixture models under specific scenarios.30,31 As all
features were in arbitrary units that scale with concentration, we
decided to model the feature variables after log 2-transformation
to allow the resulting model estimates to be interpreted as the
difference in outcome per doubling of exposure. This analysis
was restricted to exposures identified by the PCP−PCA-BKMR
pipeline. Models were adjusted for age, BMI, smoking and
cannabis use, and infertility diagnoses.

Dimension Reduction via Unsupervised Machine
Learning Pattern Recognition. PCP is a robust method for
dimensionality reduction and pattern recognition.32,33 Its theory
and application to environmental health research has been
described previously.19,20 In brief, we can consider any set of
exposure data to comprise two underlying matrices�the low-
rank L-matrix and a sparse S-matrix. The L-matrix represents the
latent underlying patterns that can be estimated but are not
directly observed. The S-matrix represents the unusual or
uniquely rare values that cannot be explained by the latent
patterns observed by the L-matrix. By partitioning the observed
data with PCP, we can effectively separate the underlying latent
patterns from the unusual and rare events.
PCP offers two unique advantages. First, by removing the

influence of unusual and rare events, we can remove outliers and
statistical noise that are often products of random variability.
Second, while the resulting L-matrix has the same dimensions as
the original exposure matrix, it will have a low rank, effectively
reducing the dimensionality of the data. Any subsequent matrix
factorization techniques, such as PCA, will identify only a few
factors/components that explain a large proportion of
variability. This stands in contrast with PCA on typical
observed�and noisy�exposure data matrices (i.e., raw
exposure data) where a large number of factors/components
are required to explain the majority of the variability in the data.
For our presented analysis, we used non-negative nonconvex

square root PCP with a noise-independent universal choice of
regularization parameters.19,34 This approach requires estima-
tion of two parameters, λ and μ. We tested both default universal
parameters (λ = 1/√n and μ = p/√2 where n is sample size and
p is number of features)32,34 as well as parameter values obtained
via a grid search. In each case, the resulting L matrices were very
similar both in rank and subsequent regression results. Thus, we
chose to present the results using the default universal
parameters which have been shown to have theoretical
guarantees.
PCP was applied separately for the targeted chemicals and on

the nontargeted spectra. The input for the targeted chemicals
included 43 pollutants with ≥40% detection rate. The input for
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the nontargeted chemicals included 814 high abundance
features that were detected in all samples. All inputs were scaled
to 0−1 for PCP.

Principal Component (PC) Regression.We applied PCA
on the L-matrices and for downstream regression analyses, we
chose the top 5 PCs from the priority common organic
pollutants (99.1% cumulative variance) and the top 6 PCs from
the nontargeted spectra (99.4% cumulative variance). We
extracted the eigenvectors as well as the loadings of each
chemical in the data set. Linear regression was then used to
model each PC as the predictor and semen parameters (total
motile sperm, concentration, and percent motility) as outcomes.
All models were adjusted for age, BMI, smoking and cannabis
use, and infertility diagnoses (male, female, unexplained). For
PCs that were found to be associated with outcomes, we
identified the top chemicals or features with the highest loadings
as potential drivers and used this to inform our mixtures models.

Bayesian Kernel Machine Regression. BKMR21 is a
flexible statistical mixtures method that can model multiple
exposures to estimate the dose−response relationship of each
mixture component while holding other components constant.
Bayesian kernel machine regression (BKMR) makes no
assumptions regarding the shape of the relationships and can
be used to capture nonlinear curves and statistical interactions
between the mixture components. For all BKMR models, we
scaled observed exposures, outcomes, and continuous cova-
riates, and specified 50,000 iterations with default priors. All
models were adjusted for age, BMI, smoking and cannabis use,
and infertility diagnoses.
From PC regression, we identified candidate chemicals or

features that may be associated with semen parameters. We then
modeled the observed continuous exposure values (i.e.,
observed concentrations) of these chemicals or features in
BKMR models with our outcomes. We reasoned that real
associations should be detectable using the observed values and
that using the latent representations (i.e., L-matrix) may result in
spurious findings induced by the data handling procedure.
Furthermore, models using observed exposure values are more
easily verified and replicated by others. Also, to ensure that our
observations regarding individual chemicals were not products
of arbitrary decisions for the number of mixture components, we
tested BKMR models with top 5, 10, and 15 chemicals or
features to ensure that the estimated dose−response relation-
ships were a faithful reflection of the underlying data.

