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Abstract 
Reef-building corals depend on an intricate community of microorganisms for functioning and resilience. The infection of coral-
associated bacteria by bacteriophages can modify bacterial ecological interactions, yet very little is known about phage functions 
in the holobiont. This gap stems from methodological limitations that have prevented the recovery of high-quality viral genomes 
and bacterial host assignment from coral samples. Here, we introduce a size fractionation approach that increased bacterial and 
viral recovery in coral metagenomes by 9-fold and 2-fold, respectively, and enabled the assembly and binning of bacterial and viral 
genomes at relatively low sequencing coverage. We combined these viral genomes with those derived from 677 publicly available 
metagenomes, viromes, and bacterial isolates from stony corals to build a global coral virus database of over 20,000 viral genomic 
sequences spanning four viral realms. The tailed bacteriophage families Kyanoviridae and Autographiviridae were the most abundant, 
replacing groups formerly referred to as Myoviridae and Podoviridae, respectively. Prophage and CRISPR spacer linkages between these 
viruses and 626 bacterial metagenome-assembled genomes and bacterial isolates showed that most viruses infected Alphaproteobacteria, 
the most abundant class, and less abundant taxa like Halanaerobiia and Bacteroidia. A host–phage–gene network identified keystone 
viruses with the genomic capacity to modulate bacterial metabolic pathways and direct molecular interactions with eukaryotic cells. 
This study reveals the genomic basis of nested symbioses between bacteriophage, bacteria, and the coral host and its endosymbiotic 
algae. 
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Introduction 
Microorganisms of the coral holobiont are fundamental to the 
ecological success of reef-building corals [1]. A complex network 
of symbiotic interactions connects all coral holobiont entities, 
including viruses, bacteria, archaea, fungi, and dinoflagellates, 
broadening the functional capacity of the coral host and 
influencing the way the coral adapts and interacts with the 
reef environment [2, 3]. In addition to the well-described 
coral–Symbiodiniaceae endosymbiosis, prokaryotic communities 
(bacteria and archaea) play crucial roles in coral health [4]. 
These assemblages remain flexible in response to a changing 
environment and can mitigate the effects of environmental 
stressors [5]. Though we have gained a significant understanding 
of many coral–bacteria interactions, little is known about the 
roles of viruses in the holobiont. Currently available metagenomic 
tools have shown that viruses, particularly double-stranded DNA 
viruses infecting prokaryotes (herein, phages), are the most 
abundant and genomically diverse entities within the coral 
holobiont [6–10]. In other holobionts, phages have been shown to 
modulate bacterial community composition [11–13] and defend 
against pathogens by adhering to mucosal surfaces and regulating 

bacterial colonization through lysis [14]. In corals, the pathogen 
Vibrio coralliilyticus can weaponize the lytic cycle of prophages in 
its competitors by triggering induction, gaining a competitive 
advantage over other symbiotic bacteria [15]. Shifts in phage 
community composition have also been observed in association 
with coral disease. For example, bleached and white plague– 
diseased tissues harbor distinct phage communities [16] and T4-
like phages have been associated with black band disease mats 
[17], yet it remains unclear whether they play a causative role 
or if their compositional shifts reflect a generalized holobiont 
response to disease. At the reef scale, phages play a crucial role 
in shaping coral ecological interactions, including competitive 
dynamics for benthic space [18] and biogeochemical cycling [19]. 

Despite these advances, technical limitations in obtaining 
high-quality viral genomes from corals prevent the determination 
of phage contributions to holobiont functional diversity [20–22]. 
Coral host and Symbiodiniaceae genomes overwhelmingly dom-
inate shotgun metagenomes, preventing appropriate coverage 
of viral sequences necessary for assembly. Moreover, viruses 
have high sequence diversity, lack hallmark genes, and display 
high levels of recombination, further complicating the assembly 
and characterization of viral metagenome–assembled genomes
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(vMAGs) [10, 23, 24]. Combined with the limited availability of 
reference viral genomes, most studies to date have relied on the 
analysis of read data without assembly of viral genomes [10, 
22]. These studies also characterized the viral community using 
a taxonomy framework that uses phage tail morphology (former 
families Myoviridae, Podoviridae, and  Siphoviridae) and the sequence 
identity of genes in these families to classify unknown viruses. 
This classification framework was abolished by the International 
Committee on Taxonomy of Viruses (ICTV) in 2022 in favor of a 
taxonomy system based on genomic composition, which better 
captures the evolutionary histories of viral groups [25]. Therefore, 
an updated perspective on the diversity and functional genomics 
of coral-associated viruses in light of current approaches and 
taxonomic framework is due. 

Here, we introduce a size fractionation method for enriching 
viruses and bacteria in coral-associated metagenomes. We 
combine 33 metagenomes generated with this approach with 
publicly available datasets in a meta-analysis totaling 710 coral 
metagenomes, viromes, and bacterial isolates to reveal the 
genomic repertoire of coral holobiont viruses, focusing on phages. 
From this robust dataset, we identified 20,397 viral genomic 
sequences (2,121 vMAGs and 18,098 viral contigs) from 31 coral 
species distributed across seven oceanographic regions. The 
phage community was dominated by the class Caudoviricetes 
(tailed phages, realm Duplodnaviria) but also included Monodnaviria 
and Varidnaviria phages. The ability to assemble viral and bacterial 
genomes enabled the matching of phage–host pairs in coral 
microbiomes via CRISPR spacers. Phages most often infected hosts 
in the Alphaproteobacteria, Gammaproteobacteria, and  Bacteroidia 
classes and encoded 109 unique metabolic genes and 64 unique 
bacteria–eukaryote interaction genes with the potential to affect 
bacterial metabolism and symbiotic interactions. These results 
transform our knowledge of the coral virome by identifying 
specific bacteria–phage–gene links involved in quorum sensing, 
sulfur cycling, DNA methylation, and molecular interactions with 
eukaryotic cells within the holobiont. 

Materials and methods 
Development of a viral and bacterial enrichment 
method 
Fragments of the coral Orbicella faveolata (N = 28) were collected 
via SCUBA in July 2021, along the southwestern coast of Curaçao 
in the Caribbean (Table S1). Specimens of ∼1 cm3 (containing 
mucus, tissue, and skeleton) were collected using a chisel and 
hammer and placed in Ziplock polyethylene bags with ambient 
seawater. The samples were placed on ice for an average of 
20 min during transfer to the laboratory at the CARMABI research 
station, where ambient seawater was removed, and coral samples 
were flash frozen and stored at −80◦C until later processing. 
The samples were subjected to two DNA extraction protocols for 
comparison: 19 samples were processed using the viral and bac-
terial enrichment (VBE) method developed here and 6 underwent 
bulk extraction and sequencing and were treated as controls. For 
both extraction methods, coral fragments were thawed, crushed 
to a fine gravel texture using a sterile mortar and pestle, and 
suspended in 150 μl of sterile artificial seawater. Control coral 
homogenates were extracted using a DNeasy PowerSoil Kit (QIA-
GEN, Germantown, MD), modified with the addition of 20 μl of  
proteinase K incubated at 56◦C for 10 min prior to the kit’s lysis 
steps. For VBE, the coral homogenate was placed into a tube 
containing 0.2 g of 425- to 600-μm sterile glass beads (Sigma-
Aldrich, St. Louis, MO) and vortexed (VWR Analog Vortex Mixer; 

