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Abstract

Exosomes are extracellular vesicles well known for facilitating cell-to-cell communication by distributing essen-

tial macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed
throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung,
gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most
parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting tra-
ditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used
for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer.
Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We
anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential
to enhance cancer detection and treatment in the upcoming years.
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Introduction

In the era of precision medicine, identifying and validat-
ing reliable cancer biomarkers are paramount for early
detection, accurate diagnosis, and effective treatment
strategies. Exosomes have gained substantial attention
among emerging candidates as promising carriers of
valuable information in cancer research. Exosomes are
tiny extracellular vesicles (EVs) with a diameter rang-
ing from 30 to 150 nm [1]. They are secreted by cells
into bodily fluids such as blood, urine, cerebrospinal
fluid (CSF), and saliva. These vesicles transport a col-
lection of nucleic acids, proteins, and lipids. Accord-
ing to the exosome database ExoCarta, 9769 proteins,
3408 mRNAs, 2838 miRNAs, and 1116 lipids have been
identified in exosomes from various organisms and bod-
ily fluids [2]. Due to their distinct attributes, including
stability, specificity, and capability to traverse biological
barriers, exosomes are promising candidates for detect-
ing cancer biomarkers. Exosomes can carry molecules
representative of the original cell, including cancer cells.

Early cancer detection is made possible by analyzing exo-
somal content when the cancer cells release the exosomes
into the bloodstream or other biofluids. Early detection
is essential for treatment to begin at a more manageable
and possibly curable stage. Exosome formation entails the
fusion and exocytosis of multivesicular bodies (MVBs),
releasing them into the extracellular environment [3, 4].

Exosomes facilitate the transfer of exosome-associated
RNA to recipient cells, influencing protein functioning
and contributing to cellular stress and damage in dis-
eased states. They play a diverse role in various diseases,
encompassing neurodegenerative, cancerous, hepatic,
and cardiovascular conditions. In the context of cancer,
exosomes hold substantial implications for metasta-
sis, drug resistance, and angiogenesis. Specifically, they
can modify the extracellular matrix to create a favorable
environment for tumor cell migration [5, 6]. Moreover,
exosomes influence the migration, invasion, and release
of cancer cells by affecting tumor suppressor genes and
degrading the extracellular matrix [7, 8].
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Most tumors exhibit heterogeneity, comprising differ-
ent cell types with diverse molecular profiles. In contrast
to a single tissue biopsy, exosomes, released by various
tumor-resident cells, provide a more comprehensive and
representative view of the tumors’ heterogeneity. Under-
standing this complexity is crucial for tailoring treat-
ment plans effectively. The contents of exosomes act
as molecular signatures of their cells of origin, making
them promising biomarkers. The stability of exosomes,
ensured by the lipid bilayer protecting them from exter-
nal proteases and enzymes, enhances their appeal as
diagnostic markers. Consequently, diagnostic tests based
on exosomes are gaining momentum for early cancer
detection and addressing various ailments. Exosomes
can be isolated from easily accessible biofluids such as
blood, urine, saliva, and CSF. When comparing liquid
biopsy to conventional tissue biopsies, a non-invasive
approach, significant improvements become evident.
Liquid biopsies offer a less invasive and more dynamic
method to monitor the course of cancer and assess the
effectiveness of treatment. Exosomes can traverse the
blood-brain barrier (BBB) under specific conditions [9],
opening up possibilities for therapies involving small
molecules, RNA therapy, proteins, and CRISPR gene
editing. In RNA therapy, exosomes can deliver RNA
molecules, such as mRNA or siRNA, directly to cancer
cells, selectively silencing oncogenes or restoring tumor
suppressor genes to reduce tumor growth and metastasis
[10, 11]. Similarly, exosomes serve as a promising deliv-
ery system for CRISPR-Cas9 components, enabling pre-
cise genetic editing to correct mutations driving cancer
development [12, 13]. They can complement chimeric
antigen receptor T (CAR-T) cell therapies targeting can-
cer cells. CAR exosomes, derived from CAR-T cells, bear
CAR on their surface, exhibit elevated levels of cyto-
toxic molecules, and impede tumor growth [14], thereby
enhancing the overall efficacy of CAR-T cell therapy by
extending the therapeutic effect beyond the initial infu-
sion site. Cancer cell-derived exosomes, carrying tumor-
associated antigens, can modulate the immune response
by recruiting and activating dendritic cells (DCs) and
other antigen-presenting cells, which stimulate cytotoxic
T lymphocytes to recognize and destroy cancer cells
[15]. Experimental evidence suggests that circulating
exosomes from cancer patients can be utilized for cancer
diagnosis and prediction of therapeutic outcomes, poten-
tially reducing the need for invasive biopsies.

This review article aims to comprehensively explore
the clinical signature of exosome-based cancer biomark-
ers, providing an overview of their diverse roles in can-
cer progression, diagnosis, prognosis, and therapeutic
monitoring. This paper uniquely focuses on the dynamic
nature of exosomes, which renders them highly suitable
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for tracking the advancement of the disease, the reaction
to treatment, and the emergence of resistance, thereby
offering a more sophisticated comprehension of the
changing terrain of cancer. We will delve into the bio-
genesis of exosomes and their specific cargo, including
microRNAs (miRNAs), proteins, and metabolites, high-
lighting their potential as non-invasive biomarkers for
various cancer types. This review elucidates the complex
exosomal formation and release processes, contributing
to our understanding of their roles in cancer progression.
Furthermore, we will explore the latest advancements in
exosome isolation techniques, analytical methods, and
high-throughput technologies that enable the profiling
and characterization of exosomal biomarkers, including
advanced techniques like OMICS and single exosome
profiling. Exosomes can aid in initiating and spread-
ing cancer and are involved in intercellular communica-
tion; knowing the precise chemicals that exosomes carry
could help identify possible targets for treatment. This
discussion also includes ongoing clinical trials to bridge
research and clinical practice and a balanced analysis of
the advantages and disadvantages of using exosomes as
cancer biomarkers, offering insights into their dual roles
in cancer promotion and inhibition. Treating cancer in
new ways may be possible by focusing on exosomes or
their pathways. Additionally, we explore future pros-
pects, such as bioengineering exosomes for enhanced
therapeutic capabilities. Ultimately, a deeper understand-
ing of the clinical signature of exosome-based biomarkers
will enhance personalized and targeted cancer manage-
ment approaches, fostering the advancement of precision
medicine toward improved patient outcomes and ensur-
ing the review reflects the latest research and innovations
in the field.

Biogenesis, secretion, and uptake of exosomes
The endosomal compartment of most eukaryotic cells
produces exosomes, which are membrane-bound EVs
[16]. These EVs are the intermediate by-products of
plasma membrane-derived early- to late endosomes [17,
18]. Processing of early endosomes (EEs) produces a sub-
type of endosomes carrying several membrane-bound
intraluminal vesicles (ILVs) called MVBs. These MVBs
consequently fuse with the plasma membrane to release
their contents, exosomes, out of cells [19]. There are two
distinct mechanisms by which exosomes are produced:
ESCRT-dependent (Endosomal sorting complex required
for transport)-dependent and ESCRT-independent [19].
The formation of MVBs is regulated by the ESCRT,
which consists of four multiprotein complexes: ESCRT-0,
ESCRT-I, ESCRT-II, and ESCRT-III. These complexes are
recruited to the endosomal membrane to sort selected
proteins into ILVs, requiring the ubiquitination of the
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cytosolic tails of endocytosed receptors [20]. TsglO1,
part of ESCRT-I, binds ubiquitinated cargo proteins,
activating ESCRT-II, which then initiates the formation
of ESCRT-III. ESCRT-III sequesters MVB proteins and
recruits a deubiquitinating enzyme to remove ubiquitin
tags before sorting proteins into ILVs. An ATPase disas-
sembles the ESCRT-III complex afterward [21].

While ESCRT proteins are essential for targeting mem-
brane proteins for lysosomal degradation, their role in
forming ILVs secreted as exosomes is unclear. Proteomic
analyses have identified ESCRT complex members such
as Alix and Tsgl101 in DC exosomes, supporting ESCRT-
dependent exosome biogenesis [22]. An ESCRT-0 mem-
ber has also been implicated in DC exosome secretion
[23]. However, targeting MHC class II molecules in
activated DCs does not require ubiquitination, and nei-
ther Tsgl101 nor Alix are involved in proteolipid protein
(PLP) sorting into exosomes in oligodendroglial cells
[24]. Additionally, the sequestration of the pre-melano-
somal protein Pmell7 in ILVs in melanocytes appears
independent of ESCRT function [25]. These findings sug-
gest that different MVB subpopulations might use dis-
tinct biogenesis mechanisms across various cell types or
within the same cell type.