Software and Packages. All analyses were conducted in R
v4.0.1. We used pcpr package (https://github.com/Columbia-
PRIME/pcpr) for PCP and bkmr package for BKMR.

■ RESULTS
Population characteristics are shown in Table 1. Among the
male partners of the 100 couples seeking assisted in vitro
fertilization, five reported use of cannabis and 19 reported
current smoking. Their mean age was 38.1 (SD = 5.7) years old
and mean BMI was 26.3 (SD = 4.6). A substantial portion of the
study population lived or worked near agricultural sites. The
population semen parameter was similar to the WHO
population parameters23 and the majority of participants had
normal volume and concentration according to WHO stand-
ards. Only 9 couples sought IVF treatment due to male-factor
infertility. Our study design, methods, and key findings are
shown in (Graphical Abstract).

Targeted Profiling of the Seminal Plasma Exposome
and Exposure Patterns. Starting with 119 commonly

measured persistent or trace organic pollutants (all with level
1 identification confidence, i.e. confirmed chemical structures),
we found that nearly all tested organic pollutant exposures were
detectable in at least one sample, including all measured classes
of pesticides, polyaromatic hydrocarbons (PAH), polychlori-
nated biphenyl (PCBs), and other common environmental
contaminants such as dioxins and dioxin-like compounds,
phthalates, and solvents (Figure 1). Cyanazine was the only
chemical not detected in any of the samples. We observed
predominantly positive correlations among the targeted
chemicals, which is consistent with the fact that we expect
chemical exposures to arise from complex chemical mixtures and
not be mutually exclusive. Summary statistics for individual
compounds can be found in Table S3.
As expected we found a positive correlation between

detection rate and predicted median exposure and (rho =
0.57, p < 0.001). We found negative correlations between
detection rate and predicted octanol−water partition coefficient
(rho =−0.56, p < 0.001), predicted bioconcentration factor (rho
= −0.52, p < 0.001), and predicted biodegradation half-life (rho
= −0.19, p < 0.05).
Several specific exposure patterns can also be observed in our

data (Figure 1). There were expected correlations between
different isomers and related metabolites such as lindane (γ-
hexachlorohexane [HCH]), α-lindane, δ-lindane, and β-HCH.
There was also a cluster that comprised numerous pesticides,
such as triadimefon, N,N-diethyl-3-methylbenzamide (DEET),
lindane (and its related isomers and metabolites), 2,4,5-
trichlorophenol, etridiazole, 1,4-dichlorobenzene, and chlopyr-
ifos, and reagents that are commonly used for production of
pesticides, including diethyl phthalate and isosafrole. PCB-49 is
also part of this cluster of correlated chemicals, whichmay reflect
the usage of PCBs in certain pesticides similar to diethyl
phthalate and isosafrole. Other specific coexposure patterns and
exposure profiles were observed among dibenzofuran, safrole,

Table 1. Study Population Characteristics (N = 100)

demographics mean (SD) or N (%)

age (years) 38.09 (5.65)
BMI (kg/m2) 26.28 (4.59)
Cannabis use 5 (5.0%)
smoking 19 (19.0%)
live or work near agriculturea

no 67 (68.4%)
yes 31 (31.6%)
education (years)b 14.6 (2.88)
clinical characteristics
infertility diagnoses (couple) mean (SD) or N (%)

endometriosis 12 (12.0)
fertility preservation 9 (9.0)
genetic 42 (42.0)
male factor 9 (9.0)
mechanic 5 (5.0)
ovarian 11 (11.0)
ovulatory 4 (4.0)
unexplained/idiopathic 8 (8.0)
volume (mL) 3.34 (1.70)
motility (%) 55.31 (21.96)
motile concentration (million/mL) 76.19 (53.63)
total motile sperm (million) 146.4 (142.2)

aMissing data on 2 individuals. bRange is 8−21 years of formal
education. Median is 15 years.
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and two PAHs, fluorene and acenaphthene. Although it is not
clear which products or behaviors underlie this profile, these
four chemicals also had positive correlations with many
pesticides in our data.