VWR, Radnor, PA) at speed 3 (∼ 600 rpm) for 5 min to disrupt 
the larger coral and algal symbiont cells. The supernatant was 
transferred to a clean tube, brought up to 1 ml with sterile 
ASW, and treated with DNAse I (20 U/ml final concentration) 
in DNAse I Buffer (Invitrogen, Waltham, MA) at 25◦C for  2 h to  
degrade the coral host and algal DNA released in the previous step. 
DNAse activity was stopped with ethylenediaminetetraacetic acid 
(5 mM final concentration; Genesee Scientific, San Diego, CA), and 
the sample was filtered through an 8.0-μm membrane (Cytiva, 
Marlborough, MA). This filter size was intended to allow passage 
of the bacteria and viruses, while further removing the larger 
coral and Symbiodiniaceae cells. The flowthrough was collected, 
transferred to a 100 kDa Amicon Centrifugal Unit (Sigma-Aldrich, 
St. Louis, MO), and centrifuged at 3,200 g for 30 min to concentrate 
the bacteria and viruses together. After concentration, each side 
of the Amicon filter was rinsed and incubated at 56◦C for  1 h  
(per side) in 200 μl Buffer T1 and 20 μl proteinase K from the 
NucleoSpin Tissue Kit (Macherey-Nagel Inc., Allentown, PA) and 
DNA extraction proceeded from Step 3 of the kit. DNA was eluted 
in 100 μl of PCR-grade water and quantified with a Qubit 2.0 Fluo-
rometer (Invitrogen, Waltham, MA). A step-by-step description of 
the VBE protocol is publicly available on protocols.io [26]. Library 
preparation and whole-genome sequencing were conducted by 
Azenta Life Sciences (South Plainfield, NJ). Metagenomic libraries 
were generated with the NEBNext Ultra DNA Library Preparation 
kit following the manufacturer’s instructions (New England Bio-
labs, Ipswich, MA) and paired-end sequenced (2 × 150 bp) on a 
HiSeq 4000 platform (Illumina, San Diego, CA). 

Quantification of viral and bacterial enrichment 
in coral metagenomes 
Raw metagenomic reads were adapter-trimmed, quality-filtered 
(trimq = 30, maq = 30), and entropy-filtered (entropy = 0.90) using 
BBDuk [27], generating 594,487,714 quality-controlled (QC) reads. 
To identify coral host and Symbiodiniaceae reads, the QC reads 
were mapped to the genome of the coral host, O. faveolata 
(GCA_001896105.1), and a representative Symbiodiniaceae 
genome (Symbiodinium sp. clade A Y106; GCA_003297005.1) using 
Bowtie2 (–mp 4 and -X 1000) [28]. Mapped reads were removed 
using SAMtools v1.18 [29] and quantified with SeqKit [30], yielding 
336,288,370 coral and Symbiodiniaceae-filtered reads (Table S1). 
The QC reads and coral and symbiont-filtered reads from each 
sample were assembled separately using metaSPAdes v3.15.5 
with default parameters [31]. Bacterial reads were identified with 
Kaiju v1.9.0 in each group using the proGenomes v3 database [32] 
and normalized by either the number of QC reads or coral and 
symbiont-filtered reads in each sample to obtain the percentage 
of bacterial reads in each metagenome. Bacterial metagenome-
assembled genomes (bMAGs) were generated by integrating the 
single-sample coverage binning outputs from MaxBin2 v2.2.7 [33], 
MetaBat2 v2.15 [34], and CONCOCT v1.1.0 [35]. The resulting bins 
were consolidated and improved with the metaWRAP v1.2.1 [36] 
bin refinement module. The quality of refined bins was assessed 
with CheckM2 v1.0.2 [37] to select bins with ≥50% completion 
and ≤10% contamination. Viral identification and quantification 
were carried out using VIBRANT v1.2.1, which compared genes 
from all assembled contigs to the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) KoFam, Pfam (v32), and Virus Orthologous 
Groups (VOG) [38]. Viral contigs were pooled by DNA extraction 
method to create two databases, “VBE” and “Control.” The number 
of reads mapped to their respective databases at 80% identity with 
SMALT v0.7.6 [39] was normalized by the total number of QC and 
filtered reads [40]. A summary of the bioinformatic pipeline is
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shown in Fig. S1. Comparisons between VBE and controls were 
based on Student’s t-test between the two groups, apart from 
bMAG assembly, which was compared based on a simple count 
of bMAGs generated from each group. Taxonomic assignment 
of phages was performed with the Phage Taxonomy Tool (PTT) 
[41], with the reference taxonomy edited to reflect updated ICTV 
classifications [42]. 

Virus identification in global coral datasets 
We assembled the global coral virus database (GCVDB) by com-
bining viruses identified in the 28 Curaçao samples described 
above, 5 additional O. faveolata samples from Miami, FL (processed 
with VBE), and publicly available metagenomes (N = 355), viromes 
(N = 12), and genomes of bacteria (N = 310) isolated from reef-
building corals (Tables S2 and S3 list the metadata and accession 
numbers for each dataset). Search terms and combinations of 
search terms including but not limited to “coral,” “metagenome,” 
“virome,” and “bacterial isolates” were used to identify publi-
cations and their associated datasets through Google Scholar, 
the National Center for Biotechnology Information (NCBI), the 
European Nucleotide Archive, and the JGI IMG/M Database [43]. 
The inclusion of samples was limited to coral metagenomes or 
bacterial genomes of isolates from corals of the order Scleractinia 
collected in situ (excluding aquaria and surrounding seawater) 
and to sequences with associated metadata describing the geo-
graphic location of sampling, the taxonomy of the coral host, and 
the methods used to collect and process samples. Metagenomic 
samples were restricted to Illumina sequences and excluded early 
454 and Sanger sequencing studies. 

The quality of the 310 bacterial genomes was assessed using 
CheckM v.2.0.12 [44]. VIBRANT identified 637 putative viral 
genomes in these bacterial genomes. After dereplication with 
Virathon [45], 178 representative viruses were added to the 
GCVDB. Metagenomes and viromes contained 36,006,392,282 raw 
metagenomic reads that were QC and assembled with the same 
parameters described above. No coral or symbiont read filtering 
was performed on this larger dataset, as not all coral species 
had available reference genomes. Contigs longer than 1,000 bp 
were screened by VIBRANT, and the identified viral genomic 
sequences were grouped by project, location, and host coral 
species, and co-binned into vMAGs with vRhyme v1.1.0 using 
the “longest” method, which dereplicates scaffolds, keeping the 
longest representative sequence [46]. Contigs within bins were 
subjected to further dereplication using Virathon and then N-
linked with 1,000 Ns per link. N-linkages between contigs of a 
vMAG only indicate that contigs belong to the same vMAG, a 
step which is necessary for downstream dereplication of viral 
bins and quality assessment and do not indicate length [46]. N-
linked vMAGs were dereplicated with Virathon, and their quality 
was assessed with CheckV v1.0.1, which estimates completeness 
and contamination based on the presence of hallmark genes by 
comparison with VOG, IMG/VR, RVDB, KEGG Orthology, PfamA, 
PfamB, and TIGRFAM [47]. This process generated 2,121 vMAGs 
and 18,098 viral contigs that were added to the GCVDB. Combined 
with the 178 viral contigs derived from bacterial isolates, a total 
of 20,397 unique putative viral genomes from coral holobionts 
compose the GCVDB (Table S4). 