However, the scientific rationale for the ESCRT-inde-
pendent pathway could be more evident. Numerous
studies indicate that some exosomal proteins involving
alternative mechanisms are released independently of the
ESCRT pathway. Trajkovic et al. demonstrated that while
Tsgl01 and Alix do not influence the exosomal sorting of
PLP, ceramide is essential for the secretion of PLP-con-
taining exosomes [24]. Ceramide’s cone-shaped struc-
ture may aid membrane invagination of ILVs, and studies
have highlighted the role of sphingomyelinases, enzymes
converting sphingomyelin to ceramide, in exosome bio-
genesis. Specifically, acid sphingomyelinase is involved in
vesicle release from glial cells, and neutral sphingomyeli-
nase 2 is crucial for miRNA-containing vesicle secretion
[26, 27]. Additionally, higher-order oligomerization, or
the clustering of protein oligomers, has been implicated
in exosome formation, as seen in the exosomal sorting of
CD43 in Jurkat T-cells [28] and similar processes involv-
ing the transferrin receptor in reticulocytes [29] and
the MHC class II complex in lymphocytes [30]. In these
instances, antibody-induced oligomerization enhances
protein secretion into exosomes. The biogenesis of MVBs
is also linked to detergent-resistant domains in exoso-
mal membranes, which include tetraspanin proteins. For
example, sorting MHC class II into DC exosomes par-
tially depends on its integration into tetraspanin CD9-
containing lipid microdomains [31-33].

One intriguing question is: How does the cell decide
what to package into exosomes, and what are the
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proposed mechanisms for this selective activity? The
selective packaging of exosomal content may involve
lipid composition, protein and RNA signals, and specific
enzymes like sphingomyelinases. Higher-order oligomer-
ization and the presence of tetraspanin-enriched micro-
domains are also factors influencing what gets packaged
into exosomes. Understanding these selective mecha-
nisms further could provide deeper insights into exo-
some biology.

Additionally, while we have noted differences between
exosomes derived from normal and cancer cells, the
detailed biogenesis mechanisms in cancer cells require
further elucidation. It is conceivable that cancer cells
have deregulated or preferential pathways for exosome
formation. Identifying these pathways and understand-
ing how they are altered in cancer could uncover poten-
tial therapeutic targets. By targeting the unique exosome
biogenesis pathways in cancer cells, we might be able to
develop treatments that disrupt exosomal communica-
tion, contributing to tumor growth and metastasis. Fur-
ther research could significantly advance our knowledge
and therapeutic strategies in oncology.

Exosome secretion and uptake are crucial for main-
taining normal cellular activity because they facilitate
essential intercellular communication, allowing cells to
exchange proteins, lipids, RNA, and other molecules.
This exchange supports immune response regulation,
tissue repair, and cellular homeostasis. If exosome secre-
tion or uptake is altered, it can disrupt these vital com-
munications, leading to various pathological conditions.
For instance, impaired exosome function can contribute
to diseases like cancer, where altered exosome-mediated
signaling can promote tumor growth, metastasis, and
drug resistance [34].

Exosome and cancer

It is well known that exosome secretion and uptake
are other important, influential features in normal
cellular activity. They play pivotal roles in the intri-
cate landscape of cancer cell communication, contrib-
uting to tumor progression and metastasis. Cancer
cells release more exosomes than normal cells, using
them to exchange information locally and distantly.
These exosomes carry bioactive cargo that can pro-
mote tumor growth, pre-metastatic niche formation,
immune escape, angiogenesis, anti-apoptotic signal-
ing, and drug resistance [35]. In cancer cells, the secre-
tion of exosomes is often dysregulated, leading to the
release of a unique cargo that can influence both the
local tumor microenvironment and distant organs [36].
Cancer cells release more exosomes than normal cells,
using them to exchange information locally and dis-
tantly. These exosomes carry bioactive cargo that can
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promote tumor growth, pre-metastatic niche forma-
tion, immune escape, angiogenesis, anti-apoptotic sign-
aling, and drug resistance [37].

On the receiving end, cancer cells internalize exosomes
through various mechanisms, such as endocytosis,
phagocytosis, and direct membrane fusion. Once inter-
nalized, exosomal cargo can modulate recipient cell
behavior, promoting cell proliferation, migration, and
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evasion of immune surveillance [38]. Figure 1 represents
the process simply.

Sorting cargo into exosomes is also important in
the context of cancer cells compared to normal cells.
It is a finely tuned cellular process governed by vari-
ous molecular mechanisms. One significant aspect is
the presence of specific signals and sorting motifs that
guide the inclusion of proteins and nucleic acids into
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Fig.1 Biogenesis, Secretion, and Uptake of Exosomes. Exosomes form through the process of inward budding during endocytosis. Specific cargos
are sorted into these exosomes within multivesicular bodies (MVBs), where early and late sorting endosomes are assembled. Commonly, Exosomes
consist of proteins, lipids, RNAs, and genetic material. The protein content of EVs includes various types, such as transmembrane or lipid-bound
proteins found on the cell surface (CD63, CD9, CD81, etc.). Additionally, Exosomes contain lipids like ceramide, different types of RNAs such

as messenger RNA (mMRNA) and microRNA (miRNA), and DNA fragments. Exosomes are taken up by cells using several mechanisms, including direct
fusion of exosomes with the cell membrane of the recipients, receptor-ligand interactions, and endocytosis. EVs transport their contents

within the cells comprising proteins, RNAs, and DNAs, releasing them into the cytoplasm or endoplasmic reticulum. MVB: multivesicular body; CD:

cluster of differentiation, Created with BioRender.com
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these EVs. For instance, certain proteins carry signals
that earmark them for exosomal packaging [39].

In the context of cancer, the cell state undergoes
substantial changes, leading to alterations in the cargo
composition of exosomes. Cancer cells may preferen-
tially sort oncoproteins or mutated nucleic acids into
exosomes, disseminating cancer-related information to
neighboring or distant cells [40].

The role of exosomes in cancer progression is com-
plex and dual-faceted, depending on their origin and
cargo. For instance, exosomes can carry various micro-
RNAs (miRNAs), such as miR-122 [41], which pro-
motes metastasis; mir-9 [42], and miR-135b [43], which
enhances angiogenesis; and miR-105, which induces
vascular leakiness and promotes metastasis [44]. Other
miRNAs like miR-93-5P [45], miR-200 [46], and miR-
210 contribute to cancer cell proliferation, metastasis,
and tumor progression [47]. Conversely, miR-126 can
promote an anti-tumor response, highlighting the dual
roles of exosomal miRNAs in cancer regulation [48].
Similarly, long non-coding RNAs (IncRNAs) such as
IncRNA-HOTTIP [49]and IncRNA-ZFAS1 [50]enhance
drug resistance and cell proliferation. At the same time,
proteins like [51] and TGF-B [52] facilitate metastasis
and suppress immune responses These bioactive mol-
ecules collectively drive cancer progression by enhanc-
ing the tumor’s ability to invade, resist treatment, and
manipulate its surrounding environment.

Consequently, exosomes have become a focal point
for developing novel cancer therapies. Strategies
include using naturally derived exosomes from immune
cells to suppress cancer, inhibiting the release of can-
cer-derived exosomes, and employing exosomes as car-
riers for genes or anti-cancer drugs. DC exosomes are
particularly promising for cancer therapy due to their
antigen-presenting capabilities, which can activate
tumor-specific cytotoxic T lymphocytes and natural
killer cells [53]. Interfering with cancer cell-derived
exosomes by blocking their synthesis, release, or uptake
also presents a viable therapeutic approach. For exam-
ple, inhibiting Rab27a-mediated exosome secretion
has been shown to reduce tumor growth and metasta-
sis in mice [54]. Additionally, using exosomes as carri-
ers for miRNAs, proteins, or chemotherapeutic drugs
can enhance targeted delivery and therapeutic efficacy
while minimizing side effects [55].

Efforts to understand the relationship between cell
states, such as cancer transformation and cargo sort-
ing in exosomes, are vital. Researchers seek to unravel
how the sorting of goods in cancer cells differs from
that of normal cells. This exploration can uncover valu-
able insights into disease mechanisms and potentially
reveal diagnostic markers or therapeutic targets based
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on the distinctive cargo profiles of cancer cell-derived
exosomes [56].

To completely understand the role of exosomes in can-
cer, their specific physiological functions must be elu-
cidated [57]. The necessity of exosome production for
cellular survival is still under debate, and creating mice
with complete exosome deletion can help address this
question [52, 58, 59]. Furthermore, concluding the func-
tional importance of exosomes in cell-to-cell communi-
cation based solely on in vitro experiments in isolated
culture systems may not accurately represent physiologi-
cal conditions. Therefore, there is an increasing need
for in vivo studies to explore the functional significance
of exosomes in cancer. Figure 2 depicts the relationship
between exosomes and cancer progression.