Analysis of Targeted Organic Pollutants Shows
Etridiazole was Associated with Poor Semen Parame-
ters. We used two parallel approaches to quantify the
associations between the targeted organic pollutants and
semen parameters, including motility, concentration, total
motile sperm, and a combined index that captures overall poor
semen parameters (Figure S2).
First, we testing each exposure individually using an ExWAS

approach, adjusting for age, BMI, smoking and cannabis use, and
infertility diagnoses and correcting for multiple comparisons.
We found that etridiazole was associated with lower total motile
sperm (FDR q = 0.01), concentration (FDR q = 0.07), and
overall index of semen parameters (FDR q = 0.004) (Figure
2A,B, Table S4). These results were robust when we excluded
those with male factor infertility or very low total motile sperm
count (Table S5).
We then sought to use our novel analysis approach, which

combines a machine learning pattern recognition approach with
modern mixture methods, to identify latent patterns in the
exposure data and evaluate these exposure patterns, rather than
individual exposures, with the semen parameter outcomes. In
this approach, we first used PCP, a robust pattern recognition
and data dimension reduction technique, to derive a low-rank
exposure matrix that represents the latent underlying patterns
without outliers and rare events (Figure S3). Despite the

apparent complexity in the raw observed data, ∼5 PCs (PCP−
PCs) explained >99% of the variability in the low-rank exposure
matrix (Figure S4). Of these 5 PCP−PCs, we found that PCP−
PC2 was associated with total motile sperm after adjusting for
age, BMI, smoking and cannabis use, and infertility diagnoses
and correcting for multiple comparisons (Figure 2C).
The loadings on PCP−PC2 showed high positive loadings for

PAHs and triazine/triazole pesticides and highest negative
loadings for etridiazole and 2,3,7,8-tetrachlorodibenzofuran
(Figure S5). To formally investigate which exposures con-
tributed to the association between PCP−PC2 and total motile
sperm, the original observed exposure concentrations for the top
10 chemicals with highest absolute loadings were fit as a mixture
in a BKMRmodel adjusting for age, BMI, smoking and cannabis
use, and infertility diagnoses. The BKMR model showed that
within this mixture, etridiazole had the highest posterior
inclusion probability (Figure 2D) and was the only one that
showed a negative association with any tested semen parameter
(Figure 2E), which is evidence that etridiazole was the sole
driver of this relationship. Indeed, we also saw that etridiazole
was clearly associated with lower sperm motility in the BKMR
model, which was also evidenced in the ExWAS models, but did
not pass multiple testing corrections.
To ensure that our results were robust and not specific to

model parameters, we conducted sensitivity analyses where we
specified alternative model parameters for PCP and the number
of mixture components for BKMR. There were no appreciable
changes in the results as etridiazole was consistently associated
with poor semen parameters (Figures S6−S7).