Diversity of coral-associated viruses 
Viral contigs annotated as “complete circular,” “high-quality 
draft,” and “medium-quality draft” by VIBRANT (N = 317) were 
combined with vMAGs annotated as “high-quality” and “medium-
quality” by CheckV (N = 528) for further analyses (Tables S5 

and S6). These genomes were grouped with the NCBI Viral 
RefSeq v1.1 database (accessed: 13 July 2023), which was first 
dereplicated using MIUViG-recommended parameters (95% 
average nucleotide identity, 85% alignment fraction) adopted 
by the Genomic Standards Consortium [48]. A comparison of 
genome relatedness between the GCVDB viruses and the RefSeq 
viruses was performed using GL-UVAB v0.6.pl, which calculates 
an all-versus-all Dice distance matrix based on the number 
of shared protein-encoding genes and their identity level [49]. 
The distance matrix was used to build a neighbor-joining tree 
containing 845 GCVDB viruses and 257 NCBI viruses. The tree 
was visualized and annotated using Interactive Tree of Life 
[50]. Taxonomic assignment of GCVDB viruses was performed 
by the PTT, which exclusively identifies prokaryotic viruses 
through protein similarity [41]. The “PTT_virus_taxonomy.tsv” 
reference data sheet was manually edited to reflect updated 
ICTV classifications [42]. Adonis and beta-dispersion analysis 
were performed with the R package Vegan [51]. 

Bacteriophage host identification 
Bacterial MAGs were generated from all metagenomic samples 
using the methods described above. Briefly, single-sample cover-
age binning outputs from MaxBin2 v2.2.7 [33], MetaBat2 v2.15 [34], 
and CONCOCT v1.1.0 [35] were consolidated and improved with 
metaWRAP v1.2.1 [36], resulting in 910 bins. CheckM2 v1.0.2 [37] 
was used to select bins with ≥50% completion and ≤10% contami-
nation. Bins with low confidence predictions were removed (N = 6),  
resulting in 316 bMAGs taxonomically classified with GTDB-Tk 
v2.3.2 [52] (Table S7). To predict virus–host pairs, we employed a 
combination of provirus detection and CRISPR spacer matching 
(Table S8). A database of CRISPR spacers from the 316 bMAGs and 
310 bacterial isolates was generated with minCED v0.4.3 [53], a 
tool derived from CRISPR Recognition Tools (CRT) v1.2 [54]. The 
resulting CRISPR spacer database was subsequently used to iden-
tify sequence homology matches with GCVDB using nucleotide 
BLAST (BLASTn). Sixty-three high-confidence pairs were gener-
ated using thresholds of ≤2 mismatches/gaps, 100% coverage to 
the spacer, and a sequence length of ≥20 nucleotides. Provirus 
detection was accomplished by mapping the GCVDB viruses to 
bMAGs with Minimap2 v2.24-r1122 [55]. Only the bMAG contigs 
that contained matches of 100% identity (no gaps) along the 
entire mapping length (N = 448) were selected to be assessed with 
CheckV, which identified 59 proviruses with host flanking regions. 
Viral contigs identified in bacterial isolate genomes by VIBRANT 
were categorized as proviruses (N = 177). 

Phage genetic repertoire 
The genomes of the GCVDB viruses from metagenomic sam-
ples were compared to viruses identified in coral reef seawater 
metagenomes from the island of Curaçao [56]. These seawater 
metagenomes are paired with the Curaçao coral metagenomes 
described above (Table S1). Metabolic genes from viruses identi-
fied in seawater are shown in Table S9. We also searched for viral 
genes involved in bacteria–eukaryote interactions by a protein 
BLAST (BLASTp) comparison with a curated database of genes 
that have been experimentally shown to mediate host interac-
tions in bacterial pathogens [57]. Because many of these genes 
have also been shown to be involved in commensal or mutu-
alistic interactions in other bacterial species [58], here we refer 
to these genes as bacteria–host interaction genes or symbiosis 
genes. We used an e-value cut-off of ≤0.00001 and ≥40% identity 
across ≥20 amino acids to identify conserved domains in the 
amino acid sequences [59] (Table S10). For multiple quality hits
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Figure 1. Enrichment of viruses and bacteria from coral samples. (A) Simplified workflow depicting the VBE method for enrichment of viruses and 
bacteria in coral metagenomes. (B–G) Recovery of coral and symbiont, bacteria, and viruses in VBE and control metagenomes. (B) Percent of coral and 
symbiont reads, (C) bacterial abundance within QC reads, (D) bacterial abundance within coral and symbiont-filtered (CSF) reads, (E) abundance of 
bMAGs from QC reads, (F) viral fractional abundance in QC reads and (G) in CSF reads. Stats represent P values from statistical tests: Student’s t-test in 
panels B, C, D, F, and G (∗P < .05, ∗∗P < .01, ∗∗∗P < .001). Workflow created with BioRender.com. 

on overlapping regions, the best hit was selected based on the 
e-value. Only metabolic genes identified in genomes with taxo-
nomic annotations by PTT were included in the analysis of phage– 
bacteria interactions. Simpson’s Index of Diversity and Pielou’s 
evenness were used to compare the diversity and evenness of the 
gene distributions in seawater and corals. GCVDB phage genomes 
with host linkages and genes of interest (metabolism or symbiosis) 
were plotted with the R package genoPlotR [ 60]. 

Tripartite network 
A tripartite network of bacteria–phage–gene linkages was con-
structed using Cytoscape v3.9.1 [61]. To identify keystone viruses 
in this network, we treated shared metabolic and symbiosis genes 
as linkages between viruses. Keystones were identified using 
values of node degree (k; number of interactions), closeness 
centrality (cc; distance to all other nodes), and clustering 
coefficient (clust; connectivity of nearest neighbors) calculated 
by Cytoscape’s NetworkAnalyzer feature. We ranked each virus 
by the values of each of these three properties and calculated an 
average rank across the three to identify keystone viruses [62]. 
A Sankey diagram depicting the frequency of linkages between 
bacterial classes and viral families, as well as the frequency of 
metabolic and symbiosis genes encoded by the viral families, was 
generated using Google Charts. 

Results 
Virus and bacteria enrichment increases the 
recovery of microbial DNA in metagenomes 
The VBE (Fig. 1A) metagenomes had 36.39 ± 0.10% (mean, SE) coral 
or symbiont reads, compared to 69.83 ± 0.13% (mean, SE) in the 
controls, a 52% reduction in the VBE metagenomes (t-test, t(23) 
= −5.58, P = 1.124e-05; Fig. 1B). Among quality-controlled reads, 
2.72 ± 0.33% (mean, SE) of VBE reads were bacterial, compared 

to only 0.30 ± 0.03% (mean, SE; here and hereafter) in controls, a 
9.01× enrichment in VBE (t-test, t(23) = 4.12, P = 4.15e-04; Fig. 1C). 
For coral and symbiont-filtered reads, VBE increased bacterial 
recovery by 5.02× (4.06 ± 0.09% and 0.81 ± 0.06% for VBE and 
control, respectively; t-test, t(23) = 4.29, P = 2.73e-04; Fig. 1D). High-
quality bMAGs could only be generated from VBE metagenomes, 
with 13 total bMAGs with ≥50% completion and ≤10% contamina-
tion identified (Fig. 1E). VBE generated 543 putative viral contigs, 
compared to 76 from controls, which represented 0.74 ± 0.05% and 
0.40 ± 0.05% of QC reads, respectively, a 1.87× increase for VBE (t-
test, t(23) = 3.45, P = 2.17e-03; Fig. 1F). Among coral and symbiont-
filtered reads, 0.46 ± 0.06% were viral in VBE and 0.16 ± 0.02% in 
controls, a 2.83× increase in viral recovery by VBE (t-test, t(23) = 
2.6878, P = 1.31e-02; Fig. 1G). 