Exosome as source of cancer biomarker

As pointed out earlier, exosomes have been detected in
various body fluids such as blood, urine, saliva, amniotic
fluid, CSF, ascites, tears, breastfeeding milk, semen, etc.
[60, 61]. Cancer exosomes, when collected from a hetero-
geneous population in body fluids, can aid in diagnosing
specific tumor types like glioblastoma, melanoma, pan-
creatic, breast, and ovarian cancers [62]. Exosome-based
biomarker detection is promising in cancer research,
offering several advantages over other detection methods
[63, 64]. Exosomes can be easily isolated from various
bodily fluids, providing convenient accessibility for bio-
marker analysis [64]. In contrast to invasive tissue biop-
sies, exosomes offer a non-invasive approach to gathering
valuable information. These EVs exhibit remarkable sta-
bility in circulation and are defended from enzymatic
degradation by a lipid bilayer membrane, ensuring the
integrity of their cargo, including nucleic acids and pro-
teins. This stability allows for detecting intact biomarkers,
ensuring reliable and accurate results [65]. Furthermore,
exosomes actively released by cells carry a selective
cargo of biomolecules, reflecting the unique molecular
characteristics of the originating cells. This composi-
tion provides a more specific and functionally relevant
representation of the disease state [65]. Notably, cancer
cells release exosomes at the early stages of tumorigen-
esis, enabling the detection of cancer-specific biomarkers
before the onset of clinical symptoms. This early detec-
tion potential allows timely interventions and improved
patient outcomes [65]. In vitro and preclinical investi-
gations have improved our comprehension of exosome
content and its potential use in cancer identification and
monitoring [66]. Research also focuses on the role of
lipids and metabolites in cancer-derived exosomes, offer-
ing new insights into cancer detection and biology [65,
67].
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Exosomes may carry unique nucleic acids, such as
mutant mRNA like the epidermal growth factor receptor
EGFRVIII variant [68], which can serve as accurate bio-
markers for glioblastoma. Targeted miRNAs enriched in
exosomes can aid in cancer diagnosis and monitoring of
cancer progression [62]. Exosome proteins may also con-
tribute to cancer detection and reflect their cellular ori-
gin. The transfer of oncoproteins via exosomes between
cells may function in carcinogenesis [69, 70].

Exosomes also offer a dynamic snapshot of disease
progression and treatment response. Their continuous
release and circulation in bodily fluids enable repeated
sampling over time, facilitating real-time monitoring
of disease status and treatment efficacy [71]. Moreover,
exosomes carry various types of biomarkers, including
miRNAs, IncRNAs, proteins, and metabolites, provid-
ing multiple targets for biomarker analysis. This diversity
enhances the chances of identifying robust and reliable
biomarkers tailored to specific cancer types [72].

Lately, the "liquid biopsy" technique has emerged as
a potential non-invasive method for biomarker detec-
tion, utilizing bodily fluids like urine and serum. How-
ever, studies have shown that many liquid biomarkers are

predominantly located in the lysosomes, limiting their
accessibility [73, 74]. In contrast, exosomal biomark-
ers have demonstrated high diagnostic and prognostic
efficiency for cancer detection [75-77]. 4729 individu-
als from 42 studies were included to check the specific-
ity and sensitivity of exosomes as prognostic biomarkers.
From them, 50 prognostic biomarkers were studied. For
13 biomarkers with overall survival present in colon can-
cer the I? value (inconsistency index) was 62.94% and
P <0.002;% biomarkers with disease-free survival present
in colon cancer showed the I? value of 0% and P <0.536,
while biomarkers with recurrence-free survival present in
colon cancer showed the I? value of 89.61% and P < 0.0004
biomarkers with overall survival found in gastric can-
cer, 4 biomarkers with overall survival reported in pan-
creatic and 5 biomarkers with overall survival reported
in liver cancer exhibited the I? values and P values of
96.71%,81.50%,84.48% and 0.000,0.001,0.000 respectively;
again 9 biomarkers showing overall survival in lung can-
cer had the I? value of 89.50% and P <0.000. So, it can be
said exosomal biomarkers exhibit specificity and sensitiv-
ity, making them valuable tools in cancer diagnosis and
monitoring [78].
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Given these advantages, exosome-based biomarker
detection emerges as a promising avenue in cancer
research, offering non-invasive, specific, and dynamic
insights into cancer biology, diagnosis, prognosis, and
therapeutic monitoring. It can potentially revolutionize
the field by providing a more accessible and comprehen-
sive understanding of cancer and its treatment.

Exosomal surface protein as potential biomarkers of cancer
Recent research has shown that exosome-based diag-
nostics can be successfully developed using quick and
high-throughput technology without exosome purifica-
tion. A microfluidic device called the "ExoChip" was cre-
ated by Kanwar et al. to capture and stain exosomes with
the CD63 antibody and a fluorescent dye [79]. Exosomes
may be quantified using a conventional plate reader, and
exosomal miRNA analysis can be profiled. To diagnose
glioblastoma multiform, a microfluidic chip labeled with
a target (CD63, EGFR, or EGFRVIII) specific magnetic
nanosensor was used [79]. The "ExoScreen" method,
developed by Yoshioka et al. and using photosensitizing
beads and CD9 and CD147 antibodies, is extremely quick
and analytical. "ExoScreen"” may identify EVs enriched in
CD9 and CD147 double-positive EVs and grown in tis-
sue culture media for colorectal cancer cells and patient
serum [80, 81]. A more specific microfluidic device called
the "ExoSearch” chip was created by Zhao et al. to isolate
exosomes quantitatively using immunomagnetic beads
[82]. Three exosomal tumor protein markers, includ-
ing CA-125, EpCam, and CD24, were measured by the
"ExoSearch" chip during a liquid biopsy of an ovarian
cancer patient [56]. In this investigation, we pinpointed
biomarkers for diagnosing colon cancer (CC) through
proteomic analysis of small EV-derived from CC cell
lines. These small-EVs were characterized by western
blot analysis, nanoparticle tracking analysis, and trans-
mission electron microscopy, with subsequent exami-
nation using mass spectrometry. Western blot analysis
revealed the upregulation of five selected proteins in CC.
Among these proteins, tetraspanin 1 (TSPAN1) exhib-
ited elevated levels in plasma EVs from CC patients
compared to those from healthy controls (HCs), dem-
onstrating a sensitivity of 75.7%. These findings propose
TSPANT1 as a robust, non-invasive biomarker for detect-
ing CC [83]. Immune checkpoint inhibitor immuno-
therapy brings hope for gastric cancer (GC) treatment,
but the lack of biomarkers hinders patient selection.
Using an EV protein expression array, this study identi-
fied four key plasma EV-derived proteins (ARG1/CD3/
PD-L1/PD-L2), forming an EV-score that robustly pre-
dicted and monitored immunotherapeutic outcomes in
112 GC patients. A high EV score indicates a microen-
vironment with enhanced antitumor immunity, validated
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through analysis and experiments. GC patients with
EV-score>1 benefit more from ICIs. At the same time,
EV-score<1 suggests advantages in combining ICIs with
HER2-targeted therapies, highlighting the plasma EV-
score as a valuable tool for clinical decisions and insights
for ICI-regimen improvements [84]. In the subsequent
cohort, 96.4% of breast cancer patients exhibited elevated
plasma-derived exosomal Del-1 levels at diagnosis. A
high postoperative Del-1 level was significantly linked
to worse disease-free survival adjusted for clinicopatho-
logical characteristics (hazard ratio 24.0; P <0.0011). This
study confirms exosomal Del-1 normalization post-sur-
gery, establishing it as a robust diagnostic biomarker for
breast cancer. Moreover, the association between high
postoperative Del-1 levels and early relapse suggests its
potential as a prognostic biomarker [85].

Exosomal nucleic acid as potential biomarkers of cancer
Ever since Valadi et al. first reported the existence of exo-
somal miRNAs in 2007, researchers have undertaken
pioneering investigations to explore their potential as
diagnostic biomarkers for different types of malignan-
cies [86]. Taylor et al. identified eight miRNAs previously
recognized as diagnostic indicators for ovarian cancer in
circulating tumor exosomes from patients with ovarian
cancer [87]. These miRNAs, namely miR-21, miR-141,
miR-200a, miR-200c, miR-200b, miR-203, miR-205, and
miR-214, were detected in the exosomes [88]. In a study
by Rabinowits et al., miRNA profiling analysis was con-
ducted on exosomes extracted from lung cancer patients,
tumor biopsy samples, and control groups [88]. The
results showed that exosomes from lung cancer patients
and tumor biopsy samples exhibited similar miRNA pat-
terns, distinct from those observed in the exosomes from
the control group. This finding indicated the potential
of circulating exosomal miRNAs as liquid biopsy mark-
ers (liquid biopsy involves identifying and segregating
circulating tumor cells, circulating tumor DNA, and
exosomes, which serve as valuable sources of genomic
and proteomic insights for individuals diagnosed with
cancer) for lung cancer [88]. Additionally, Kahlert et al.
discovered large fragments of double-stranded genomic
DNA (>10 kb) in exosomes derived from pancreatic
cancer cell lines and patients [89]. They suggested that
exosomal DNA sequencing could be utilized to pre-
dict treatment options and evaluate therapy resistance.
Whole-genome sequencing of exosomes obtained from
pancreatic cancer patients revealed mutations in KRAS
and p53 [90].