Figure 1.High-resolution gas chromatographymass spectrometry efficiently detects widespread detection of organic pollutants in seminal plasma. Left
side�the detection rate of 118 targeted organic pollutants. Right�correlation plot of chemicals with ≥40% detection rate.
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Non-Targeted Analysis Identified NDEA as Associated
with Poor Semen Parameters. In addition to the set of
targeted organic chemicals, we conducted a NTA of all high-
quality spectra tentatively identified in seminal plasma with the
goal of applying and leveraging the exposomic approach to
identify potential male reproductive toxicants among less-
investigated pollutants. We characterized the tentatively
identified spectra for elemental composition and presence of
functional groups (Figure S8). We found that the 39% of the
tentatively identified features contained only hydrogen and
carbon and ∼45% did not carry any functional groups. Starting
from 814 spectral peaks with abundances detected in all study
samples, we again applied our PCP-based approach.
In these nontargeted data, PCP derived a low-rank exposure

matrix with 6 components that explained >99% of the variance
(Figure S9), one of which was associated with total motile sperm
(Figure 3A). Using BKMR model with the top 10 loading peaks
of this component, we found that one peak had the highest
posterior inclusion probability for total motile sperm, concen-

tration, and combined index (Figure 3B). This peak had a
retention time of 5.734 min and the mass-to-charge (m/z) ratio
was 57.03352 and was the only one in this mixture that showed
negative association with semen parameters (Figure 3C). These
results did not differ when we considered alternative BKMR
inputs (Figure S10).
To verify the observations from our PCP- and BKMR-based

approach, we also modeled each of the top 10 peaks individually
with linear regression, adjusting for age, BMI, smoking and
cannabis use, and infertility diagnoses. These models also
showed that the same peak (retention time = 5.734 min, m/z =
57.03352) was negatively associated with total motile sperm (p
= 0.01) and combined index (p = 0.01) and marginally
associated with lower sperm concentration (p = 0.07) (Figure
3D). These results persisted after excluding those with male
factor infertility or very low total motile sperm count (p = 0.001
for total motile sperm, p = 0.02 for concentration, p = 0.003 for
combined index).

Figure 2. Exposome-wide association study using standard single-exposure regression models and machine learning pattern recognition based
approach both identified etridiazole as negatively associated with worse semen parameters including lower total motile sperm, percent motility, and
concentration. (A) Volcano plot of exposome-wide association study results, with the dashed line representing Bonferroni-corrected p-value cutoff
threshold. (B) Boxplot of semen parameters among those with detectable levels of etridiazole compared to those with nondetectable levels of
Etridiazole. (C)Heat plot of results PC regression. Green indicates negative association and the asterisk denotes statistical significance after Bonferroni
correction. (D) Bar graph of posterior inclusion probability calculated from BKMR. (E) Estimated dose-response plots and associated 95% credible
intervals from BKMR. Green line and credible interval indicates that the credible interval deviates from the null.
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In order to determine the chemical identity of the peak, we
used a suspect screening analysis pipeline described previously16

and identified NDEA as a high quality match for thism/z feature
with exact mass match, reverse match factor >600, and near
exact retention timematch (within 0.0008%).We compared this
feature in our samples to the NDEA reference standard and
found very similar chromatograph profile (Figure S11) and ion
ratios (Table S6). Together, this provides level 1 identification
confidence for this m/z feature as NDEA.

■ DISCUSSION
In this study, we show that numerous organic pollutants can be
detected in seminal plasma and can be observed as several
pollutants frequently co-occur with a range of other pollutants,
forming distinct exposure profiles. Chemicals with low octanol−
water partition coefficient, bioconcentration factor, and
biodegradation half-life had higher detection rates among the
participants. Additionally, we applied a novel pattern recog-
nition approach to the exposure data to reduce dimensionality
and subsequently identified etridiazole and NDEA as two
potential male reproductive toxicants negatively associated with

semen parameters. These discoveries were supported by the
classical ExWAS approach and linear regression analyses,
demonstrating the effectiveness and validity of our novel data
analysis approach, and persisted when men with male factor
infertility and low sperm count were removed. On a broader
level, our study shows that we can adapt high dimensional
approaches to exposomic studies of environmental determinants
of reproductive health, which may be necessary to better
understand the environmental contributions of the global male
fertility decline.
Pesticides have been previously link to semen parameters.35,36

To our knowledge, this is the first study to report the potential
association of etridiazole, a pesticide commonly used to control
rot due to fungi and oomycetes,37 and male fertility parameters.
Etridiazole is sold as the active ingredient in numerous
commercial pesticides such as terrazole, Truban, and Banrot
and has been used on golf courses, cotton ornaments, lawns, and
agricultural seed products.37 In addition to occupational
exposures,38−40 etridiazole can be present in water and air
near sites where it is frequently applied,37,41 which may lead to
low levels of intermittent exposure in the general population.