Updated taxonomic profile of coral holobiont 
phages 
The 710 publicly available metagenomes, viromes, and bacterial 
isolates from 31 coral species and 7 ocean regions (Fig. 2A) 
analyzed here yielded 20,397 viral genomic sequences (18,098 
vContigs and 2,121 vMAGs). These viral genomes were combined 
into the GCVDB, and hereafter, we refer to these genomic 
sequences as viruses for simplicity. A total of 846 viruses 
were classified as medium-quality, high-quality, or complete 
circular genomes (hereafter, high- and medium-quality viruses). 
A proteomic tree displaying the relationships between high-
and medium-quality viruses in the GCVDB (N = 846) and viruses 
in the ICTV database (N = 99) shows GCVDB viruses spanning 
four viral realms according to the current ICTV classification 
(Fig. 2B). These include Duplodnaviria and Varidnaviria double-
stranded DNA (dsDNA) viruses, Monodnaviria single-stranded DNA 
(ssDNA) viruses, and Riboviria RNA viruses similar to retroviruses 
with a DNA phase. Several branches of ICTV viral families that 
infect eukaryotes, including Adintoviridae, Polydnaviriformidae,
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Figure 2. Coral virome diversity. (A) Distribution of sample locations and data types across ocean regions. Samples were grouped by oceanographic 
region for each pie chart. The radius of each pie chart represents the number of samples with log10(X + 4) transformation. The figure key indicates the 
type of dataset: metagenome, metavirome, or complete/draft bacterial genomes. (B) Proteomic tree of genomes and genome fragments in the GCVDB 
and their closest relatives from the NCBI viral RefSeq. The innermost ring (1) describes the data source (metagenome, virome, bacterial isolate), the 
second ring (2) depicts the family-level taxonomy of the coral host where the virus was identified, and the outermost ring (3) describes the family-level 
taxonomy of the viral genome (PTT taxonomy for phages and ICTV classification for RefSeq viruses). Viral realms were defined in the tree based on 
the position of RefSeq viruses. The branch labeled with an asterisk (∗) contains  Riboviria viruses. Branch lengths were omitted to better display the tree 
topology. Branches with three or more RefSeq members were collapsed (circles proportionally sized to the number of collapsed nodes). Stars indicate 
14 viruses obtained by the VBE method. (C, D) Taxonomic classification of phages in the complete GCVDB (ALL) and in the subset of this database 
containing viral genomes of high or medium quality (HQMQ) at the realm (C) and family (D) taxonomic levels. 
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Caulimoviridae, Metaviridae, and  Retroviridae, included represen-
tatives from GCVDB. Bacteriophages, specifically, belonged to 3 
realms and 25 families spanning both dsDNA and ssDNA viruses 
(Table S11). 

The majority (68.95%) of viruses across the GCVDB were not 
taxonomically classified due to the low similarity with refer-
ence viruses. Among the high- and medium-quality viruses, most 
were identified as phages (58.85% and 97.96% in metagenomes 
and bacterial isolate genomes, respectively). Of the phages with 
taxonomic annotations, Duplodnaviria was the dominant realm 
regardless of quality (Fig. 2C). In metagenomes, this was followed 
by Monodnaviria, which represented 2.67% of the classified phages 
in the full GCVDB and 16.20% of the high- and medium-quality 
phages. In the genomes of bacterial isolates, Monodnaviria were 
absent among high and medium quality but comprised 1.24% 
when including low quality. 46.55% of Duplodnaviria viruses in 
the high- and medium-quality metagenomes did not have family 
classification under current taxonomy, resulting in an overrep-
resentation of ssDNA Monodnaviria families in Fig. 2D. Although 
these Monodnaviria families, Microviridae and Inoviridae, were  the  
most abundant families identified among the high- and medium-
quality metagenomes, dsDNA tailed phages belonging to the class 
Caudoviricetes were dominant in all other groups. Some dsDNA 
families annotated as Duplodnaviria were more closely related to 
viruses from other realms in the proteomic tree. For example, 
viruses classified as Straboviridae and Ackermannviridae fell within 
the Varidnaviria, and  some  Peduoviridae and Ackermannviridae were 
grouped within the realm Monodnaviria, which may result from the 
presence of shared genes between these groups. 

We estimated the effects of coral host and ocean region in 
shaping virome composition by using the Jaccard beta diversity 
index. Viromes were significantly different across coral host fam-
ilies (adonis, R2 = 0.43, P = .001) and ocean regions (adonis, R2 = 0.36, 
P = .001). However, the project and subproject that generated the 
data explained the most variation in Jaccard’s beta diversity 
(60.78% and 71.99%, respectively). As any given project was from 
a single ocean region, and each subproject includes both a single 
ocean region and a single coral species, these variables are not 
independent, and the effects of biology and geography cannot 
be disentangled. The data displayed different levels of dispersion 
by ocean region (betadisper, F = 4.4, P = 2.86e-04), coral host family 
(betadisper, F = 15.7, P = <2.2e-16), project (betadisper, F = 18.3, P = < 
2.2e-16), and subproject (betadisper, F = 7.2, P = <2.2e-16), indicat-
ing that the Adonis PERMANOVA results are affected by nonho-
mogeneous dispersion of the data. 

Coral phages preferentially infect 
Alphaproteobacteria, Bacteroidia, and  Halanaerobiia 
To link viruses with their hosts, we binned and taxonomically 
classified 316 bMAGs from the metagenomes (belonging to 41 
bacterial classes) and combined them with the 310 publicly avail-
able bacterial isolate genomes from coral (5 classes) for a total 
of 626 putative bacterial hosts. We identified 299 putative links 
between 144 hosts and 275 GCVDB viruses based on the pres-
ence of proviruses (N = 236) and CRISPR spacer matches (N = 63) 
(Table S8). 24.2% of bacterial isolates (N = 75) and 15.5% of bMAGs 
(N = 49) contained at least one provirus. Alphaproteobacteria, the  
most abundant bMAG class (28.80%), was overrepresented among 
phage-linked bMAGs (53.33% of CRISPR spacer links and 54.24% of 
provirus links; Fig. 3A). Gammaproteobacteria were the second most 
abundant class of bMAGs representing 15.19% but were underrep-
resented in their CRISPR spacer (6.67%) and provirus (8.47%) links. 
The classes Halanaerobiia and Bacteroidia, both comprising obligate 

Figure 3. Bacteriophage–bacteria interactions. Frequency of (A) bMAGs 
and (B) isolates in the metagenomic dataset (ALL) and within those with 
CRISPR spacer or prophage linkages, at the taxonomic level of class. 
Classes with abundance <2% (except for Halanaerobiia, which  
represented <1% of bMAGs, but 7%–16% of linkages) were grouped as 
“others”. 

anaerobes, represented <13% of the bMAGs combined, yet had 
over twice as many CRISPR spacer linkages as Gammaproteobacte-
ria bMAGs. Among bacterial isolates, however, Alphaproteobacteria 
links were underrepresented, accounting for only 5.56% of CRISPR 
spacer links and 41.24% of provirus links, and Gammaproteobacteria 
isolates were overrepresented in their linkages, accounting for 
94.44% of CRISPR spacer linkages and 55.37% of provirus linkages 
( Fig. 3B). We also identified viruses predicted to infect the putative 
coral mutualist Endozoicomonas, which harbored more than one 
prophage per genome (Table S8). 