Exosomes from differentiated thyroid carcinoma
(DTC) patients’ serum showed decreased miR-130a-3p
compared to benign cases and healthy controls. This
miRNA correlated with DTC characteristics, such as
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tumor size, lymph node metastasis, and TNM stage.
Combining exosomal miR-130a-3p with other mark-
ers (antithyroglobulin autoantibodies and thyroglobu-
lin) improved the sensitivity and specificity of diagnostic
biomarkers. The study identified insulin-like growth fac-
tor (IGF)-1 as a target gene, with a negative correlation
between serum IGF-1 and exosomal miR-130a-3p levels.
These findings suggest reduced exosomal miR-130a-3p
as a sensitive biomarker for DTC diagnosis [91]. Serum
exosomal miR-29a levels were significantly reduced in
papillary thyroid carcinoma (PTC) cases, showing effec-
tive differentiation from normal controls by ROC analy-
sis. Post-surgery, these levels increased significantly at
30 and 90 days. Lower miR-29a expression correlated
with higher recurrence risk, worse clinical variables, and
shorter survival and was an independent prognostic indi-
cator for overall survival in both univariate and multi-
variate analyses [92]. A three-miRNA panel (miR-25-3p,
miR-296-5p, miR-92a-3p) consistently showed up-reg-
ulation in PTC patients versus healthy controls, demon-
strating superior diagnostic performance (Area under
the ROC Curve: AUCs: 0.727, 0.771, 0.862) in multiple
stages, and strong differentiation from benign goiters
(AUC: 0.969). Analysis of tissue and exosome samples
supported their close association with PTC, suggesting
this serum panel is a valuable diagnostic tool [93]. Sta-
ble exosomal miRNAs were analyzed for accurate diag-
nosis of indeterminate thyroid nodules. Exosomes from
13 PTC and 7 nodular goiter (NG) patients were stud-
ied, identifying 129 differentially expressed miRNAs,
with miR-5189-3p showing optimal performance (AUC:
0.951) in distinguishing PTC from NG. Enriched target
genes in cancer pathways suggest the potential use of
these plasma exosomal miRNAs as diagnostic biomark-
ers for thyroid nodules [94]. Eight plasma exosomal
miRNA candidates were identified via RNA-seq, with
miR-16-2-3p, miR-223-5p, miR-34c-5p, miR-182-5p,
miR-223-3p, and miR-146b-5p lower in nodules vs. con-
trols and miR-16-2-3p and miR-223-5p higher in PTC
cases than benign nodules. These miRNAs, particularly
miR-16-2-3p and miR-223-5p, serve as potent indica-
tors for thyroid nodule detection, and combined panels
enhance diagnostic sensitivity and specificity compared
to single markers [95]. Small RNA sequencing identified
41 potential exosomal miRNA markers for PTC, with 4
miRNAs (miR-376a-3p, miR-4306, miR-4433a-5p, miR-
485-3p) showing significantly increased expression in
PTC patients compared to healthy and benign nodules.
MiR-485-3p demonstrated the highest AUCs for diag-
nosing PTC, particularly in patients with high-risk fac-
tors like larger tumor size, advanced stage, and lymph
node metastasis [96]. The three-miRNA panel in plasma
effectively discriminates PTC from healthy control (HC)
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or nodular goiter (NG) (AUC: 0.877), with miR-346 and
miR-34a-5p up-regulated in PTC tissues and consist-
ently elevated in PTC plasma exosomes [97]. Exosomal
IncRNAs, particularly RP11-77G23.5 and PHEX-ASI in
EpCAM-specific exosomes, show promise as diagnostic
biomarkers for lung cancer, distinguishing malignancy
and offering insights into subtype classification and dis-
ease progression. Their elevated levels in lung adenocar-
cinoma and distinct expression patterns related to tumor
stages and metastasis underscore their diagnostic poten-
tial [98].

Over the previous three years, additional exosomal
miRNAs have been identified employing a combination
of RNA sequencing-based miRNA profiling, ExoQuick
precipitation, ultracentrifugation, and the commercial
Exo-miR kit (Bioo Scientific, Austin, TX, USA). These
cancer models encompass glioblastoma, breast, colon,
prostate, and pancreatic cancers. ExoQuick is a proprie-
tary polymer, so it has the advantage of gent precipitation
of exosomes [99]. A list of exosomal biomarkers is listed
in Table 1, and Fig. 3 depicts the utility of exosomes as a
cancer biomarker.

Isolation of exosomes

Exosomes are isolated on a different basis: Firstly, based
on size, and secondly, based on its affinity. Ultracentrifu-
gation is considered a gold standard in exosome isolation.
However, in recent research, some new techniques for
the isolation of exosomes have been practiced, and they
are broadly classified based on their mechanism, namely
Ultracentrifugation (UC), density gradient (DG) centrifu-
gation, infiltration techniques, immunoaffinity, capture-
based techniques, exosome precipitation, and use of
acoustic nano-filters [102].

Ultracentrifugation

This method is commonly employed and widely recog-
nized as the standard approach for isolating exosomes
[103]. Although it is one of the most widely adopted tech-
niques for exosome isolation, it depends on a few factors,
like rotor type, centrifugation type, and sample viscosity.
Hence, these parameters are optimized before standard-
izing the protocols for performing ultracentrifugation
[104]. This method is advantageous because it is easy to
perform and has a significantly higher exosome purity
yield than other methods [105, 106]. However, there are
some disadvantages of the above method, which should
be counted: the downgrade of the quality of exosomes,
which debars it from clinical applications. It happens
because, during high-speed centrifugation, exosomes are
subjected to a high shear force, which tends to damage
them [107, 108].
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Table 1 List of Exosomal biomarkers
Exosomal biomarkers EVs’source Application References
cells Biopsy
EGFR, or EGFRVIII - Serum from patients with glioblas-  Diagnosis and prognosis  [80]
toma
CD147 or CD9 Colorectal cancer cell lines (HCT116  Serum from patients with colorec-  Diagnosis [81]
cells, HCT15 cells, HT29 cells, tal cancer
COLO201 cells, COLO205 cells, WiDr
cells and SW1116 cells)
CA-125, EpCAM, CD24 - Plasma from a patient with ovarian ~ Diagnosis [82]
cancer
Tetraspanin 1 (TSPANT) Colon cancer cell lines (HT-29 - Diagnosis [83]
and HCT-116)
ARGT1, CD3, PD-L1, PD-L2 - Plasma from a patient with gastric ~ Diagnosis and Prognosis  [84]
cancer
Developmental endothelial locus-1 - Plasma from a patient with breast ~ Diagnosis and Prognosis  [85]
(Del-1) cancer
miR-1246 Breast cancer cell lines (MCF-7 - Diagnosis [100]
and MDA-MB-231)
miR-200b, miR-200c, miR-141 - Pleural effusions from patients Diagnosis [101]
and miR-375 with lung adenocarcinomas
Mutated KRAS and p53 DNA - Serum from patients with pancre-  Diagnosis [89]
atic cancer
BRAF(V600E) mutation in exoDNA  Melanoma cell lines, wild-type - Diagnosis [90]
(WT; SK-MEL-146 and SK-MEL-147)
or mutated BRAF (SK-MEL-28,
SK-MEL-133, SK-MEL-192, and SK-
MEL-267)
miR-130a-3p - Serum from patients with differen-  Diagnosis [91]
tiated thyroid carcinoma (DTC)
miR-29a - Serum from patients with papillary ~ Diagnosis and Prognosis  [92]
thyroid carcinoma (PTC)
miR-25-3p, miR-296-5p and miR- - Serum from patients with PTC Diagnosis [93]
92a-3p
miR-5189-3p - Plasma from patients with PTC Diagnosis [94]
miR-16-2-3p and miR-223-5p - Plasma from patients with PTC Diagnosis [95]
miR-346 and miR-34a-5p - Plasma from patients with PTC Diagnosis [96]
INcRNAs RP11-77G23.5 and PHEX-  Lung cancer cell line (NCI-H1299) Serum from patients with lung Diagnosis [98]

AS1

cancer

EGFR: Epidermal Growth Factor Receptor; EGFRVIII: Epidermal Growth Factor Receptor Variant Ill; CD147: Cluster of Differentiation 147; CD9: Cluster of Differentiation 9;
CA-125: Cancer Antigen 125; EpCAM: Epithelial Cell Adhesion Molecule; TSPAN1: Tetraspanin 1; ARG1: Arginase 1; CD3: Cluster of Differentiation 3; PD-L1: Programmed
Cell Death Ligand 1; PD-L2: Programmed Cell Death Ligand 2; KRAS: Kirsten Rat Sarcoma Viral Oncogene Homolog; p53: Tumor Protein p53; BRAF(V600E): B-Raf Proto-
Oncogene, Serine/Threonine Kinase (V600E mutation)

Size-based techniques

They are categorized into ultrafiltration, sequential fil-
tration, and size exclusion chromatography (SEC). SEC
is the most advantageous of all three because of the fol-
lowing features: high yield, low cost-to-benefit ratio, and
low destructive outcomes. This procedure also allows the
smooth extraction of exosomes from serum and plasma
[109]. A recent study found ultrafiltration is superior to
UC since it recovers more particles, including exosomes,
smaller than 100 nm. The size distributions of exosomes
extracted through UC or SEC were identical, as dem-
onstrated by TEM and NanoSight. With less processing

time than the traditional UC protocol, ultrafiltration
techniques increase exosome yield and isolation effi-
ciency by producing more particles. Despite being widely
employed in many sectors, these size-based approaches
still have a lengthy running time, limiting their applica-
bility in therapy and research.