Figure 3.Machine learning pattern recognition based approach identified a spectral peak to be negatively associated with worse semen parameters. (A)
Heat plot of results PC regression. Green indicates negative association and the asterisk denotes statistical significance after Bonferroni correction. (B)
Bar graph of posterior inclusion probability calculated from BKMR. (C) Estimated dose-response plots and associated 95% credible intervals from
BKMR. Green line and credible interval indicates that the credible interval deviates from the null. (D) Forest plot of estimates and associated 95%
confidence intervals from standard single-exposure linear regression models.
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Etridiazole is not typically found on food,37,42 which suggests
that the observed exposure is unlikely to be a result of
confounding via dietary patterns and associated habits.
Ultimately, there is likely substantial variation in detection rate
of etridiazole across different populations, depending on
underlying exposure levels and the analytical methods. It is
notable that a substantial portion of our population live or work
near agricultural sites, which likely led to higher detection rates
than other populations. Etridiazole is classified as a probable
human carcinogen,43,44 in part due to evidence of testes tumor
and testicular interstitial cell hyperplasia in rats,37 which suggests
potential reproductive toxicity. Mechanistically, etridiazole
inhibits fungal growth by hydrolysis of phospholipid membrane
of fungal mitochondria via increased phospholipase A activity.45

The effect of etridiazole on mammalian cells is not well
characterized, but there is evidence that it causes hemolysis and
lipid peroxidation of human erythrocyte cell membranes by free
radicals.45 Thus, the biological mechanisms underlying the
associations of etridiazole with semen parameters should be
investigated in future studies.
NDEA is a nitrosamine and a probable human carcinogen43,44

with well characterized hepatotoxic, carcinogenic, and muta-
genic properties.46 NDEA is used in a wide range of industrial
applications, including as a gasoline and lubricant additive,
antioxidant, plastics stabilizer, and can be found in tobacco47,48

and food products.49 It can also be found as a water treatment
disinfection byproduct.50,51 A well-characterized mechanism of
carcinogenesis by NDEA is through lipid peroxidation and
generation of free radicals. However, lipid peroxidation and free
radicals may result in a variety of other adverse health effects,
including impaired spermatogenesis and poor semen parame-
ters.52,53 Although there was no prior human evidence, there is
compelling evidence demonstrating reproductive toxicity of
NDEA in animal models. NDEA increased abnormal sperm and
markedly decreased sperm count, sperm motility, and male
reproductive organ weight in chronically exposed rats in two
different experiments.54,55 These changes were complemented
by depletion of antioxidants, increase in malondialdehyde and
other markers of oxidative stress, elevated indicators of lipid
peroxidation in the testes, pathological changes in seminiferous
tubules, and changes in levels of key sex hormones.54,55 Similar
induction of oxidative stress, changes in sex hormones, and
pathological changes in seminiferous tubules were observed in
rabbits.56 Lycopene, an antioxidant, appeared to rescue the
NDEA-induced effects, suggesting that oxidative stress is the
underlying mechanism.54 Thus, our study is consistent with the
emergent experimental evidence and there is strong evidence
that NDEA can lead to impaired spermatogenesis and reduced
fertility in humans.
In addition to the discovery of two new potential human

reproductive toxicants, our study also introduces a new
workflow for the analysis of high dimensional exposome data.
Our approach leverages a popular machine learning pattern
recognition approach to remove outliers and rare events from
noisy exposure data to uncover latent patterns. The resulting
latent patterns can then use other machine learning and
statistical techniques such as factor analysis (e.g., PCA) and
mixtures analysis (e.g., BKMR) to screen hundreds of exposures
with a smaller number of statistical tests while maintaining the
ability to assess potential mixture effects and interactions. As
proof of concept, we show that this workflow was able to
recapitulate associations that were detectable in classical ExWAS
analyses while identifying associations present in our data that