Metabolic and eukaryote interaction genes differ 
between coral and seawater viruses 
The 3,912 seawater and 6,173 coral viruses classified here 
as phages encoded 181 unique genes with KEGG ortholog 
annotations (11.3% of coral and 27.3% of seawater phages). 
Seawater viruses encoded more unique metabolic genes (N = 72)  
than corals (N = 51), despite a >22-fold increase in sampling effort 
(18 seawater metagenomes were used here for comparison versus 
400 coral metagenomes; Fig. 4A). Among the 58 metabolic genes 
shared between coral and seawater viruses, the most common 
were involved in amino acid metabolism, energy metabolism 
(photosynthesis), and sulfur relay (Fig. 4B). Only 5 of the 10 
most common metabolic genes in coral phages were also among 
the 10 most common in seawater phages. Metabolic gene α-
diversity, as expressed by Simpson’s index of diversity, was 
higher in seawater (D = 0.95) than in corals (D = 0.61). Additionally,

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae132#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae132#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae132#supplementary-data
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Figure 4. Genomic repertoire of coral-associated bacteriophages. (A) Count of unique metabolic genes (defined based on KEGG Orthologs) identified in 
coral and seawater bacteriophages. An overlap indicates those identified in both sample types. (B) Frequencies of the most common metabolic genes, 
calculated as the sum of viruses encoding each gene within each sample type and sorted by abundance. The colors indicate the KEGG pathways to 
which those genes belong. (C) Count of unique symbiosis genes identified in coral and seawater bacteriophages. (D) Frequencies of the 10 most 
common symbiosis genes, calculated as the sum of the phages containing each gene within each sample type and sorted by the frequency in corals. 

metabolic genes were more evenly distributed in seawater than 
in coral phages (EPielou = 0.72 in seawater and EPielou = 0.41 in 
corals), where a single gene, DNA cytosine-5 methyltransferase 
1 (DNMT1, dcm), accounted for 60.35% of all metabolic genes 
identified. DNMT1 was also the most abundant gene in seawater, 
yet only accounted for 13.25% of the metabolic genes. Together, 
the four most abundant metabolic genes in coral viruses, 
DNMT1, dcm; DNA cytosine-5 methyltransferase 3A (DNMT3a; 
14.32%); S-(hydroxymethyl)glutathione dehydrogenase/alcohol 
dehydrogenase (frmA, ADH5, adhC; 3.29%), and nicotinamide 
phosphoribosyltransferase (NAMPT; 1.57%), accounted for 80% 
of the metabolic genes encoded by viruses in corals, whereas in 
seawater, 21 genes constitute that same 80% threshold. These 
common metabolic genes in coral phages are involved in DNA 
methylation (DNMT1, dcm; DNMT3a), the oxidation of long-chain 
alcohols and formaldehyde in several metabolic pathways (frmA, 
ADH5, adhC), and the metabolism of cofactors and vitamins 
(nicotinate and nicotinamide metabolism; NAMPT). 

Coral and seawater phages also encoded 71 unique genes clas-
sified here as eukaryote interaction genes. These genes were pre-
viously classified as virulence factors based on their role in known 
pathogens [57,58], but many have roles in bacteria–eukaryotic 
interactions in commensal or mutualistic relationships [58] and  

were referred to here as eukaryote interaction or symbiosis genes. 
Fifty-one of these genes were unique to coral phages, 13 were 
shared between corals and seawater, and only 7 were unique to 
the seawater phages (Fig. 4C). The majority (70.00%) of the genes 
in coral phages encoded proteins with ankyrin domains involved 
in bacteria–eukaryote commensal and mutualistic interactions. 
This includes the most abundant gene, ankY/legA9, encoding an 
ankyrin motif-containing protein and accounting for 22.86% of 
the symbiosis gene group in coral phages (Fig. 4D). They were 
followed by genes involved in stress survival (10.29%) and immune 
modulation (9.14%). Coral phages carried a variety of other genes, 
such as pipB2 (T2SS effector; 11.42%) and icmE (DotG T4SS cen-
tral channel protein; 11.14%), which are components of effector 
delivery systems that may be involved in the direct molecular 
interaction between bacteria and eukaryotes. Seawater phages 
not only primarily encoded genes involved in adherence (35.92%, 
with csgG, involved in curli production, as the most abundant 
[32.04%]) and immune modulation (19.42%) but also encoded 
genes related to stress survival at a similar frequency as in coral 
viruses (11.65%). 

We selected seven high-quality viral genomes encoding 
genes with putative roles in host metabolism and symbioses 
to explore in detail (Table S12), six of which have been linked

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae132#supplementary-data
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to bacterial hosts (Fig. 5). Among the Duplodnaviria viruses, 
PRJNA576217_D_bin_78 (genome 1) was linked via CRISPR spacer 
to a bMAG classified as Amphritea sp. (SRR15960039_bin.6), family 
Oceanospirillaceae of Gammaproteobacteria. This virus encoded a 
DNA cytosine-5 methyltransferase 1 (DNMT1, dcm), an acyl-
homoserine lactone (AHL) synthase (raiI), and a quorum-sensing 
system regulator (bjaR1). Another Duplodnaviria, Ga0478965_02 
(genome 2), was integrated into the genome of Roseobacter sp. 
HKCCD5928 (Alphaproteobacteria) isolated from the coral Platygyra 
acuta. This virus encoded a phosphoadenosine phosphosul-
fate reductase (cysH) and a CysO sulfur-carrier protein-S-L-
cysteine hydrolase (mec). A representative of Ackermannviridae 
(CUR21_CRL_A_vRhyme_bin_22; genome 3) was not linked to a 
host but encoded queuosine biosynthesis genes typically involved 
in the phage–host evolutionary arms race. queD, encoding a 
6-pyruvoyltetrahydropterin/6-carboxytetrahydropterin synthase; 
queE, a 7-carboxy-7-deazaguanine synthase; and GCH1, folE, 
a GTP cyclohydrolase, all play roles in deazaguanine DNA 
modifications in phages. SRR8664773_Node_243 (genome 4) was 
CRISPR spacer linked to a Rhizobiales bMAG (SRR18532180_bin.10) 
from a Goniastrea minuta metagenome and encoded the metabolic 
gene (cysH) as well as bacterial cell cycle regulator (gcrA). 
SRR18532172_Node_13_fragment_1 (genome 5), a Duplodnaviria 
representative derived from Porites lutea skeleton, was integrated 
into a bMAG (SRR18532172_bin.9) from the same sample. This 
virus encoded a sulfotransferase domain (ST domain), cysteine 
and methionine metabolism PLP-dependent enzyme (Cys/Met 
Meta PP) as well as virulence factors, including a type IV 
secretion system effector (lpg2359) and a RhuM family virulence 
protein (RhuM family VP). Duplodnaviria virus LIQF01000020.1 
(Genome 6) was identified in the genome of Marinomonas fungiae 
JCM18476 isolated from the coral host Fungia echinata and encoded 
the virulence factor cylR2, a cytolysin regulator. The isolated 
coral pathogen V. coralliilyticus strain P1 carried an integrated 
Monodnaviria virus in the Inoviridae family of chronic filamentous 
viruses (AEQS01000044.1_contig00050; Genome 7) encoding the 
gene for the zonula occludens toxin (zot). 