Capture-based techniques

This technique produces a purity exosome based on
the immunoaffinity principle [110]. Washing in a
stationary phase can successfully capture immobi-
lized particular exosomes, depending on the precise
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immunological interaction between the antibody and
antigen. This method successfully separates exosomes
that carry particular target membrane proteins. Due to
thorough assessments of the effectiveness of recycling
exosomes, the conclusion that capture-based strate-
gies incorporating the Ep-CAM biomarker constitute
the best strategy for separating exosomes compared to
other methods has been primarily recognized through
thorough evaluations of the effectiveness of recy-
cling exosomes [111].

Precipitation technique

The most popular polymer employed in exosome isola-
tion, polyethylene glycol (PEG), vigorously encourages
enrichment and raises exosome yield. This technique was
claimed to be practical for separating numerous biomol-
ecules and viruses from physiological fluids before its
application with exosomes [112]. Due to their simplicity,
rapidity, lack of exosome destruction, and minimal need
for extra equipment, precipitation-based approaches
for exosome isolation are the most appealing for clinical
research. However, it has been observed that these pro-
cedures have a problem with the sample’s co-isolation
of other contaminants, such as non-exosomal proteins
(such as albumin) and other particles [113].

Microfluidic-based techniques

Microfluidics technologies have been successfully inte-
grated with size-based separation, immunoaffinity-
based separation, and dynamic separation techniques.
Recently, a novel exosome isolation technology called the
ExoTIC gadget has been introduced. The ExoTIC gadget
has gained significant popularity due to its remarkable
advantages, including high yield, purity, and efficiency. It
is particularly well-suited for extracting exosomes from
serum or other physiological fluids, surpassing conven-
tional methods such as PEG precipitation (including
the ExoQuickTM approach) or UC. Despite its numer-
ous benefits, such as high purity, controllability, sepa-
ration specificity, and efficiency, there are still specific
challenges associated with the ExoTIC gadget, such as
the requirement for complex isolation devices and limi-
tations due to the need for strong immunoaffinity [113,
114].

Above all, a good exosome isolation technique should
be easy to use, quick, effective, affordable, and scalable.
Additionally, it shouldn’t harm the exosomes or call for
additional tools. Different approaches offer unique ben-
efits and drawbacks regarding effectiveness, repeat-
ability, and influence on functional outcomes. Further
advancement of exosome research for both fundamental
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and clinical applications can be facilitated by optimizing
isolation processes and employing combinations of isola-
tion approaches. Figure 4 depicts the different strategies
involved in the isolation of exosomes. Table 2 shows how
exosomes have already been isolated using different ana-
lytical techniques.

The advanced approach of exosome profiling

Throughout the years, there has been relatively rapid
development in the different methods of exosome pro-
filing. MiRNA profiling through microarray analysis has
been a potential screening tool for early detection of can-
cers, especially ovarian cancer. However, there is a deficit
of established and proven molecular markers [115, 116].
Nowadays, nanotechnology has become a vital tool for
the efficient profiling of exosomes. Although SERS (Sur-
face-Enhanced Raman Spectroscopy) has the same fun-
damental principle as Raman spectroscopy, it demands a
substrate modification [117, 118]. It is a super-sensitive
multiplexing approach that gives authentic results using
low-volume/concentration analytes [119]. Recently
published in a paper, TPEX (Templated Plasmonics for
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Exosomes) is a nanotechnology platform that makes
space for the analytical study of multiselective molecu-
lar profiling of exosomes apart from their prompt in situ
assessment of the biomolecular and biophysical compo-
sitions. It provides multiplexed and quick inspection of
exosomal targets with exceptional results upon adminis-
tration on a microfluidic smartphone-based sensor [120].
Of many others, advanced iFCM (imaging Flow Cytom-
etry) is an approach to carry out multiparametric and
high-throughput vesicle-by-vesicle representation of the
exosomes, resulting in efficient recovery of specific vesi-
cle subsets [121]. Lastly, over the years, development in
OMICS-based technologies has significantly advanced
the studies of markers of proteins and exosomes [122—
124], which in turn have led to elaborate research in the
field of diagnostic methods [81, 125] related to exosomes
evaluation of glycomic profiles with the help of lectin
microarray-based technologies and mass-spectrome-
try are noteworthy mentions [126—129]. Exosomes and
artificial intelligence (AI) are indeed emerging as prom-
ising tools in cancer diagnosis, and their combination
holds great potential for advancing our ability to detect

Different Isolation Strategies for
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Fig. 4 Different Isolation Strategies for Exosomes. Traditional methods for isolating exosomes include size exclusion chromatography (SEC)

and differential ultracentrifugation (DUC). SEC involves using biofluids as a mobile phase against a porous stationary phase to elute molecules
based on their size, with larger particles eluting first, followed by smaller exosomes, resulting in a longer elution time due to increased path length.
In addition to these conventional methods, more innovative techniques are available for exosome isolation. In addition to these conventional
methods, more innovative techniques are available for exosome isolation. One such technique is PEG-based precipitation, which facilitates

the aggregation of exosomes in large numbers using a polymer solution. Another approach is immunoaffinity (IA) capture, where antibodies
targeted against exosomal surface proteins are used to isolate specific exosome populations. Microfluidics (MF) technology, utilizing chips

with specific antibody-mediated binding, enables efficient capture of exosomes, Created with BioRender.com
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and understand various types of cancers. Integrating
exosomes and Al can open new doors in cancer diag-
nosis. A recent study demonstrates the efficacy of using
artificial intelligence to simultaneously detect six early-
stage cancers by analyzing exosome profiles via surface-
enhanced Raman spectroscopy. In a dataset of 520 test
samples, our system achieved a robust cancer identifica-
tion rate (AUC: 0.970) and proficiently classified tumor
organ types in 278 patients (mean AUC: 0.945). The inte-
grated decision model showed a sensitivity of 90.2% and
specificity of 94.4%, successfully predicting tumor organs
in 72% of positive cases. Notably, our non-specific Raman
signature analysis method holds the potential for expand-
ing diagnostic applications to other diseases [130]. Fig-
ure 5 depicts advanced exosome profiling approaches.
While these advanced technologies, such as SERS,
TPEX, and iFCM, offer significant promise in exosome
profiling, their potential clinical applications also war-
rant discussion. Integrating these methods into clinical
practice could greatly enhance early cancer detection
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and monitoring. For example, SERS’ high sensitivity and
specificity in detecting exosomal markers make it a valu-
able tool for routine clinical diagnostics. TPEX, with its
smartphone-based microfluidic sensor, provides a feasi-
ble approach for point-of-care testing, thus facilitating
rapid and accurate exosome analysis in a clinical set-
ting. Furthermore, combining AI with exosome profil-
ing technologies can streamline the diagnostic process,
offering precise and non-invasive cancer detection. These
advancements improve diagnostic accuracy and poten-
tially make exosome-based diagnostics more accessi-
ble in clinical environments, thereby bridging the gap
between research innovations and practical healthcare
applications.

OMICS profiling of exosomes

OMICS profiling tends to concentrate on detecting all
the bioinformation of exosomes. This includes its genom-
ics, transcriptomics, proteomics, metabolomics, and

NANOPATTERNED
" PHYSICAL ENERGY FIELDS STRUCTURES AFFINITY CAPTURE PROBES
E MAGNETIC BEADS APTAMER NANOBODY
= [®) =
Wi (A P3 *
S | AcousTO- AR e =l %@@
% | FLUIDICS u =
S J o
w
/ ISOTHERMAL AMPLIFICATION MULTISPECTRAL
= ENZYME DEPENDENT ENZYME-FREE MATERIALS
S INITIATOR ,
4% CIRCULAR DNA 3 -
ZQ _ 2
Gy RCA S
@ c'EL' PRODUCT : '
< ITAIRPINS a
SINGLE-MOLECULE DETECTION SIGNAL TRANSDUCTION
|z NANOPORE CRISPR e gﬁﬁg&owc
3 E =N
od| BT DODDV ((.))
a e 4 N\ !
Mobile-element MULTI-OMICS , MACHINE LEARN]NG
insertion .
4 REf_‘=l=_>’,.r"",~"‘ GENOMICS E //
g Mobile element E \\I
= g TRANSCRIPTOMICS | = //=//
: p- : =
2> PROTEOMICS v
o
77

Fig. 5 Representation of single exosome profiling methods. Created with BioRender.com



Ghosh et al. Cancer Cell International (2024) 24:278

lipidomics, which help to diagnose cancer at early stage
and, as a result, improve the patient survival rate [143].