were not detectable via ExWAS analyses due to lack of power. In
effect, our proposed workflow can maximize statistical efficiency
and overcome a key challenge in exposome studies15 to
efficiently screen hundreds of exposures using realistic study
sample sizes in reproductive health studies to identify plausible
reproductive toxicants.
There are additional considerations when applying this

approach. First, we were able to identify specific patterns and
chemicals related to our outcomes, but it is possible that PCs
with a highly toxic chemical will not be associated with the
outcome of interest if the rest of the chemicals loading highly on
the pattern were null or protective, thereby diluting the effect of
the highly toxic chemical. It may be advisible to conduct parallel
ExWAS analyses, but whether ExWAS can identify such
associations depend on the statistical power. Second, a
collection of weakly toxic chemicals may have a significant
joint effect without a single primary suspect. Although we did
not observe this in our study, this is another strength of BKMR
that should be kept in mind during the interpretation. Lastly, it is
important to note that the individual chemical estimates are the
product of a prior selection step, which means that the estimates
do not reflect uncertainty in dimension reduction.
While our results are promising and consistent with

experimental evidence, it raises some questions for future
work. Given the absence of recent biomonitoring data for these
chemicals, a comparison of exposure values in our study
population to other populations cannot be conducted. For
example, we detected relatively high levels of dioxin-like
chemicals and etridiazole in our study compared to previous
studies,57,58 but there are major differences between popula-
tions, biomatrices, and assay methods, as well as potential
differences across time. Ultimately, this highlights the urgent
need for better human exposure biomonitoring efforts for
known environmental contaminants.59 While there are several
advantages to measuring parent compounds directly, future
efforts may also consider measuring known human metabolites.
For example, etridiazole60 and NDEA61 have metabolites that
may be detected at higher frequencies and quantities, making
those metabolites potentially more attractive for targeted
studies. Low detection may lead to nondifferential measurement
error, which on average biases the results toward the null. Thus,
while this likely did not result in spurious findings, in the case of
etridiazole, additional efforts involving etridiazole metabolites
and other populations would be helpful because the mechanism
of action is unclear and complementary experimental evidence is
necessary to understand how these putative male reproductive
toxicants act mechanistically.
Our study also has some limitations. First, our study

population was recruited from couples seeking IVF in Israel
and the associations observed with etridiazole and NDEA need
to be replicated in other populations. However, there is
compelling support for the validity of the observed associations
from prior literature and experimental evidence. Although
recruitment of men from infertility center might not be
representative of the general population, most of those included
in our cohort did not have male factor infertility: 42% of the
participants underwent IVF for preimplantation genetic
diagnosis with normal sperm parameters, 9% underwent
planned embryo cryopreservation and 32% due to female
infertility. Only a few study participants were diagnosed with
male factor infertility and had obvious poor semen parameters.
Furthermore, our results were stronger when we excluded
individuals with male factor infertility or very low total motile
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sperm, which gives us confidence that these associations are
likely also present in the general population. Additional
limitation was that we assessed only three sperm parameters
and not the full semen quality parameters according to the
WHO. Upon the first visit in our unit, male partners were asked
to provide a full semen analysis, including sperm morphology.
However, these tests were performed in different laboratories
and variable timing and only sperm volume, percent motility,
and concentration were collected in our clinical IVF lab on the
day of sample collection. Another limitation was that we only
assessed semen parameters as the evidence suggested a global
decline in sperm count. However, the relationship between
semen parameters and fecundity is nonlinear7,62 and it is
unknown whether etridiazole or NDEA are associated with
measures of fecundity such as time-to-pregnancy. Lastly, we
were unable to adjust for other potentially relevant factors such
as diet, which could influence both our observed exposures and
outcomes.
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