Tripartite network 
Links between viruses and their putative hosts (N = 299) and the 
metabolic and symbiosis genes encoded by viruses in the GCVDB 
(N = 5,219) were used to construct a network where shared genes 
were the edges connecting phages in addition to phage–bacteria 
connections via CRISPR and prophage links in a bipartite network 
(Fig. 6A displays a version of this network where genes are 
shown as nodes for visualization purposes). Among bacteria, the 
average clustering coefficient, which describes the connections 
between neighbors of a node, was zero. Thus, in the case where 
multiple viruses were linked to the same host, these viruses did 
not share metabolic or virulence genes. The top six ranks of 
keystone viruses based on shared metabolic and symbiosis genes 
included 17 viruses (Table S13), all of which were classified as 
Duplodnaviria without family-level classification or host linkages, 
highlighting our lack of information about these important 
viruses. These viruses primarily encoded the most common genes 
within the GCVDB, such as DNMT1, dcm, DNMT3A, involved  in  
DNA methylation, and ankY/legA9, involved in bacteria–eukaryote 
interactions. To better visualize the distribution of the host– 
phage–gene connections, we displayed these links in an alluvial 
plot with phages grouped at the family level and hosts at the 
class level (Fig. 6B). This plot shows the high representation 
of genes involved in amino acid and energy metabolism 
(important for phage particle production during infection) and 

other gene functions related to cofactors and vitamins and 
carbohydrate metabolisms, encoded by viruses belonging to 
several families of tailed bacteriophages (Autographiviridae, 
Herelleviridae, Kyanoviridae, and  Straboviridae) infecting Alphapro-
teobacteria, Gammaproteobacteria, and  Halanaerobia, among  others.  

Discussion 
Here, we introduce a size fractionation method to increase the 
recovery of viral and bacterial DNA in coral metagenomes. By 
combining these metagenomes with data generated across coral 
metagenomic and culture-based studies worldwide, including 710 
coral metagenomes, viromes, and bacterial isolates, we identi-
fied 531 high- and medium-quality metagenome-assembled viral 
genomes from corals. These viruses infect diverse hosts and 
encode genes that contribute to several holobiont functions inter-
actions, specifically in phage defense mechanisms and bacteria– 
coral symbioses. 

Enrichment of viruses and bacteria in coral 
metagenomes 
VBE captured high- and medium-quality viral genomes across 
four of the six viral realms recognized by the ICTV, except for 
Adnaviria and Ribozyviria (Fig. 2B). By using size fractionation 
and sequencing viruses and bacteria together, the VBE method 
incurred fewer compositional biases compared to previous 
methods [63]. Chloroform treatment used in previous studies 
efficiently removes bacteria but selects against enveloped viruses, 
some nonenveloped viruses, and a third of tailed phages [63–65]. 
Cesium chloride (CsCl) gradients enhance viral recovery [63] but  
severely bias viral diversity due to differences in viral capsid den-
sity [66] and often require the use of amplification methods that 
incur further biases [67]. In viral studies that avoided these biases, 
viral genomes were either not assembled, limiting the analyses to 
single reads [10] or focused primarily on viruses of eukaryotes 
[68]. Here, bacterial and viral genome recovery through VBE 
was possible even at a relatively low-sequencing coverage (37 
million reads and 5.5 billion bases per sample on average). 
This recovery represents an improvement from previous studies 
that required coverages from 58 to 146 million reads [69–72] 
to assemble bMAGs and were most successful with samples 
devoid of coral tissue, such as in studies focused on the skeleton 
communities [69]. The differences observed in the outputs 
between VBE and control samples could be partially attributed 
to differences in sequencing depth, as VBE sample coverage was, 
by chance, 40% higher than the control samples. However, this 
difference was not proportional to the 9 times increase in bacterial 
recovery (800% increase) and 2 times increase in viral recovery 
(100% increase). VBE uses a coral fragment not much larger than 
a parrotfish bite, which is minimally invasive to corals. Therefore, 
this method could be easily adapted for the recovery of bacterial 
and viral RNA [73], which would presumably require larger 
amounts of input material. This method also pools all holobiont 
compartments (skeleton, tissue, and mucus), and adaptations 
are required for application to specific compartments [70, 74]. 
Increasing the size of the coral input sample and sequencing 
depth and incorporating long-read data may lead to the resolution 
of more complete genomes covering a larger diversity. 

A potential caveat of the symbiont filtering approach used 
here to calculate the efficacy of the VBE method after filtering 
eukaryotic reads bioinformatically is that reads were mapped 
to a single Symbiodiniaceae genome at a low-sequence identity

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae132#supplementary-data
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Figure 5. Genome plots of GCVDB viruses. Genome annotations of seven viral genomes of interest due to their host link or the presence of metabolic 
or symbiosis genes. The colors indicate gene classifications, and angled parallel lines indicate separations between contigs within viral MAGs. 

threshold with the goal of removing sequences from Symbio-
diniaceae or related genera. To test the effect of this approach, 
we mapped our reads to the genomes of four Symbiodiniaceae 
genera common in O. faveolata in the Caribbean: Symbiodinium, 
Breviolum, Cladocopium, and  Durusdinium [ 75]. This increased the 
number of reads mapped to Symbiodiniaceae from 36% to 44% 
in the VBE and from 70% to 75% in the control. However, the 
difference between VBE and control changed only marginally, 
from a 52% reduction to 58%, confirming that the initial approach 
removed most Symbiodiniaceae reads. As a result, the enrichment 
of bacterial reads using VBE was 5.0 times in the older symbiont 
filtering versus 4.5 times in the filtering with four genera, and for 
viruses, it changed from 2.8 to 2.5 times. These differences were 
small, and the statistical difference between VBE and control was 
maintained. 

Updated taxonomy of coral-associated viruses 
The discontinuation of morphology-based viral taxonomic assign-
ments by the ICTV in 2022 has implications for studying bacterial 
viruses in corals. This taxonomic reorganization included the 
creation or relocation of 1 order, 22 families, 30 subfamilies, 321 
genera, and 862 species while simultaneously eliminating families 
such as Podoviridae, Siphoviridae, and  Myoviridae, along with the 

order Caudovirales [42]. In previous studies, these families were 
consistently the most abundant members of the coral holobiont 
[9, 10, 20]. Within the GCVDB, we identified viruses in the realms 
Duplodnaviria, Monodnaviria, Varidnaviria, and  Riboviria. Among  the  
phages, the vast majority belonged to the class Caudoviricetes, 
which includes all tailed bacterial and archaeal viruses with 
icosahedral capsids and a dsDNA genome [42]. The most 
abundant families under the new taxonomy were Kyanoviridae 
and Autographiviridae, which represented 65.0% of Caudoviricetes. 
The family Kyanoviridae likely represents many of the since-
abolished Myoviridae phages previously identified in corals. These 
“T4-like” phages share the myovirus morphotype and current 
representatives in this family exclusively infect Cyanobacteria [42]. 
The Kyanoviridae phages in our dataset encoded many metabolic 
and symbiosis genes but did not have host linkages, preventing a 
better understanding of their roles in corals. This lack of linkages 
could be due to a lack of integration capability, infection of 
hosts that do not employ CRISPR-Cas defense systems, or low-
abundance and genetically diverse hosts for which metagenome-
assembled genomes (MAGs) were not assembled [48, 56]. 
Autographiviridae viruses include cultured representatives that 
typically exhibit a lytic lifestyle and podophage morphology and 
primarily infect Gammaproteobacteria hosts [76]. This contrasts
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Figure 6. Bacteria–phage–gene network. (A) GCVDB viruses were connected to bacterial hosts (isolate and bMAG) according to the host prediction 
described in the methods and to metabolic and symbiosis genes according to their functional annotations. The ellipse indicates the position of viruses 
identified as keystones in the network analyses. (B) Alluvial plot displays abundant bacterial classes (left) linked to viral families (center) found to 
interact with them though CRISPR spacer and provirus linkages identified in this study. On the right, viral families are linked to metabolic genes 
encoded in their genomes. 

with Autographiviridae in our dataset, as two were linked with 
Alphaproteobacteria hosts. 