Exosomes are seen to act as essential mediators as they
transport specific molecules among different populations
of cells [144]. It belongs to the class of EVs, including
ectosomes, apoptotic bodies, and microvesicles. These
are secreted by almost all types of cells, including tumor
cells, and involve extracellular communication. Their
lipid bilayer nature makes them stable in body fluids and
contains many nucleic acids, proteins, and lipids. Various
body fluids contain exosomes, providing an alternative
approach to detecting tumors [145]. Hence, exosomes
and their essential components have a significant poten-
tial to serve as biomarkers for diagnosing early-stage can-
cer. In the case of breast cancer, the tumor mass present
is first analyzed by imaging and is then characterized by
needle biopsy to check its chance of malignancy. These
methods are invasive and quite time-consuming. Nowa-
days, exosomal miRNAs are known to be useful biomark-
ers for detecting breast cancer [146]. The presence of
miR-1246 and miR21 in plasma was predominantly used
as the initial biomarker to detect breast cancer [147]. In
2018, Li et al. reported an exosomal miR106a-363 cluster,
a novel diagnostic biomarker for detecting breast cancer
[148]. Recently, miR-92b-5p was found in stable breast
cancer cell lines as the latest therapeutic strategy for its
detection [148].

Diagnosis of cancerous diseases is mainly done through
imaging methods and a biopsy, which would confirm the
result [149, 150]. However, these traditional methods
were invasive, costly, and uncomfortable for the patient.
In addition, small-size early cancer may not be detected
in imaging studies, and a biopsy of the early cancer may
not be possible. On top of it, the accuracy of a biopsy is
greatly influenced by the experience of the procedures.
So, OMICS profiling of exosomes offers a more con-
venient way of diagnosing cancer, which is non-invasive,
inexpensive, reproducible, procedure-independent, and
has the potential for early detection [151].

Exosomes were used to check the dysregulated genes
for different cancer types. Hence, the observed tumor
heterogeneity character was used as it indicated the pres-
ence of a difference in genes and cell behaviors between
different types of tumors. Hence, a combination of bio-
informatics, machine learning, and DNA sequencing can
be done to determine the dysregulated genes and the cor-
responding type of tumor [152, 153].

Hence, exosomal markers are established to be use-
ful targets for the detection of cancer. Cancer cells or
tumors and other diseased cells release more exosomes
than normal healthy cells, indicating the presence of
disease. So, the methods that utilize exosomes can be
implemented for routine screening and are also useful
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for tumors for which routine screening is unavailable.
Exosome’s OMICS profiling can be used to verify the
presence of malignant lesions. Hence, it can distinguish
between those and benign lesions. Also, it is observed
that acidic tumor environments can lead to an increase
in the release of exosomes in body fluids [154]. However,
the isolation, detection, and quantification of exosomes
are some of its limitations, and hence, this method isn’t
utilized rapidly for routine screening yet. Figure 6 depicts
the major OMICS processes involved in the profiling of
exosomes.

OMICS technologies face several challenges and limi-
tations in exosome research. Isolating pure exosome
populations from biological fluids is difficult due to other
EVs and contaminants, which can affect the accuracy
and reproducibility of OMICS analyses [155]. The high
heterogeneity of exosomes in size, content, and func-
tion complicates the interpretation of OMICS data and
the identification of specific biomarkers [156]. Detect-
ing low-abundance molecules requires highly sensitive
techniques, which current OMICS technologies may
lack [157]. The large and complex datasets generated
necessitate sophisticated bioinformatics tools for analy-
sis, but interpreting these data accurately is challenging
due to the lack of standardized protocols and reference
databases [158]. Variability in experimental procedures
and analytical methods can lead to inconsistent results,
and the lack of standardization hampers reproduc-
ibility across different studies [159]. Although OMICS
technologies can identify potential biomarkers or func-
tional molecules, validating their biological relevance is
challenging and requires additional, resource-intensive
experiments [160]. Both technical and biological variabil-
ity can influence OMICS data, complicating the identifi-
cation of true biological signals, and disentangling these
sources of variability necessitates robust experimental
designs and statistical approaches [102]. Addressing
these challenges requires ongoing advancements in isola-
tion techniques, analytical methods, bioinformatics tools,
and standardization across the field of exosome research.

Single exosome profiling

Owing to a difference in origins, exosomes have a highly
heterogeneous molecular composition [70, 161]. Hence,
the study of exosomes should be conducted individu-
ally. Otherwise, the heterogeneity would not be properly
detected in the bulk analysis. Bulk-level analysis meth-
ods like mass spectroscopy or ELISA may give inaccurate
results in detecting exosome heterogeneity; hence, these
methods are not preferred [162]. Currently, EV analysis is
limited to surface proteins only. So, single exosome pro-
filing can be done on the same to get a more concise and
accurate diagnosis.
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Fig. 6 OMICS Profiling of Exosomes. This profiling 3 ways: Transcriptomics and genomics using the messenger RNA (mRNA), microRNA (miRNA),
and DNA present in the cancer-specific exosome; Proteomics using the proteins, histones, transporters present in the exosome; Metabolomics
using the metabolites such as glucose, pyruvate, nucleotides, amino acids (AAs) specific for cancer. Created with BioRender.com

Nowadays, many methods of single exosome profiling
are being used, and most employ the basic principles of
light scattering, fluorescent sensing, or electron absorp-
tion. These are derived both for the isolation and sensing
of EVs like exosomes. The purification and analysis meth-
ods must be made simpler to utilize these analysis meth-
ods for routine screening and cancer detection.

A high-throughput method known as the proxim-
ity barcoding assay can be employed for single exosome
analysis. This technique allows for profiling over a hun-
dred surface proteins on a single exosome, facilitating the
distinction between different exosomes based on their
heterogeneous surface protein compositions. By analyz-
ing human body fluids, various exosome sub-populations
can be effectively identified [136, 163].

Advances in single exosome profiling techniques have
been marked by the development of various method-
ologies that allow for more detailed and precise analysis
[164]. Digital PCR has been adapted for single EV analy-
sis, which can amplify and identify RNA content, tar-
geting miRNA and mRNA, including cancer markers.

Recent advancements enable the sequestering of EVs in
droplets before lysing, offering improved sensitivity and
specificity in mutation detection [165]. Additionally, digi-
tal PCR has been leveraged to detect membrane proteins
on single EVs, expanding its application beyond nucleic
acid analysis. DNA-tagged antibodies in digital PCR pro-
vide a powerful approach to identifying multiple coin-
ciding membrane proteins on single EVs, offering richer
data and more specific diagnostic information [161].
Digital ELISA, inspired by the digital immunoassay
methodology, has been applied to detect membrane pro-
teins on single EVs [166]. This approach involves labeling
EVs with antibodies, sequestering them into droplets,
and using fluorescence to visualize protein markers.
While suitable for single biomarker detection, challenges
remain in identifying multiple markers on single EVs
[166]. Flow cytometry has been optimized for EV analy-
sis, overcoming limitations in conventional systems using
DNA aptamers, nanoparticle tags, or advanced imag-
ing flow cytometry [167]. These enhancements allow
for improved detection and characterization of EVs,
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contributing to a better understanding of EV subpopula-
tions and providing valuable information on surface pro-
teins and biomarkers [168].

Nanoparticle tracking analysis (NTA) has evolved to
include fluorescence capabilities, enabling the detection
of specific biomarkers through immunolabeling. NTA
remains a high-throughput method for single EV analy-
sis, providing information on concentration, size, and
surface markers. However, challenges in multiplexing
with fluorophores limit its capabilities compared to flow
cytometry [169].

Raman spectroscopy and various trapping techniques
have been employed for the chemical composition analy-
sis of single EVs [170]. While unable to directly identify
macromolecular biomarkers, Raman spectroscopy, com-
bined with electromagnetic trapping, distinguishes EV
populations and detects labeled biomarkers with strong
Raman scattering cross-sections [171]. Microscopy-
based methods, such as fluorescence and total internal
reflective fluorescence (TIRF) microscopy, have allowed
for direct visualization of single EVs. Microfluidic chip-
based systems enable the immobilization and imaging of
EVs, offering multiplexed detection of surface proteins
and RNA content. However, these methods are generally
lower throughput than other techniques [165].