Coral viruses encode a limited but distinct 
repertoire of metabolic genes 
Through the expression of metabolic genes during infection, 
phages can impact the function and ecological relationships of 
their hosts [77, 78]. Despite a massively higher sampling effort 
of corals (N = 400) in comparison with seawater (N = 18), coral 
phages had a lower frequency and a less diverse repertoire of 

metabolic genes, primarily encoding genes involved in amino 
acid metabolism. These results suggest a strong selection of 
few metabolic genes in phage genomes associated with corals. 
Differences in sequencing coverage were likely not an explanation 
for this pattern, as 6,173 viral genomes were recovered from corals 
versus 3912 from seawater. Yet, coral–viral genomes were less 
complete (16.03% average completeness) compared to seawater 
(51.72%), which could contribute to this difference in metabolic 
gene recovery. Nevertheless, this completeness estimate relies 
on hallmark genes and might be biased against novel viruses,
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particularly those from understudied systems such as coral 
[47]. The genes encoding DNA (cytosine-5)-methyltransferase 
1 (DNMT1, dcm) and DNA (cytosine-5)-methyltransferase 3A 
(DNMT3A), comprising 60.40% of the metabolic genes in coral 
viruses, are involved in DNA methylation for evasion of restriction-
mediated resistance against phage infection [79]. They were found 
in viruses infecting eight different bacterial families, indicating 
a widespread evolutionary arms race between coral viruses and 
their bacterial hosts [80]. Another possible function of DNMT1, 
dcm is in the colonization of mucosal surfaces. In Group B 
Streptococcus specifically, knockout of dcm was found to reduce 
binding to immobilized mucin [81]. We predict that in corals, 
these genes are involved in the evasion of bacterial defense during 
lytic infections and possibly in enhancing bacterial host mucus 
colonization. 

S-(hydroxymethyl) glutathione dehydrogenase (frmA, ADH5, 
adhC), the next most frequent metabolic gene in coral viruses, 
plays a role in formaldehyde metabolism, which could be 
important for biomass and energy production of methylotrophs 
and other fermenting bacteria [82]. Corals display significant 
diurnal oxygen fluctuations, with daytime photosynthetic 
oxygen production followed by rapid consumption by het-
erotrophic metabolism at night and resultant shifts to anaerobic 
metabolism [83], which may explain the presence of formalde-
hyde metabolism genes in coral-associated phages. Viruses 
carrying frmA, ADH5, adhC genes, if infecting anaerobes that 
proliferate during nocturnal respiration, may bolster downstream 
production of formate, a key electron donor in anaerobic 
respiration [84]. The contribution of fermentation to coral 
holobiont metabolism during nighttime oxygen depletion and 
the phage contribution to this shift should be the focus of future 
studies. 

Genes for bacteria–eukaryote interactions are 
rare in coral–phage genomes 
Previous studies indicated that ∼40% of viral sequences from 
corals were related to pathogen–host interactions, annotated 
as “Virulence, Disease, and Defense” [10]. Although these genes 
are involved in the virulence of known pathogens, many of 
the same genes can be involved in commensal or mutualistic 
bacteria–eukaryote interactions in nonpathogens, showing that 
they mediate bacteria–host interactions across the full spectrum 
of symbiosis [58]. Therefore, we refer to this group of genes as 
symbiosis genes or eukaryote interaction genes. Here, 3.3% of 
phage genomes in the GCVDB and 2.2% of phage genomes in 
the seawater samples encoded at least one symbiosis gene. This 
frequency is close to that observed in coral–seawater boundary 
layer viruses [57], where 2%–4% of the viral community encoded 
these genes, an order of magnitude lower than the frequency 
observed in other coral-associated viruses [10]. This difference 
may be due to the use of a read-based bioinformatic approach that 
may recruit bacterial reads and inflate the estimates in the study 
that found higher frequencies [10], compared to the assembly and 
MAG-binning approach used here. The distributions and functions 
of these symbiosis genes also differed between studies. Here, 
seawater phages often encoded genes related to adherence and 
invasion, consistent with coral boundary layer samples [57]. In 
contrast, most symbiosis genes encoded by coral viruses were 
ankyrin motif-containing proteins (ankY/legA9) that mediate 
protein–protein interactions between hosts and symbionts [85, 
86]. Ankyrin motif-containing proteins transferred by phages can 
enhance bacteria–host symbioses through the suppression of 
host immune cells [85, 87]. In other bacterial hosts, these proteins 

represent a family of Type IV secretion system effectors [88]. The 
similarly high frequency of Icm/Dot type IV secretion system 
central channel proteins (icmE/dotG) among coral viruses indi-
cates an important role of effector delivery systems in phage– 
bacteria–coral interactions, enabling bacteria to directly translo-
cate effectors into prokaryotic competitor cells and eukaryotic 
host cells through an injection apparatus [89, 90]. Greater 
microbe–microbe competition in the dense coral microbiome 
[91] and frequent bacteria–animal interactions may drive the 
selection of these secretion systems and ankyrin motif-containing 
proteins in the phages identified here. 

Host links and network 
Associating uncultivated viruses with their microbial hosts 
remains a challenge not only for coral microbiomes but also 
for any phage–host studies [48, 56]. Here, our ability to identify 
bMAGs enabled predictions of virus–host pairs through CRISPR 
matches and integrated proviruses. The most abundant bMAG 
hosts, Alphaproteobacteria and Gammaproteobacteria, displayed an 
interesting trend where Alphaproteobacteria hosts were overrep-
resented among bMAGs with linkages and Gammaproteobacteria 
hosts were underrepresented, suggesting higher frequency of viral 
infection in the more abundant Alphaproteobacteria, consistent 
with observations of Alphaproteobacteria in coral reef seawater 
[56]. Lower completeness of gammaproteobacterial genomes 
(∼7% less complete than Alphaproteobacteria bMAGs, t-test, 
t(137) = 2.51, P = 1.34e-02) could partially but not fully explain 
the underrepresentation of Gammaproteobacteria linkages. This 
may simply indicate a lower frequency of viral infections of 
Gammaproteobacteria in corals for unknown reasons. Halanaerobiia 
and Bacteroidia constituted a minor fraction of bMAGs, yet they 
represented a substantial percentage of the phage linkages. 
This observation aligns with a previous investigation in coastal 
seawater environments, wherein an abundance of free rRNA, 
indicative of recently lysed cells, was noted for copiotrophic 
and low-abundance bacteria [92]. Here, bMAGs of these bacterial 
groups had multiple phage linkages, suggesting that these taxa 
are susceptible to infection by multiple viruses. 