Now, the classification of exosomes based on their
proteomic characteristics can be done using a machine-
learning algorithm known as FlowSOM [172]. This algo-
rithm helps to generate clusters of exosomes by using
a self-organizing map. Then, a t-SNE or t-distributed
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stochastic neighbor embedding plot is used to visualize
the exosome sub-populations. Also, along with the pro-
gression of the disease, the alteration of the presence of
different sub-populations of exosomes could be moni-
tored through single exosome profiling.

The continuous refinement of single-exosome profil-
ing techniques, including digital PCR, digital ELISA, flow
cytometry, NTA, Raman spectroscopy, and microscopy,
has created a comprehensive toolkit for understanding
exosome heterogeneity and functional diversity at the
single-exosome level. These advancements significantly
enhance the study of EV biology and biomarker discov-
ery, providing new insights into exosome diagnostic and
therapeutic potential. Figure 7 depicts the usage of single
exosome profiling in the context of cancer.

Advantages and disadvantages of exosome-based
cancer biomarker

Exosomes help bring forth a lot of information about the
tumor state of the patient and assist in sorting the same
into tumor subtypes by undergoing genomic and pro-
teomic scanning and analysis [173]. The former helps
design therapeutic treatments considering the genetic
makeup and abnormalities of the growing tumor. In
contrast, the latter helps curate certain processes that
directly target proteins involved in tumor growth. Both
of these approaches give insights into the tumor’s metas-
tasis rate through specific markers and provide a profile
of the heterogenicity and complexity of the tumor stud-
ied. They lend out fitting therapeutic strategies, like that
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Fig. 7 Application of Single-Exosome Profiling in Cancer. Step 1: A sample containing exosomes (small vesicles) is collected and processed. Step 2:
Exosomes are isolated using ultracentrifugation or microfluidics, then captured and trapped using nanoscale traps or microfluidic chambers. Step
3:The surface proteins and biomarkers on the trapped exosome are identified and analyzed using mass spectrometry or fluorescence microscopy
techniques. Step 4: The cargo contents (e.g.,, RNA, DNA, proteins) of the exosome are extracted and analyzed using techniques like gRT-PCR. Step
5:The data from the analysis is integrated to create a comprehensive profile of the individual exosome, including its size, shape, surface markers,

and cargo contents. Created with Biorender.com



Ghosh et al. Cancer Cell International (2024) 24:278

of the recently evolved method of liquid biopsies, against
cancer treatment [174—177]. As one of the least intru-
sive and dynamic methods, this detects cancer-specific
biomarkers that provide an overview of tumor progno-
sis, a comprehensive and accurate capturing of differ-
ent tumor parts’ genetic and molecular makeup, and an
effective and targeted therapy. One of the crucial advan-
tages of exosomes being used as biomarkers is that they
can express MHC molecules on their cell surface, thus
presenting antigens through indirect and direct path-
ways [178, 179]. It is true for some tumor-derived EVs
that present MHCs loaded with tumor-processed anti-
genic peptides and antigenic proteins, which later form
complexes with anticancer autoantibodies circulating in
the plasma produced by various B cell subpopulations
[180]. They bring forth an elaborate area of research on
how this process of antigen presentation may be utilized
in advancing immunotherapy against cancer. They are
also remarkably durable in storage conditions [181, 182],
facilitating the preservation of the biomolecules within
them without degradation over an extended period,
allowing them to withstand various standardized pro-
tocols in clinical settings for analysis. Abundant studies
indicate that the intensity of GPC1 in patients of pancre-
atic cancer brings to the fore an exciting insight of using
these for early detection of this cancer [183], along with it
being an appealing non-invasive screening and diagnostic
tool for a wide category of cancers [184]. Several experi-
ments proclaim that serum-derived exosomal DNA can
be useful in detecting parental tumor cell mutations
[90, 185-187]. It has also come to our knowledge that
exosomes fostering non-coding RNAs might help track
cancer progression and diagnosis, similar to identifying
breast cancer biomarkers [188—193]. It is a super-sensi-
tive approach that gives authentic results using low-vol-
ume/concentration analytes [194, 195]. On the contrary,
standardized techniques are needed to analyze, estimate,
and segregate exosomes for varied clinical implementa-
tions. It is exceedingly difficult to achieve optimized effi-
cacy while isolating pure exosomes from multiplex fluids
like blood or cell culture supernatants. This induces fluc-
tuating and jumbled exosome reproducibility, causing
difficulty interpreting and concluding outcomes. We are
yet to reach the desired improvement in the liquid biopsy
tools. The current tools often lead to erroneous cancer
detection and monitoring.

While exosomes hold great promise as cancer biomark-
ers due to their ability to reflect the molecular composi-
tion of their cells of origin, several disadvantages and
challenges limit their clinical application. Firstly, the
isolation and purification of exosomes from body fluids
are complex and can be contaminated by other EVs and
proteins, affecting the accuracy and reproducibility of
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results [155]. Additionally, the heterogeneous nature of
exosomes, arising from different cellular sources and var-
ying physiological states, complicates the identification
of specific and reliable biomarkers [156]. The sensitiv-
ity of current detection technologies may be insufficient
to accurately quantify low-abundance exosomal com-
ponents, leading to potential misinterpretations [157].
Moreover, the lack of standardized protocols for exosome
isolation, characterization, and analysis results in vari-
ability across studies, undermining reproducibility and
comparability [159]. Finally, while OMICS technologies
can identify potential exosomal biomarkers, validating
their clinical relevance and biological function requires
extensive and resource-intensive follow-up studies [160].
These challenges necessitate ongoing technological
advancements and standardization efforts to realize the
full potential of exosomes as cancer biomarkers.

Clinical trials of exosome-based cancer biomarker
Clinical trials investigating exosome-based cancer bio-
markers have generated significant interest due to the
potential of exosomes to provide non-invasive, accurate,
and dynamic insights into tumor biology. However, thor-
oughly discussing these trials requires understanding
their real-world applications, limitations, and the transla-
tional journey from clinical trials to medical practice.
Clinical trials on exosome-based biomarkers aim to
evaluate their effectiveness in early cancer detection,
monitoring disease progression, predicting treatment
response and prognosis, and identifying therapeutic
targets. These trials often involve collecting and ana-
lyzing exosomes from various body fluids, such as
blood, urine, and saliva, to determine the presence and
levels of specific cancer-related molecules, including
proteins, lipids, and nucleic acids [136]. One signifi-
cant scope of these trials is the potential for non-inva-
sive cancer diagnostics. Exosome-based liquid biopsies
can offer a less invasive alternative to traditional tissue
biopsies, enabling more frequent monitoring of tumor
dynamics and potentially improving patient out-
comes. For example, detecting and quantifying exoso-
mal mutations, such as EGFRVIII in glioblastoma, can
provide critical information about tumor status and
treatment efficacy [68]. However, there are notable
limitations. The heterogeneity of exosomes, stemming
from their diverse cellular origins and the varying
physiological states of their parent cells, poses a chal-
lenge for standardization and consistency in biomarker
discovery [156]. Additionally, the current sensitivity of
detection technologies may not be sufficient to accu-
rately measure low-abundance exosomal components,
potentially leading to false negatives or positives [157].
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Moreover, the lack of standardized protocols for exo-
some isolation and analysis further complicates the
reproducibility of clinical trial results [159].

Translating the results of clinical trials into oncologi-
cal practice involves several critical steps. To ensure
their reliability and clinical relevance, robust valida-
tion of identified biomarkers is required through large-
scale studies and cross-cohort comparisons. Once
validated, the next step is the integration of these bio-
markers into diagnostic, prognostic, and therapeutic
frameworks. For diagnostic purposes, exosome-based
assays must be developed and standardized for clini-
cal use. These assays must demonstrate high sensitiv-
ity, specificity, and reproducibility to gain regulatory
approval and clinical adoption. For instance, assays
detecting exosomal PD-L1 could potentially guide
immunotherapy decisions by identifying patients most
likely to benefit from such treatments [196]. In thera-
peutic contexts, exosome-based biomarkers can help
personalize treatment plans. By monitoring exoso-
mal content over time, clinicians can assess treatment
responses and adjust therapies accordingly, enhancing
personalized medicine approaches. Exosome analy-
sis can provide insights into disease progression and
recurrence risk, aiding in patient stratification and
long-term management. For example, exosomal miR-
NAs have been investigated for their prognostic poten-
tial in various cancers, providing valuable information
on patient outcomes [197].

It is crucial to address their current limitations
through ongoing research and technological advance-
ments to enhance the clinical utility of exosome-based
biomarkers. Improvements in isolation techniques,
detection sensitivity, and bioinformatics analysis will
be pivotal in overcoming the challenges associated
with exosome heterogeneity and low-abundance bio-
molecules. Moreover, collaborative efforts to establish
standardized protocols and consensus guidelines will
facilitate more consistent and reproducible findings
across studies and clinical settings. Such efforts will
also expedite the regulatory approval process, ena-
bling faster translation of research findings into clini-
cal practice.

In conclusion, while exosome-based cancer biomark-
ers hold great promise, their successful integration
into oncological practice requires addressing several
key challenges and limitations. Ongoing clinical trials
and research efforts are essential to validate these bio-
markers and develop reliable diagnostic, prognostic,
and therapeutic tools to enhance cancer patient care.
Table 3 lists all the clinical trials with exosomes in dif-
ferent types of cancer and their significance.
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Future prospects

Research on exosomes is gaining popularity in the diag-
nosis and treatment of oncological diseases. It has been
demonstrated that exosomes are crucial cell-to-cell
communication transmitters. Exosomes are excellent
therapeutic targets for cancer and perfect drug deliv-
ery vehicles due to several beneficial characteristics.
Exosomes generated from cancer cells contain various
proteins, lipids, DNA, RNA, and metabolites unique
to cancer cells, which can be utilized as biomarkers for
various cancers [198]. Exosomes are ideal targets for
cancer diagnostics because they offer a high concen-
tration and protected environment for their payload.
Recent research has shown that exosomes maintain tis-
sue homeostasis by modulating cell-cell communica-
tion through the chemicals they contain. Furthermore,
the development of cancer is linked to exosomes that
are secreted from cancer cells. Thus, understanding the
function of exosomes in cancer will improve the effi-
cacy of novel therapeutic and diagnostic strategies.

Exosomes, in particular, are helpful sources of bio-
markers due to their affinity for their parent cells and
ability to load cargo selectively [199]. Studies have
shown exosomal miRNAs to be useful as molecular
diagnostic markers for cancers, and miRNAs can be
transported using nanoparticle platforms to provide
targeted treatments for cancers [200]. Adipose-derived
mesenchymal stem cells can transfer miR-122 via
exosomes, making hepatocellular carcinoma cells more
susceptible to chemotherapeutic treatments [201].
Exosomes are superior to other nanoparticles due to
their remarkable biocompatibility, low immunogenicity,
high stability, extended half-life, capacity to pass physi-
cal barriers like the BBB, and targetability. Addition-
ally, their propensity for bioengineering and capacity to
transport functional biomolecules, such as therapeutic
proteins, chemotherapeutics, and nucleic acids, have
garnered significant attention lately [202].

Despite the potential advantages, challenges and
disadvantages are associated with the clinical use of
exosomes. Since both cancer and normal cells produce
exosomes, identifying specific markers or marker pan-
els produced exclusively or at high levels in cancer cells
is crucial for early cancer detection. Tumor-specific tar-
geting is necessary for therapeutic techniques to reduce
off-target effects [203]. Cancer-derived exosomes
contribute to immune evasion, tumor formation, pro-
gression, angiogenesis, metastasis, anti-apoptotic sig-
nalling, and treatment resistance. Conversely, exosomes
from healthy cells, including DC, T, and B cells, can
significantly slow down tumor formation. Therefore,
depending on their cell of origin and bioactive payload,
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Table 3 Clinical trials with exosomes in cancer
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Cancer type Trail ID Exosome source Clinical importance

Early lung cancer NCT03542253 Blood The expression of exosomal miRNA was significantly elevated in early-stage lung
cancer tissues compared to adjacent non-cancerous tissues. Moreover, the levels
of miRNA-A in the adjacent tissues were notably higher than those observed
in peripheral blood exosomes

High-grade prostate cancer NCT02702856 Non-catheter urine  The objective was to evaluate the correlation between an Exosome Urine Test

Pancreatic cancer

NCT03821909

Portal venous blood

score and the detection of high-grade (Gleason grade/score > 7) prostate cancer
through a prostate needle biopsy

The aim was to assess the practicality and safety of obtaining portal venous
blood samples using endoscopic ultrasound (EUS), as well as to identify portal
venous circulating tumor cells (CTCs) and analyze mRNA markers of exosomes
through RNA-seq

The objective was to investigate the abundant exosomes in blood samples
and conduct clinical studies to assess the feasibility of diagnosing lung cancer

The primary objective was to examine the molecular profile of exosomes derived
from gastric cancer

This study aimed to analyze the molecular profiling of exosomes obtained

from samples collected from the tumor-draining vein. The goal is to identify
molecular characteristics that can be prognostic indicators for cancer recurrence
following surgery

The objective was to isolate and examine exosomes, which are small vesicles
containing crucial proteins and nucleic acids functioning as messenger systems

The assessment of HER2-HER3 dimer expression in tumor samples and blood (exo-
some) samples was obtained from patients diagnosed with HER2-positive breast
cancer undergoing HER2-targeted therapies

Evaluating the practicality of exosome analysis in cerebrospinal fluid as part

of the diagnostic evaluation for metastatic meningitis (Exo-LCR)

Investigate the potential of INCRNA-EINAT1 in urine exosomes as a novel target

for preoperative diagnosis of lymph node metastasis

Lung cancer NCT04529915 Blood
Advanced gastric cancer NCT01779583  Plasma
Early-staged lung cancer NCT04939324 Blood
Pancreatic cancer NCT02393703 Blood tissue
HER2-positive breast cancer NCT04288141 Blood tumor
Breast cancer NCT05286684 CSF

Bladder cancer NCT05270174 Urine
Pancreatic ductal adenocar- NCT03032913 Blood

cinoma (PDAC)

Assessing the diagnostic precision of CTCs and quantification of onco-exosomes
in the diagnosis of pancreatic cancer—PANC-CTC study

exosomes may have a dual role in promoting, inhibit-
ing, or controlling cancer development [204].

In conclusion, while exosomes offer tremendous
promise as cancer biomarkers and therapeutic vehicles,
further research and clinical validation are essential to
overcome limitations. Their use as cancer biomarkers
in the clinic presents both advantages and challenges.
The development of standardized isolation techniques,
comprehensive profiling methods, and targeted delivery
systems will be pivotal in realizing the clinical utility of
exosome-based biomarkers and therapies. With con-
tinued technological advancements and collaboration
between researchers and clinicians, exosome-based can-
cer biomarkers may soon revolutionize cancer diagnosis
and management, ultimately leading to improved patient
outcomes.

Conclusions

The clinical signature of exosome-based cancer biomark-
ers represents a promising avenue for improving cancer
diagnosis and prognosis. This review explored various
critical exosome-related aspects and their potential as
cancer biomarkers. We have provided a comprehensive

overview of the significance of exosomes in cancer
research, highlighting their role as essential mediators
of intercellular communication and potential carriers of
diagnostic information.

The biogenesis of exosomes sheds light on the com-
plex process by which these tiny vesicles are formed
and released from cells, indicating their involvement in
tumor development and progression. Moreover, we have
focused on the intricate relationship between exosomes
and cancer, showcasing exosomes’ multifaceted roles in
tumor microenvironment modulation, immune response
evasion, and metastasis promotion. The concept of
exosomes as a source of cancer biomarkers demonstrates
how their cargo of nucleic acids, proteins, and lipids
holds immense diagnostic potential for detecting and
monitoring cancer.

Methodologies for isolating exosomes are crucial
for obtaining pure and reliable samples for biomarker
research. OMICS profiling of exosomes highlights the
wide array of information that can be gleaned from exo-
some cargo analysis, paving the way for personalized
cancer diagnosis and treatment. Single exosome profiling
showcases the sensitivity of this approach, allowing for



Ghosh et al. Cancer Cell International (2024) 24:278

the detection of subtle changes in the exosomal content
with potential diagnostic applications.

We have explored advanced approaches in exosome
profiling, indicating the continuous advancements in
technology that promise to enhance the precision and
clinical utility of exosome-based cancer biomarkers. The
advantages and disadvantages of exosome-based cancer
biomarkers underscore the need for careful validation
and standardization to ensure their successful translation
into clinical practice. Exosomes offer several advantages,
including specificity, non-invasiveness, and the ability to
carry a diverse range of biomolecules. However, chal-
lenges such as heterogeneity, complex isolation methods,
and high costs must be addressed.

Lastly, we have touched upon the ongoing clinical trials
investigating the feasibility and efficacy of exosome-based
cancer biomarkers, underscoring this field’s growing
interest and potential. These trials will provide valuable
insights and help bridge the gap between research and
clinical application.

The clinical signature of exosome-based cancer bio-
markers holds tremendous promise as a non-invasive and
sensitive approach for cancer diagnosis, prognosis, and
monitoring. However, more research and rigorous clini-
cal validation are needed to fully realize their potential
and ensure their successful integration into routine clini-
cal practice. With continued advancements in technology
and collaboration between researchers and clinicians,
exosome-based cancer biomarkers may soon revolu-
tionize how we diagnose and manage cancer, ultimately
leading to improved patient outcomes. The ongoing
exploration of the advantages and disadvantages of exo-
some-based biomarkers and advancements in isolation
and profiling technologies will be pivotal in overcoming
current challenges and enhancing their clinical utility.

In conclusion, exosomes present a unique opportunity
in oncology, offering a novel and promising approach to
cancer management. The future of exosome research is
bright, with the potential to significantly impact patient
care and treatment outcomes through innovative diag-
nostic and therapeutic strategies.
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