A closer inspection of viral genomes with connections with 
hosts and genes of interest revealed the genomic underpinnings 
of phage–bacteria–coral interactions. As quantifying viral abun-
dances across datasets produced with different methods was not 
viable, these genomes were selected based on their high estimated 
genome quality, in addition to the presence of genes of interest 
and a host link, to identify possible mechanisms of virus–host 
interactions based on their high-confidence predictions. Duplod-
naviria phage PRJNA576217_D_bin_78 encodes an AHL synthase 
(raiI) and a LuxR family transcriptional regulator (bjaR1), which  
are both involved in quorum sensing. RaiI produces AHL, which, 
upon reaching a critical threshold within a bacterial cell, triggers 
AHL-signaling and the initiation of the expression of virulence 
genes [93]. BjaR1 acts as a quorum-sensing transcriptional reg-
ulator involved in the response to AHL [94].  The presence of both  
genes in the same phage suggests that this phage coopts the 
AHL signaling of its bacterial host (bMAG SRR15960039_Bin.6) to 
modulate gene expression and/or direct lysis–lysogeny decisions. 
The host, Amphritea sp., is  an  Oceanospirillaceae in the Gammapro-
teobacteria class [95]. A bMAG of the same genus was found across 
metagenomes of a stony coral tissue loss diseased Stephanocoenia 
intersepta [70] and has been found in association with black band 
disease [96]. We speculate that the virus identified here may 
be involved in the pathogenicity of Amphritea in corals through 
modulation of quorum-sensing signaling (Fig. 7A).
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Figure 7. Conceptual hypotheses for mechanisms underpinning phage roles on coral-associated microbiomes. (A) Viral infection and gene transfer 
impact bacterial quorum sensing and defense where phage-encoded methyltransferases (1) protect phage nucleic acids from host-encoded restriction 
endonucleases and (2) regulate adhesins and metabolic factors with putative roles in carbohydrate metabolism and mucin adherence. Genes involved 
in the synthesis of queuosine precursors may be used to (3) modify phage DNA as protection against host restriction systems or (4) increase queuosine 
levels in host tRNAs, improving the host’s translational efficiency. Quorum-sensing genes encoded by phages may influence (5) lysis–lysogeny 
decisions and (6) the expression of genes related to eukaryotic–host interactions (virulence genes). (B) Phages may contribute to sulfur cycling through 
(1) impacting production of sulfur-containing metabolites that are effective against oxidative stress, (2) the diversion of sulfur toward cysteine 
production and assimilation into phage proteins, and (3) interference in the synthesis of DMSP due to the deviation of the DMSP precursor cysteine 
toward phage proteins. (C) Phages may impact virulence and competition within the coral holobiont by (1) regulating the expression of bacterial 
cytolysins, (2) expression of exotoxins that increase the permeability of coral host tissues, and (3) encoding type IV secretions system central channel 
proteins and effectors that can mediate bacteria–bacteria or bacteria–eukaryote interactions. Figure created with BioRender.com. 

Evidence of the phage–host evolutionary arms race was 
present in several genomes, as many viruses encoded DNA 
methyltransferases likely for evasion of restriction-mediated 
resistance. Another mechanism of this restriction evasion was 
demonstrated in the genome CUR21_CRL_A_vRhyme_bin_22 

(Genome 3 in Fig. 5). The queuosine biosynthesis genes encoded 
by this phage, queD, queE, and  folE, are widespread in phages, 
especially in the genomes of those with pathogenic hosts [97]. 
These genes are suggested to modify phage DNA as protection 
against host restriction systems and contribute to the level

BioRender.com
BioRender.com
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of queuosine in host tRNAs, improving host translational 
efficiency [97]. 

Roseobacters constitute a significant portion of the coral mucous 
microbiome, and although the precise nature of their interactions 
with coral remains ambiguous, there is evidence suggesting their 
potential roles as probiotics in coral reproduction and defense 
[98]. The degradation and production of dimethylsulfoniopropi-
onate/dimethylsulfide (DMSP/DMS) by Roseobacters is considered 
a nutrient source for corals [99, 100]. Here, a phage genome 
(Ga0478965_02) within a Roseobacter isolate (sp. HKCCD5928) 
encoded metabolic genes related to sulfur metabolism, specifi-
cally assimilatory sulfate reduction (phosphoadenosine phospho-
sulfate reductase; cysH) and the transfer of sulfur during cysteine 
production (CysO sulfur-carrier protein; mec). Viruses commonly 
utilize sulfur metabolism genes to increase the rates of cysteine 
production for viral particle assembly [41]. Yet, these sulfur genes 
were encoded in a prophage, Ga0478965_02. It is possible that 
these genes are transcribed only when the prophage enters the 
lytic cycle [101]. Alternatively, its expression during lysogeny 
may contribute to the degradation of DMSP and production of 
sulfur-containing metabolites by the Roseobacter host (Fig. 7B). 
Other bacterial hosts associated with the skeletal components of 
coral hosts exhibited connections to viruses that carried multiple 
genes associated with the metabolism of sulfur-containing 
amino acids and metabolites, like SRR8664773_Node_243 and 
SRR18532172_Node_13_fragment_1. Although these phage-
encoded genes could potentially play a role in DMSP cycling 
and phage production, the production of sulfur-containing 
metabolites has also been linked to resistance against oxidative 
and nitrosative stress in various bacterial hosts [102]. 

Genes related to effector delivery systems, with potential roles 
in bacterial competition and interactions with the coral host, 
were common symbiosis genes in the GCVDB. Often, these phage-
encoded effector proteins are multifunctional, but often, they 
convert bacterial hosts from nonpathogenic to virulent [103] 
(Fig. 7C). One of the viral genomes identified here, Duplodnaviria 
virus LIQF01000020.1, encoded genes involved in the regulation 
of cytolysin, an exotoxin that lyses prokaryotic and eukaryotic 
cells [104]. A prophage-encoding zonula occludens toxin (Zot) 
previously detected in the coral pathogen V. coralliilyticus strain 
P1 was also observed here. These observations support the 
idea that certain coral diseases may result from lysogenic 
conversion [105, 106]. However, some of these virulence genes 
can also be involved in nonpathogenic functions in the molecular 
interactions between bacteria and eukaryotic cells when they are 
called “fitness factors” [58]. Here, these cells may include the coral 
animal cells, the endosymbiotic algae, or other eukaryotes in the 
holobiont. 

The network analysis revealed several keystone Duplodnaviria 
viruses based on their shared metabolic genes, which makes them 
more connected within the network and more able to diversify 
the functional capacity of bacteria within the holobiont. Low clus-
tering across bacterial members of the network shows that the 
viruses infecting the same bacterial host do not share metabolic 
genes. This indicates that different viruses create distinct virocell 
metabolism upon infection of the same host [107] and supports 
the idea of viruses as a reservoir of genetic information that can 
be horizontally acquired by bacteria under changing conditions. 

The results described here reveal the basis of mechanisms by 
which bacteriophages interact with bacteria within the coral holo-
biont, with potential downstream effects on bacteria–bacteria and 
bacteria–coral interactions. The large dataset and high resolution 
gained from the assembly and binning of genomes enabled the 
use of stringent quality thresholds, increasing confidence in the 

annotations and predictions made. The gene-resolved phage– 
host network highlighted phages’ selective repertoire of metabolic 
genes that can impact bacterial communication, competition, 
and molecular interactions with the coral host, illuminating the 
genomic underpinnings of phage–bacteria–coral tripartite sym-
bioses. 
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